1,584 research outputs found

    Splitting Clusters To Get C-Planarity

    Get PDF
    In this paper we introduce a generalization of the c-planarity testing problem for clustered graphs. Namely, given a clustered graph, the goal of the S PLIT-C-P LANARITY problem is to split as few clusters as possible in order to make the graph c-planar. Determining whether zero splits are enough coincides with testing c-planarity. We show that S PLIT-C-P LANARITY is NP-complete for c-connected clustered triangulations and for non-c-connected clustered paths and cycles. On the other hand, we present a polynomial-time algorithm for flat c-connected clustered graphs whose underlying graph is a biconnected seriesparallel graph, both in the fixed and in the variable embedding setting, when the splits are assumed to maintain the c-connectivity of the clusters

    Planar Drawings of Fixed-Mobile Bigraphs

    Full text link
    A fixed-mobile bigraph G is a bipartite graph such that the vertices of one partition set are given with fixed positions in the plane and the mobile vertices of the other part, together with the edges, must be added to the drawing. We assume that G is planar and study the problem of finding, for a given k >= 0, a planar poly-line drawing of G with at most k bends per edge. In the most general case, we show NP-hardness. For k=0 and under additional constraints on the positions of the fixed or mobile vertices, we either prove that the problem is polynomial-time solvable or prove that it belongs to NP. Finally, we present a polynomial-time testing algorithm for a certain type of "layered" 1-bend drawings

    Advances in C-Planarity Testing of Clustered Graphs

    Get PDF
    A clustered graph C=(G,T) consists of an undirected graph G and a rooted tree T in which the leaves of T correspond to the vertices of G=(V,E). Each vertex c in T corresponds to a subset of the vertices of the graph called ''cluster''. C-planarity is a natural extension of graph planarity for clustered graphs, and plays an important role in automatic graph drawing. The complexity status of c-planarity testing is unknown. It has been shown that c-planarity can be tested in linear time for c-connected graphs, i.e., graphs in which the cluster induced subgraphs are connected. In this paper, we provide a polynomial time algorithm for c-planarity testing for "almost" c-connected clustered graphs, i.e., graphs for which all c-vertices corresponding to the non-c-connected clusters lie on the same path in T starting at the root of T, or graphs in which for each non-connected cluster its super-cluster and all its siblings are connected. The algorithm uses ideas of the algorithm for subgraph induced planar connectivity augmentation. We regard it as a first step towards general c-planarity testing

    Dynamic Planar Embeddings of Dynamic Graphs

    Full text link
    We present an algorithm to support the dynamic embedding in the plane of a dynamic graph. An edge can be inserted across a face between two vertices on the face boundary (we call such a vertex pair linkable), and edges can be deleted. The planar embedding can also be changed locally by flipping components that are connected to the rest of the graph by at most two vertices. Given vertices u,vu,v, linkable(u,v)(u,v) decides whether uu and vv are linkable in the current embedding, and if so, returns a list of suggestions for the placement of (u,v)(u,v) in the embedding. For non-linkable vertices u,vu,v, we define a new query, one-flip-linkable(u,v)(u,v) providing a suggestion for a flip that will make them linkable if one exists. We support all updates and queries in O(log2n^2 n) time. Our time bounds match those of Italiano et al. for a static (flipless) embedding of a dynamic graph. Our new algorithm is simpler, exploiting that the complement of a spanning tree of a connected plane graph is a spanning tree of the dual graph. The primal and dual trees are interpreted as having the same Euler tour, and a main idea of the new algorithm is an elegant interaction between top trees over the two trees via their common Euler tour.Comment: Announced at STACS'1

    Relaxing the Constraints of Clustered Planarity

    Full text link
    In a drawing of a clustered graph vertices and edges are drawn as points and curves, respectively, while clusters are represented by simple closed regions. A drawing of a clustered graph is c-planar if it has no edge-edge, edge-region, or region-region crossings. Determining the complexity of testing whether a clustered graph admits a c-planar drawing is a long-standing open problem in the Graph Drawing research area. An obvious necessary condition for c-planarity is the planarity of the graph underlying the clustered graph. However, such a condition is not sufficient and the consequences on the problem due to the requirement of not having edge-region and region-region crossings are not yet fully understood. In order to shed light on the c-planarity problem, we consider a relaxed version of it, where some kinds of crossings (either edge-edge, edge-region, or region-region) are allowed even if the underlying graph is planar. We investigate the relationships among the minimum number of edge-edge, edge-region, and region-region crossings for drawings of the same clustered graph. Also, we consider drawings in which only crossings of one kind are admitted. In this setting, we prove that drawings with only edge-edge or with only edge-region crossings always exist, while drawings with only region-region crossings may not. Further, we provide upper and lower bounds for the number of such crossings. Finally, we give a polynomial-time algorithm to test whether a drawing with only region-region crossings exist for biconnected graphs, hence identifying a first non-trivial necessary condition for c-planarity that can be tested in polynomial time for a noticeable class of graphs

    Constrained Planarity and Augmentation Problems

    Get PDF
    A clustered graph C=(G,T) consists of an undirected graph G and a rooted tree T in which the leaves of T correspond to the vertices of G=(V,E). Each vertex m in T corresponds to a subset of the vertices of the graph called ``cluster''. c-planarity is a natural extension of graph planarity for clustered graphs, and plays an important role in automatic graph drawing. The complexity status of c-planarity testing is unknown. It has been shown by Dahlhaus, Eades, Feng, Cohen that c-planarity can be tested in linear time for c-connected graphs, i.e., graphs in which the cluster induced subgraphs are connected. In the first part of the thesis, we provide a polynomial time algorithms for c-planarity testing of specific planar clustered graphs: Graphs for which - all nodes corresponding to the non-c-connected clusters lie on the same path in T starting at the root of T, or graphs in which for each non-connected cluster its super-cluster and all its siblings in T are connected, - for all clusters m G-G(m) is connected. The algorithms are based on the concepts for the subgraph induced planar connectivity augmentation problem, also presented in this thesis. Furthermore, we give some characterizations of c-planar clustered graphs using minors and dual graphs and introduce a c-planar augmentation method. Parts II deals with edge deletion and bimodal crossing minimization. We prove that the maximum planar subgraph problem remains NP-complete even for non-planar graphs without a minor isomorphic to either K(5) or K(3,3), respectively. Further, we investigate the problem of finding a minimum weighted set of edges whose removal results in a graph without minors that are contractible onto a prespecified set of vertices. Finally, we investigate the problem of drawing a directed graph in two dimensions with a minimal number of crossings such that for every node the incoming and outgoing edges are separated consecutively in the cyclic adjacency lists. It turns out that the planarization method can be adapted such that the number of crossings can be expected to grow only slightly for practical instances
    corecore