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Abstract. In this paper we introduce a generalization of the c-planarity testing
problem for clustered graphs. Namely, given a clustered graph, the goal of the
SPLIT-C-PLANARITY problem is to split as few clusters as possible in order to
make the graph c-planar. Determining whether zero splits are enough coincides
with testing c-planarity. We show that SPLIT-C-PLANARITY is NP-complete
for c-connected clustered triangulations and for non-c-connected clustered paths
and cycles. On the other hand, we present a polynomial-time algorithm for flat
c-connected clustered graphs whose underlying graph is a biconnected series-
parallel graph, both in the fixed and in the variable embedding setting, when the
splits are assumed to maintain the c-connectivity of the clusters.

1 Introduction

Let C(G, T ) be a clustered graph and suppose that a c-planar drawing of C is impossi-
ble (or very difficult) to find. A natural question is whether C admits a drawing where
each cluster is represented by a small set of connected regions instead of a single con-
nected region of the plane. We formalize this concept by introducing the split operation,
that replaces a cluster μ of T with two clusters μ1 and μ2 with the same parent as μ, and
distributes the children of μ between μ1 and μ2. We search for the minimum number of
splits turning C into a c-planar clustered graph. Formally, the corresponding decision
problem is as follows:

Problem: SPLIT-C-PLANARITY

Instance: A clustered graph C = (G, T ) and an integer k ≥ 0.
Question: Can C(G, T ) be turned into a c-planar clustered graph C(G, T ′)

by performing at most k split operations?

SPLIT-C-PLANARITY is motivated not only by the practical need of drawing non-c-
planar clustered graphs, but also by its implications on the c-planarity theory. In fact,
the long-standing problem of testing c-planarity [8] is a particular case of SPLIT-C-
PLANARITY, where zero splits are allowed. Therefore, SPLIT-C-PLANARITY extends
the c-planarity testing problem to a more general setting, where we are able to show the
NP-hardness even for flat clustered graphs whose underlying graphs are paths or cycles.

Hence, following a strategy that is analogous to the one used in the literature for the
c-planarity testing problem, we focus on peculiar classes of clustered graphs.
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Table 1. Time complexity of SPLIT-C-PLANARITY for non-c-connected graphs

Graph Family Fixed Embedding Setting Variable Embedding Setting

Paths, cycles, trees, & outerplanar graphs NP-hard (Th. 5) NP-hard (Th. 5)
Series-parallel graphs NP-hard (Th. 5) NP-hard (Th. 4)

General graphs NP-hard (Th. 1) NP-hard (Th. 1)

Table 2. Time complexity of SPLIT-C-PLANARITY for c-connected graphs

Graph Family Fixed Embedding Setting Variable Embedding Setting

Paths, cycles, & trees Θ(1) (trivial) Θ(1) (trivial)
Outerplanar graphs ? Θ(1) (trivial)

Series-parallel graphs∗ Polynomial (Th. 2) Polynomial (Th. 3)
Series-parallel graphs ? ?

General graphs NP-hard (Th. 1) NP-hard (Th. 1)
∗Flat hierarchy, biconnected underlying graph, c-connectivity preserved.

Restrictions on the c-planarity testing problem that have been considered in the litera-
ture include: (i) assuming that each cluster induces a small number of connected compo-
nents [8,4,11,10,1,2,12] (in particular, the case in which the graph is c-connected, that
is, each cluster induces one connected component, has been deeply investigated); (ii)
considering only flat hierarchies, where all clusters different from the root of T are chil-
dren of the root [3, 6]; (iii) focusing on particular families of underlying graphs [3, 13];
and (iv) fixing the embedding of the underlying graph [6, 12].

We show that SPLIT-C-PLANARITY is NP-hard even for flat c-connected clustered
graphs whose underlying graph is triconnected (hence even for flat c-connected em-
bedded clustered graphs). On the other hand, we show that SPLIT-C-PLANARITY is
polynomial-time solvable for flat c-connected clustered graphs whose underlying graph
is a biconnected series-parallel graph (both if the underlying graph has fixed or variable
embedding) if the splits are assumed to preserve the c-connectivity of the graph.

Tables 1 and 2 summarize the time complexity of SPLIT-C-PLANARITY. Observe
that, being acyclic, every c-connected clustered tree is trivially c-planar. Also, in an
outerplanar embedding of any outerplanar graph no cycle contains a vertex in its inte-
rior. Therefore, every c-connected clustered outerplanar graph is c-planar.

The rest of the paper is organized as follows. In Sect. 2 we introduce some pre-
liminaries; in Sect. 3 we prove the NP-hardness of SPLIT-C-PLANARITY for flat c-
connected clustered triangulations; in Sect. 4 we show a polynomial-time algorithm for
SPLIT-C-PLANARITY on flat c-connected biconnected clustered series-parallel graphs;
in Sect. 5 we show the NP-hardness of SPLIT-C-PLANARITY for flat non-c-connected
clustered paths and cycles; in Sect. 6 we conclude and present some open problems.

