2,405 research outputs found

    Splitting methods based on algebraic factorization for fluid-structure interaction

    Get PDF
    We discuss in this paper the numerical approximation of fluid-structure interaction (FSI) problems dealing with strong added-mass effect. We propose new semi-implicit algorithms based on inexact block-LULU factorization of the linear system obtained after the space-time discretization and linearization of the FSI problem. As a result, the fluid velocity is computed separately from the coupled pressure-structure velocity system at each iteration, reducing the computational cost. We investigate explicit-implicit decomposition through algebraic splitting techniques originally designed for the FSI problem. This approach leads to two different families of methods which extend to FSI the algebraic pressure correction method and the Yosida method, two schemes that were previously adopted for pure fluid problems. Furthermore, we have considered the inexact factorization of the fluid-structure system as a preconditioner. The numerical properties of these methods have been tested on a model problem representing a blood-vessel system.&nbsp

    Splitting methods based on algebraic factorization for fluid-structure interaction

    Get PDF
    We discuss in this paper the numerical approximation of fluid-structure interaction (FSI) problems dealing with strong added-mass effect. We propose new semi-implicit algorithms based on inexact block-LU factorization of the linear system obtained after the space-time discretization and linearization of the FSI problem. As a result, at each iteration the fluid velocity is computed separately from the coupled pressure-structure velocity system, reducing the computational cost. We investigate explicit-implicit decomposition through algebraic splitting techniques originally designed for the FSI problem. This approach leads to two different families of methods which extend to FSI the algebraic pressure correction method and the Yosida method, two schemes that were previously adopted for pure fluid problems. Furthermore, we have considered the inexact factorization of the fluid- structure system as a preconditioner. The numerical properties of these methods have been tested on a model problem representing a blood-vessel system

    The LifeV library: engineering mathematics beyond the proof of concept

    Get PDF
    LifeV is a library for the finite element (FE) solution of partial differential equations in one, two, and three dimensions. It is written in C++ and designed to run on diverse parallel architectures, including cloud and high performance computing facilities. In spite of its academic research nature, meaning a library for the development and testing of new methods, one distinguishing feature of LifeV is its use on real world problems and it is intended to provide a tool for many engineering applications. It has been actually used in computational hemodynamics, including cardiac mechanics and fluid-structure interaction problems, in porous media, ice sheets dynamics for both forward and inverse problems. In this paper we give a short overview of the features of LifeV and its coding paradigms on simple problems. The main focus is on the parallel environment which is mainly driven by domain decomposition methods and based on external libraries such as MPI, the Trilinos project, HDF5 and ParMetis. Dedicated to the memory of Fausto Saleri.Comment: Review of the LifeV Finite Element librar

    Numerical investigation of an internal layer in turbulent flow over a curved hill

    Get PDF
    A numerical investigation of incompressible and compressible turbulent flows over strongly curved surfaces is presented. The turbulent flow equations are solved by a pressure based Navier-Stokes equations solver. In the method, the conservation of mass equation is replaced by a pressure correction equation applicable for both compressible and incompressible flows. The turbulence is described by a multiple time scale turbulence model supplemented with a near-wall turbulence model. The numerical results show that the internal layer is a strong turbulence field which is developed beneath the external boundary layer and is located very close to the wall. The development of the internal layer is attributed to the enormous mean flow strain rate caused by the streamline curvature. The external boundary layer flow responds rather slowly to the streamline curvature. Thus, the turbulence field of the forward corner of the curved hill is characterized by two turbulence fields interacting with each other. The turbulence intensity of the internal layer is much stronger than that of the external boundary layer, so that the development of a new boundary layer in the downstream region of the curved hill depends mostly on the internal layer. These numerical results are in good agreement with the measured data, and show that the turbulence model can resolve the turbulence field subjected to the strong streamline curvature
    • …
    corecore