4,765 research outputs found

    Conceptual development of a ground-based radio-beacon navigation system for use on the surface of the moon

    Get PDF
    A spread-spectrum radio-beacon navigation system for use on the lunar surface is described. The subjects discussed are principle of operation and specifications to include power requirements, operating frequencies, weight, size, and range

    Universality and Realistic Extensions to the Semi-Analytic Simulation Principle in GNSS Signal Processing

    Get PDF
    Semi-analytic simulation principle in GNSS signal processing bypasses the bit-true operations at high sampling frequency. Instead, signals at the output branches of the integrate&dump blocks are successfully modeled, thus making extensive Monte Carlo simulations feasible. Methods for simulations of code and carrier tracking loops with BPSK, BOC signals have been introduced in the literature. Matlab toolboxes were designed and published. In this paper, we further extend the applicability of the approach. Firstly, we describe any GNSS signal as a special instance of linear multi-dimensional modulation. Thereby, we state universal framework for classification of differently modulated signals. Using such description, we derive the semi-analytic models generally. Secondly, we extend the model for realistic scenarios including delay in the feed back, slowly fading multipath effects, finite bandwidth, phase noise, and a combination of these. Finally, a discussion on connection of this semi-analytic model and position-velocity-time estimator is delivered, as well as comparison of theoretical and simulated characteristics, produced by a prototype simulator developed at CTU in Prague

    Shuttle S-band communications technical concepts

    Get PDF
    Using the S-band communications system, shuttle orbiter can communicate directly with the Earth via the Ground Spaceflight Tracking and Data Network (GSTDN) or via the Tracking and Data Relay Satellite System (TDRSS). The S-band frequencies provide the primary links for direct Earth and TDRSS communications during all launch and entry/landing phases of shuttle missions. On orbit, S-band links are used when TDRSS Ku-band is not available, when conditions require orbiter attitudes unfavorable to Ku-band communications, or when the payload bay doors are closed. the S-band communications functional requirements, the orbiter hardware configuration, and the NASA S-band communications network are described. The requirements and implementation concepts which resulted in techniques for shuttle S-band hardware development discussed include: (1) digital voice delta modulation; (2) convolutional coding/Viterbi decoding; (3) critical modulation index for phase modulation using a Costas loop (phase-shift keying) receiver; (4) optimum digital data modulation parameters for continuous-wave frequency modulation; (5) intermodulation effects of subcarrier ranging and time-division multiplexing data channels; (6) radiofrequency coverage; and (7) despreading techniques under poor signal-to-noise conditions. Channel performance is reviewed

    The Global Navigation System Scope (GNSScope): a toolbox for the end-to-end modelling simulation and analysis of GNSS

    Get PDF
    The thesis provides a detailed overview of the work carried out by the author over the course of the research for the award of the degree of Doctor of Philosophy at the University of Westminster, and the performance results of the novel techniques introduced into the literature. The outcome of the work is collectively referred to as the Global Navigation System Scope (GNSScope) Toolbox, offering a complete, fully reconfigurable platform for the end-to-end modeling, simulation and analysis of satellite navigation signals and systems, covering the signal acquisition, tracking, and range processing operations that take place in a generic Global Navigation Satellite System (GNSS) receiver, accompanied by a Graphical User Interface (GUI) providing access to all the techniques available in the toolbox. Designed and implemented entirely in the MATLAB mathematical programming environment using Software Defined Radio (SDR) receiver techniques, the toolbox offers a novel new acquisition algorithm capable of handling all Phase-Shift Keying (PSK) type modulations used on all frequency bands in currently available satellite navigation signals, including all sub-classes of the Binary Offset Carrier (BOC) modulated signals. In order to be able to process all these signals identified by the acquisition search, a novel tracking algorithm was also designed and implemented into the toolbox to track and decode all acquired satellite signals, including those currently intended to be used in future navigation systems, such as the Galileo test signals transmitted by the GIOVE satellites orbiting the Earth. In addition to the developed receiver toolbox, three novel algorithms were also designed to handle weak signals, multipath, and multiple access interference in GNSScope. The Mirrored Channel Mitigation Technique, based on the successive and parallel interference cancellation techniques, reduces the hardware complexity of the interference mitigation process by utilizing the local code and carrier replicas generated in the tracking channels, resulting in a reduction in hardware resources proportional to the number of received strong signals. The Trigonometric Interference Cancellation Technique, used in cross-correlation interference mitigation, exploits the underlying mathematical expressions to simplify the interference removal process, resulting in reduced complexity and execution times by reducing the number of operations by 25% per tracking channel. The Split Chip Summation Technique, based on the binary valued signal modulation compression technique, enhances the amount of information captured from compressing the signal to reveal specific filtering effects on the positive and negative polarity chips of the spreading code. Simulation case studies generated entirely using the GNSScope toolbox will be used throughout the thesis to demonstrate the effectiveness of the novel techniques developed over the course of the research, and the results will be compared to those obtained from other techniques reported in the literature