2 Background

We refer to [5] for basic definitions about graphs and embeddings, and to [8,4,11,3,10,
1, 6, 2, 13, 12] for basic definitions about clustered graphs and c-planar drawings.

A series-parallel graph is inductively defined as follows. An edge (u, v) is a series-
parallel graph with poles u and v. Denote by ui and vi the poles of a series-parallel
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graph Gi. A series composition of a sequence G1, . . . , Gk of series-parallel graphs,
with k ≥ 2, is a series-parallel graph with poles u = u1 and v = vk such that vi and
ui+1 have been identified, for each i = 1, . . . , k − 1. A parallel composition of a set
G1, . . . , Gk of series-parallel graphs, with k ≥ 2, is a series-parallel graph with poles
u = u1 = · · · = uk and v = v1 = · · · = vk. The SPQ-tree of a series-parallel graph
G is the tree representing the series and parallel compositions of G. Let G be a series-
parallel graph with poles u and v and with a fixed plane embedding Eo. The leftmost
path (resp. rightmost path) of G is the path (w1 = u, w2, . . . , wk = v) (resp. (z1 =
u, z2, . . . , zh = v)) such that: (i) w2 follows w1 (resp. z2 precedes z1) in the counter-
clockwise order of the vertices incident to the outer face of Eo; (ii) edge (wi, wi+1)
follows (wi−1, wi) (resp. (zi, zi+1) precedes (zi−1, zi)) in the counter-clockwise order
of the edges incident to wi (resp. incident to zi). The leftmost and rightmost paths of G
are also called extreme paths of G.

3 General C-Connected Clustered Graphs

We show the NP-hardness of SPLIT-C-PLANARITY for flat c-connected clustered
graphs whose underlying graph is triconnected. This is done by means of a reduction
from HAMILTONIAN-CIRCUIT [9], which takes as an input a triconnected, planar, and
cubic graph G(V, E) and asks whether a simple cycle exists in G traversing each node
v ∈ V exactly once. Given an instance of HAMILTONIAN-CIRCUIT, consider a planar
drawing of it and the dual graph G′ of G (see Fig. 1(a)). Observe that, since G is cubic,
G′ is a triangulation. Construct an instance 〈C(G′′, T ), k〉 of SPLIT-C-PLANARITY as
follows. Graph G′′ is obtained by adding to G′ a node vi in each face fi and by con-
necting vi to the three vertices incident to fi (see Fig. 1(b)). Tree T has height two and
has a cluster μi for each added vertex vi and a cluster μ0 containing all the vertices of
G′. The value of k is set to one. We make use of the following result appeared in [7]:

Lemma 1. (Feng [7]) Let C(G, T ) be a clustered graph where G is a triangulation.
Then C is c-planar only if C is c-connected.

Lemma 2. Instance G of HAMILTONIAN-CIRCUIT admits a solution if and only if the
corresponding instance 〈C(G′′, T ), 1〉 of SPLIT-C-PLANARITY does.

(a) (b) (c) (d)

Fig. 1. (a) A planar graph G (black vertices) and its dual graph G′ (white vertices). (b) Graph
G′′ (the vertices added to G′ are drawn gray). (c) A split of cluster μ0 turning G′′ into a c-planar
clustered graph. (d) The corresponding Hamiltonian circuit on G (thick edges).
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Proof: Suppose 〈C(G′′, T ), 1〉 admits a solution. Since G′′ is triconnected, in any pla-
nar drawing of G′′ each vertex vi inserted into an internal face fi of G′ is inside a cycle
of vertices belonging to cluster μ0. Hence, C(G′′, T ) is not c-planar, and at least one
split of cluster μ0 has to be performed in order to turn C(G′′, T ) into a c-planar graph.
Suppose that a split of cluster μ0 into two clusters μa and μb exists such that the ob-
tained clustered graph C(G′′, T ′) is c-planar (see Fig. 1(c)). The split is a bipartition
of the vertices of G′ into Va and Vb. By Lemma 1, the two graphs induced by Va and
Vb are connected. Hence, the edges between Va and Vb form a cutset. A cutset in G′

corresponds to a cycle C in G [14, pg. 16]. Since C(G′′, T ′) is c-planar, each vertex vi

inserted into a face fi of G′ is adjacent both to a vertex in μa and to a vertex in μb. This
is equivalent to saying that C traverses each vertex of G exactly once (see Fig. 1(d)).

