6 research outputs found

    Polyglutamine monomer structure and its implications for molecular self-assembly

    Get PDF
    Polyglutamine is a naturally occurring peptide found within several proteins in neuronal cells of the brain, and its aggregation has been implicated in several neurodegenerative diseases, including Huntington's disease. The resulting aggregates have been demonstrated to possess ~-sheet structure, and aggregation has been shown to start with a single misfolded peptide. The current project sought to computationally examine the structural tendencies of three mutant poly glutamine peptides that were studied experimentally, and found to aggregate with varying efficiencies. Low-energy structures were generated for each peptide by simulated annealing, and were analyzed quantitatively by various geometry- and energy-based methods. According to the results, the experimentally-observed inhibition of aggregation appears to be due to localized conformational restraint placed on the peptide backbone by inserted prolines, which in tum confines the peptide to native coil structure, discouraging transition towards the ~sheet structure required for aggregation. Such knowledge could prove quite useful to the design of future treatments for Huntington's and other related diseases

    The Mechanism of Cu,Zn Superoxide Dismutase Aggregation in Familial Amyotrophic Lateral Sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a degenerative disease of the motor neurons characterized by the progressive loss of muscle strength and eventual death due to selective killing of motor neurons in the brain stem and spinal cord. ALS consists of both sporadic and familial subtypes that share the same clinical progression of symptoms. Of the 10% of ALS cases considered familial ALS (FALS), 1 in 5 is the result of a mutation in the enzyme Cu,Zn superoxide dismutase (SOD1). Over 100 mutations have been identified, and though they are distributed evenly throughout the homodimeric structure of SOD1, the mutations have the general property of inducing SOD1 aggregation and toxicity in motor neurons and surrounding glial cells. In recent years, a shift has occurred in ALS research and the broader field of protein aggregation diseases toward the hypothesis that soluble oligomers, rather than the end products of aggregation, are the species responsible for the patterns of toxicity observed in these diseases. Previous studies of SOD1 oligomerization have thus far focused on large-scale oligomers and ignored the earliest stages of oligomerization during which the transition from the native state of SOD1 occurs. Knowledge of structural transformations that initiate SOD1 aggregation, as well as the structure of early oligomeric intermediates, is essential for the design of strategies to prevent the aggregation of SOD1 in FALS. The following chapters contain a multifaceted description of the initiation of SOD1 oligomerization including "first-principles" computational approaches for modeling the formation of aberrant SOD1 dimers, in vitro mechanistic studies of SOD1 oligomerization, as well as the characterization of the in vivo modification state of SOD1. By calling attention to the fact that SOD1 is highly post-translationally modified in-vivo and showing that mutations allow SOD1 to access altogether different oligomeric intermediates than wild type, we lay the groundwork for significant advances in understanding the structural basis of SOD1 oligomerization in ALS

    Domain Organization of Mutant Huntingtin Fibrils

    Get PDF
    Huntington’s disease is a progressive, fatal neurodegenerative disorder caused by a polyglutamine (polyQ) expansion in exon 1 of the huntingtin gene (HDx1). A hallmark of the disease is the formation of fibrillar aggregates within cells. In vitro, HDx1 with a polyQ expansion forms fibrils that have a cross beta structure common to amyloid fibrils, but little else is definitively known about HDx1 fibril structure. We used electron paramagnetic resonance spectroscopy to study the organization of the major domains (N-terminus, polyQ, C-terminus) of HDx1 with 46Q within the fibril. Our data show that HDx1 fibrils do not have a parallel, in-register structure like most other disease-associated amyloid fibrils. The C-terminus is highly dynamic and is attached like a tail to the polyQ domain, which is mostly immobilized and forms the core of the fibril. However, the C-terminal portion of the polyQ lies outside the core and has a mobility similar to the C-terminus. The N-terminus produced heterogeneous spectra, indicating that it is able to sample multiple conformations. In sum, our study excluded the parallel, in-register arrangement of beta strands within HDx1 fibrils and represents a first step toward a high-resolution structure of HDx1 fibrils

    Molekulare Analyse der Huntingtin-Aggregation und deren Modulation durch das eukaryontische Chaperonin TRiC

    Get PDF
    Polyglutaminerkrankungen sind neurodegenerative Erkrankungen mit fatalem Verlauf, die sich durch selektive neuronale Degeneration und die Bildung intrazellulärer Aggregate auszeichnen. Verursacht werden sie durch eine Expansion einer Polyglutaminsequenz in einem für die Erkrankung spezifischen Protein, die Fehlfaltung und Aggregation des entsprechenden Proteins bewirkt. Die Aggregation wirkt dabei neurotoxisch, wobei Toxizität hauptsächlich durch lösliche Intermediate des Aggregationsprozesses vermittelt wird. Zur Untersuchung der frühen Aggregationsphase und der späteren Elongationsphase wurden in dieser Arbeit verschiedene fluoreszenzbasierte Methoden etabliert. Mit Hilfe dieser Methoden konnte gezeigt werden, dass nach proteolytischer Spaltung von GST-Htt-Exon1 das Monomer eine Konformationsumlagerung durchmacht, die von einer Dimerisierung oder Oligomerisierung gefolgt wird. Dimere oder Oligomere bilden dabei eine kompakte Struktur aus. Wachstum der Fibrillen erfolgt durch Anlagerung von Monomeren oder einer anderen bisher nicht identifizierten Spezies. Durch Distanzmessungen innerhalb verschiedener Spezies konnte gezeigt werden, dass unlösliche Spezies eine kompakte Struktur aufweisen, die spezifisch für unlösliche Spezies ist. Lösliche Spezies liegen dagegen in einer expandierteren Konformation vor. Molekulare Chaperone üben oftmals eine protektive Funktion auf Neuronen in neurodegenerativen Erkrankungen aus. In dieser Arbeit wurde untersucht, inwieweit das eukaryontische Chaperonin TRiC, das in einem RNA-interference screen als potentieller Suppressor der Huntingtin-Aggregation identifiziert wurde, Aggregation modulieren kann. Gereinigtes TRiC hat keinen Einfluss auf die frühe Phase der Htt-Exon1-Aggregation, vielmehr inhibiert es die Elongation von fibrillären Strukturen, indem es mit Htt-Exon1-Oligomeren interagiert. Diese Interaktion ist transient und ATP-unabhängig. Im Gegensatz dazu interagiert TRiC in Kooperation mit dem Hsp70/40-System mit Htt-Exon1-Monomeren und verhindert die Nukleation der Aggregation. Stattdessen wird ein „gefaltetes“ Htt-Exon1-Produkt mit einer neuartigen Konformation gebildet, das löslich, nicht-fibrillär und nicht-toxisch ist und ~500 kDa-Oligomere ausbildet. Diese Interaktion ist kooperativ, sequentiell und benötigt ATP, ähnelt also der kooperativen Interaktion von TRiC und Hsp70/40 in der de novo-Proteinfaltung und stellt möglicherweise einen natürlichen Faltungsweg für Huntingtin dar
    corecore