    Authentication of Satellite Navigation Signals by Wiretap Coding and Artificial Noise

    Full text link
    In order to combat the spoofing of global navigation satellite system (GNSS) signals we propose a novel approach for satellite signal authentication based on information-theoretic security. In particular we superimpose to the navigation signal an authentication signal containing a secret message corrupted by artificial noise (AN), still transmitted by the satellite. We impose the following properties: a) the authentication signal is synchronous with the navigation signal, b) the authentication signal is orthogonal to the navigation signal and c) the secret message is undecodable by the attacker due to the presence of the AN. The legitimate receiver synchronizes with the navigation signal and stores the samples of the authentication signal with the same synchronization. After the transmission of the authentication signal, through a separate public asynchronous authenticated channel (e.g., a secure Internet connection) additional information is made public allowing the receiver to a) decode the secret message, thus overcoming the effects of AN, and b) verify the secret message. We assess the performance of the proposed scheme by the analysis of both the secrecy capacity of the authentication message and the attack success probability, under various attack scenarios. A comparison with existing approaches shows the effectiveness of the proposed scheme

    Vulnerability analysis of satellite-based synchronized smart grids monitoring systems

    Get PDF
    The large-scale deployment of wide-area monitoring systems could play a strategic role in supporting the evolution of traditional power systems toward smarter and self-healing grids. The correct operation of these synchronized monitoring systems requires a common and accurate timing reference usually provided by a satellite-based global positioning system. Although these satellites signals provide timing accuracy that easily exceeds the needs of the power industry, they are extremely vulnerable to radio frequency interference. Consequently, a comprehensive analysis aimed at identifying their potential vulnerabilities is of paramount importance for correct and safe wide-area monitoring system operation. Armed with such a vision, this article presents and discusses the results of an experimental analysis aimed at characterizing the vulnerability of global positioning system based wide-area monitoring systems to external interferences. The article outlines the potential strategies that could be adopted to protect global positioning system receivers from external cyber-attacks and proposes decentralized defense strategies based on self-organizing sensor networks aimed at assuring correct time synchronization in the presence of external attacks

    A Reduced Complexity Cross-correlation Interference Mitigation Technique on a Real-time Software-defined Radio GPS L1 Receiver

    Full text link
    The U.S. global position system (GPS) is one of the existing global navigation satellite systems (GNSS) that provides position and time information for users in civil, commercial and military backgrounds. Because of its reliance on many applications nowadays, it's crucial for GNSS receivers to have robustness to intentional or unintentional interference. Because most commercial GPS receivers are not flexible, software-defined radio emerged as a promising solution for fast prototyping and research on interference mitigation algorithms. This paper provides a proposed minimum mean-squared error (MMSE) interference mitigation technique which is enhanced for computational feasibility and implemented on a real-time capable GPS L1 SDR receiver. The GPS SDR receiver SW has been optimized for real-time operation on National Instruments' LabVIEW (LV) platform in conjunction with C/C++ dynamic link libraries (DLL) for improved efficiency. Performance results of said algorithm with real signals and injected interference are discussed. The proposed SDR receiver gains in terms of BER curves for several interferers are demonstrated
    corecore