5,687 research outputs found

    Canonical time-frequency, time-scale, and frequency-scale representations of time-varying channels

    Full text link
    Mobile communication channels are often modeled as linear time-varying filters or, equivalently, as time-frequency integral operators with finite support in time and frequency. Such a characterization inherently assumes the signals are narrowband and may not be appropriate for wideband signals. In this paper time-scale characterizations are examined that are useful in wideband time-varying channels, for which a time-scale integral operator is physically justifiable. A review of these time-frequency and time-scale characterizations is presented. Both the time-frequency and time-scale integral operators have a two-dimensional discrete characterization which motivates the design of time-frequency or time-scale rake receivers. These receivers have taps for both time and frequency (or time and scale) shifts of the transmitted signal. A general theory of these characterizations which generates, as specific cases, the discrete time-frequency and time-scale models is presented here. The interpretation of these models, namely, that they can be seen to arise from processing assumptions on the transmit and receive waveforms is discussed. Out of this discussion a third model arises: a frequency-scale continuous channel model with an associated discrete frequency-scale characterization.Comment: To appear in Communications in Information and Systems - special issue in honor of Thomas Kailath's seventieth birthda

    Channel Uncertainty in Ultra Wideband Communication Systems

    Full text link
    Wide band systems operating over multipath channels may spread their power over bandwidth if they use duty cycle. Channel uncertainty limits the achievable data rates of power constrained wide band systems; Duty cycle transmission reduces the channel uncertainty because the receiver has to estimate the channel only when transmission takes place. The optimal choice of the fraction of time used for transmission depends on the spectral efficiency of the signal modulation. The general principle is demonstrated by comparing the channel conditions that allow different modulations to achieve the capacity in the limit. Direct sequence spread spectrum and pulse position modulation systems with duty cycle achieve the channel capacity, if the increase of the number of channel paths with the bandwidth is not too rapid. The higher spectral efficiency of the spread spectrum modulation lets it achieve the channel capacity in the limit, in environments where pulse position modulation with non-vanishing symbol time cannot be used because of the large number of channel paths

    Next Generation High Throughput Satellite System

    Get PDF
    This paper aims at presenting an overview of the state-of-the-art in High Throughput Satellite (HTS) systems for Fixed Satellite Services (FSS) and High Density-FSS. Promising techniques and innovative strategies that can enhance system performance are reviewed and analyzed aiming to show what to expect for next generation ultra-high capacity satellite systems. Potential air interface evolutions, efficient frequency plans,feeder link dimensioning strategies and interference cancellation techniques are presented to show how Terabit/s satellite myth may turn into reality real soon

    The Trade-off between Processing Gains of an Impulse Radio UWB System in the Presence of Timing Jitter

    Get PDF
    In time hopping impulse radio, NfN_f pulses of duration TcT_c are transmitted for each information symbol. This gives rise to two types of processing gain: (i) pulse combining gain, which is a factor NfN_f, and (ii) pulse spreading gain, which is Nc=Tf/TcN_c=T_f/T_c, where TfT_f is the mean interval between two subsequent pulses. This paper investigates the trade-off between these two types of processing gain in the presence of timing jitter. First, an additive white Gaussian noise (AWGN) channel is considered and approximate closed form expressions for bit error probability are derived for impulse radio systems with and without pulse-based polarity randomization. Both symbol-synchronous and chip-synchronous scenarios are considered. The effects of multiple-access interference and timing jitter on the selection of optimal system parameters are explained through theoretical analysis. Finally, a multipath scenario is considered and the trade-off between processing gains of a synchronous impulse radio system with pulse-based polarity randomization is analyzed. The effects of the timing jitter, multiple-access interference and inter-frame interference are investigated. Simulation studies support the theoretical results.Comment: To appear in the IEEE Transactions on Communication
    • …
    corecore