Suppose that a Hamiltonian circuit C exists in G. Split μ0 so that nodes internal to
C belong to μa and nodes external to C belong to μb. The obtained graph C(G′′, T ′) is
c-planar. In fact, C determines a cutset in G′, hence μa and μb induce connected graphs.
Further, since C is Hamiltonian, the graphs induced by μa and μb are acyclic. ��

Since 〈C(G′′, T ), 1〉 can be constructed in polynomial time and since the problem is
easily seen to be in NP, the following holds.

Theorem 1. SPLIT-C-PLANARITY is NP-complete when the input graph is a flat
c-connected clustered graph and k = 1.

4 Series-Parallel C-Connected Clustered Graphs

In this section, we show that SPLIT-C-PLANARITY is polynomial-time solvable if: (i)
the input graph is a flat c-connected clustered graph whose underlying graph is a bi-
connected series-parallel graph, and (ii) the splits have to maintain the c-connectivity
of the input graph. Observe that the reduction shown in Sect. 3 proves that SPLIT-C-
PLANARITY is NP-complete if: (i) the input graph is a flat c-connected clustered graph,
and (ii) the splits have to maintain the c-connectivity of the input graph (namely, such a
condition is always met when splitting clusters of a clustered triangulation). Through-
out this section, we assume that every set of splits turning a c-connected clustered graph
into a c-planar clustered graph maintains the c-connectivity of the graph.

4.1 Series-Parallel Graphs with Fixed Embedding

We show a polynomial-time algorithm that, given a flat c-connected clustered graph
C(G, T ), where G is a biconnected series-parallel graph with fixed planar embedding
E , computes the minimum number of splits turning C into a c-planar clustered graph.
The algorithm performs a bottom-up visit of the SPQ-tree T of G, rooted at any P -node
corresponding to a parallel composition of two series-parallel graphs B1 and B2, where
B1 is an edge e and B2 is the rest of the graph. Topologically, such a choice corresponds
to assuming that e is on the outer face of a plane embedding Eo corresponding to the
planar embedding E . However, there are O(n) ways of making such a choice, hence
the test is repeated a linear number of times. Throughout this subsection, we assume



Splitting Clusters to Get C-Planarity 61

u

v

u

v

u

v

u

v

u

v

u

v
(a) (b) (c) (d) (e) (f)

Fig. 2. Representation of a node t of T satisfying (a) Condition A, (b) Condition B, (c) Condition
C, (d) Condition D, (e) Condition E, and (f) Condition F

that E is fixed and that e is on the outer face of Eo. We denote by μ(u) the only cluster
different from the root of T containing vertex u.

For each node t of T corresponding to a series-parallel graph B with poles u and
v, the algorithm computes six labels α(t), β(t), γ(t), δ(t), ε(t), and φ(t). Such labels
represent the minimum number of splits on C turning (B, T ′[B]) (that is, the clustered
graph whose cluster hierarchy is the tree obtained from T by performing the splits on
C and by restricting to the clusters containing vertices of B) into a c-planar clustered
graph satisfying, respectively, the following conditions (see Fig. 2):

– Condition A: all the vertices of B belong to μ(u) = μ(v);
– Condition B: μ(u) = μ(v), there exists a path between u and v whose vertices all

belong to μ(u), and pr(B) and pl(B) contain vertices not belonging to μ(u);
– Condition C: μ(u) = μ(v), there exists a path between u and v whose vertices all

belong to μ(u), pr(B) contains vertices not belonging to μ(u), and all the vertices
of pl(B) belong to μ(u);

– Condition D: μ(u) = μ(v), there exists a path between u and v whose vertices
all belong to μ(u), all the vertices of pr(B) belong to μ(u), and pl(B) contains
vertices not belonging to μ(u);

– Condition E: μ(u) = μ(v) and there exists no path between u and v whose vertices
all belong to μ(u); and,

– Condition F: μ(u) �= μ(v).

When (B, T ′[B]) satisfies a certain condition, we equivalently say that t satisfies the
same condition. In general, it could be not possible to make t satisfy a certain condition
with any set of splits. For example, if μ(u) �= μ(v), no set of splits makes u and v belong
to the same cluster, hence labels α(t), β(t), γ(t), δ(t), and ε(t) have no meaning for t.
In such cases, we set the corresponding labels to ∞.

We observe the following lemmata:

Lemma 3. Consider any set of splits turning C(G, T ) into a c-planar clustered graph
C′(G, T ′). Then, (B, T ′[B]) satisfies exactly one of Conditions A, B, C, D, E, and F.

Lemma 4. If (B, T ′[B]) satisfies Condition A, B, C, D, or F, then (B, T ′[B]) is a c-con-
nected clustered graph. Also, if (B, T ′[B]) satisfies Condition E, then each cluster in
T ′[B] induces one connected component in B, except for μ(u), which induces two
connected components, one containing u, and the other containing v.

