4 research outputs found

    VoroCrust: Voronoi Meshing Without Clipping

    Full text link
    Polyhedral meshes are increasingly becoming an attractive option with particular advantages over traditional meshes for certain applications. What has been missing is a robust polyhedral meshing algorithm that can handle broad classes of domains exhibiting arbitrarily curved boundaries and sharp features. In addition, the power of primal-dual mesh pairs, exemplified by Voronoi-Delaunay meshes, has been recognized as an important ingredient in numerous formulations. The VoroCrust algorithm is the first provably-correct algorithm for conforming polyhedral Voronoi meshing for non-convex and non-manifold domains with guarantees on the quality of both surface and volume elements. A robust refinement process estimates a suitable sizing field that enables the careful placement of Voronoi seeds across the surface circumventing the need for clipping and avoiding its many drawbacks. The algorithm has the flexibility of filling the interior by either structured or random samples, while preserving all sharp features in the output mesh. We demonstrate the capabilities of the algorithm on a variety of models and compare against state-of-the-art polyhedral meshing methods based on clipped Voronoi cells establishing the clear advantage of VoroCrust output.Comment: 18 pages (including appendix), 18 figures. Version without compressed images available on https://www.dropbox.com/s/qc6sot1gaujundy/VoroCrust.pdf. Supplemental materials available on https://www.dropbox.com/s/6p72h1e2ivw6kj3/VoroCrust_supplemental_materials.pd

    Deep Point Correlation Design

    Get PDF
    Designing point patterns with desired properties can require substantial effort, both in hand-crafting coding and mathematical derivation. Retaining these properties in multiple dimensions or for a substantial number of points can be challenging and computationally expensive. Tackling those two issues, we suggest to automatically generate scalable point patterns from design goals using deep learning. We phrase pattern generation as a deep composition of weighted distance-based unstructured filters. Deep point pattern design means to optimize over the space of all such compositions according to a user-provided point correlation loss, a small program which measures a pattern’s fidelity in respect to its spatial or spectral statistics, linear or non-linear (e. g., radial) projections, or any arbitrary combination thereof. Our analysis shows that we can emulate a large set of existing patterns (blue, green, step, projective, stair, etc.-noise), generalize them to countless new combinations in a systematic way and leverage existing error estimation formulations to generate novel point patterns for a user-provided class of integrand functions. Our point patterns scale favorably to multiple dimensions and numbers of points: we demonstrate nearly 10 k points in 10-D produced in one second on one GPU. All the resources (source code and the pre-trained networks) can be found at https://sampling.mpi-inf.mpg.de/deepsampling.html

    Um ambiente para desevonvoimento de algoritmos de amostragem e remoção de ruído

    Get PDF
    In the context of Monte Carlo rendering, although many sampling and denoising techniques have been proposed in the last few years, the case for which one should be used for a specific scene is still to be made. Moreover, developing a new technique has required selecting a particular rendering system, which makes the technique tightly coupled to the chosen renderer and limits the amount of scenes it can be tested on. In this work, we propose a renderer-agnostic framework for developing and benchmarking sampling and denoising techniques for Monte Carlo rendering. It decouples techniques from rendering systems by hiding the renderer details behind a general API. This improves productivity and allows for direct comparisons among techniques using scenes from different rendering systems. The proposed framework contains two main parts: a software development kit that helps users to develop and and test their techniques locally, and an online system that allows users to submit their techniques and have them automatically benchmarked on our servers. We demonstrate its effectiveness by using our API to instrument four rendering systems and a variety of Monte Carlo denoising techniques — including recent learning-based ones — and performing a benchmark across different rendering systems.No contexto de Monte Carlo rendering, apesar de diversas técnicas de amostragem e remoção de ruído tenham sido propostas nos últimos anos, aportar qual técnica deve ser usada para uma cena específica ainda é uma tarefa difícil. Além disso, desenvolver uma nova técnica requer escolher um renderizador em particular, o que torna a técnica dependente do renderizador escolhido e limita a quantidade de cenas disponíveis para testar a técnica. Neste trabalho, um framework para desenvolvimento e avaliação de técnicas de amostragem e remoção de ruído para Monte Carlo rendering é proposto. Ele permite desacoplar as técnicas dos renderizadores por meio de uma API genérica, promovendo a reprodutibilidade e permitindo comparações entre técnicas utilizando-se cenas de diferentes renderizadores. O sistema proposto contém duas partes principais: um kit de desenvolvimento de software que ajuda os usuários a desenvolver e testar suas técnicas localmente, e um sistema online que permite que usuários submetam técnicas para que as mesmas sejam automaticamente avaliadas no nosso servidor. Para demonstramos a efetividade do ambiante proposto, modificamos quatro renderizadores e várias técnicas de remoção de ruído — incluindo técnicas recentes baseadas em aprendizado de máquina — e efetuamos uma avaliação utilizando cenas de diferentes renderizadores
    corecore