We now sketch how to compute α(t), β(t), γ(t), δ(t), ε(t), and φ(t). In the base case, t
is an edge (u, v) and the six labels can be easily computed. Namely, if u and v belong
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Fig. 3. Constraints on the children of t, if t is an S-node satisfying Condition x. If x = A, then
all the ti satisfy Condition A (a). If x = B, then either there exists ti satisfying Condition B
and all other tj satisfy Condition A, B, C, or D (b), or there exist ti satisfying Condition C, tj

satisfying Condition D, and all other tl satisfy Condition A, C, or D (c). If x = C, then there
exists ti satisfying Condition C and all other tj satisfy Condition A or C (d). If x = D, then there
exists ti satisfying Condition D and all other tj satisfy Condition A or D (e). If x = E, then u
and v belong to the same cluster in the input clustered graph and either there exists ti satisfying
Condition E and all other tj satisfy Condition A, B, C, or D (f), or there exist ti and tj satisfying
Condition F and all other tl satisfy Condition A, B, C, D, or F (g). If x = F , then there exists ti

satisfying Condition F and all other tj satisfy Condition A, B, C, D, or F (h).

to distinct clusters, then α(t) = β(t) = γ(t) = δ(t) = φ(t) = ∞, and ε(t) = 0. If u
and v belong to the same cluster, then α(t) = 0, β(t) = γ(t) = δ(t) = ε(t) = ∞, and
φ(t) = 1.

Consider a node t of T corresponding to a series-parallel graph B. Let t1, . . . , tk be
the children of t, corresponding to series-parallel graphs B1, . . . , Bk. Let ui and vi be
the poles of Bi. Inductively suppose that the labels of t1, . . . , tk have been computed.

The main idea is that if a set S of splits makes (B, T ′[B]) satisfy Condition A, B, C,
D, E, or F, then several constraints on the conditions that are satisfied by the children of
t can be deduced, also based on whether t is an S-node or a P -node.

As an example, if t is a P -node satisfying Condition C, then either ti exists satisfying
Condition C or not. If such a ti exists, then all the tj with j < i satisfy Condition A and
all the tj with j > i satisfy Condition E; namely, if any tj with j < i satisfies Condition
B or C, then (B, T ′[B]) is not c-planar, as it contains a cycle, whose vertices belong to
the same cluster, enclosing a vertex not belonging to such a cluster; if any tj with j < i
satisfies Condition D or E, then either (B, T ′[B]) is not c-planar or t does not satisfy
Condition C; no tj satisfies Condition F because μ(u) = μ(v); finally, if any tj with
j > i satisfies Condition A, B, C, or D, then (B, T ′[B]) is not c-planar. If no ti satisfies
Condition C, then a sequence of consecutive tj , including t1, satisfy Condition A, and
all other tj , including tk, satisfy Condition E. See Figs. 3 and 4.

As a result of the above argumentations, a set of k-tuples is associated to Condition
x, where x ∈ {A, B, C, D, E, F}, for each node t of T with k children. Each tuple
is such that if ti satisfies the condition indicated at the i-th item of the tuple, for each
i, then t satisfies Condition x. Then, the minimum number of splits turning (B, T ′[B])
into a c-planar clustered graph satisfying Condition x is the minimum among the values
associated with the tuples, where the value associated with each tuple is obtained by
summing up the labels corresponding to the conditions of the tuple, paying attention to
those splits counted more than once in different nodes ti. We get the following:
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Fig. 4. Constraints on the children of t, if t is a P -node satisfying Condition x. If x = A, then all
the ti satisfy Condition A (a). If x = B, then either there exists ti satisfying Condition B and all
other tj satisfy Condition E (b), or there exists ti satisfying Condition D, tj satisfying Condition
C, with j > i, and all the tl satisfy Condition E, if l < i and l > j, or Condition A, if i < l < j
(c), or there exists ti satisfying Condition D, all the tl satisfy Condition E, if l < i and if l > y,
for some i ≤ y < k, and all the tl satisfy Condition A, if i < l ≤ y (d), or there exists ti

satisfying Condition C, all the tl satisfy Condition E, if l > i and if l < x, for some 1 < x ≤ i,
and all the tl satisfy Condition A, if x ≤ l < i (e), or all the tl satisfy Condition E, if l < x and
if l > y, for some 1 < x ≤ y < k, and all the tl satisfy Condition A, if x ≤ l ≤ y (f). If x = C,
then either there exists ti satisfying Condition C, all the tj with j > i satisfy Condition E, and
all the tj with j < i satisfy Condition A (g), or all the tj satisfy Condition A, with 1 ≤ j ≤ y
for some 1 ≤ y < k, and all the tj satisfy Condition E, with j > y (h). If x = D, then either
there exists ti satisfying Condition D, all the tj with j < i satisfy Condition E, and all the tj

with j > i satisfy Condition A (i), or all the tj satisfy Condition A, with x ≤ j ≤ k for some
1 < x ≤ k, and all the tj satisfy Condition E, with j < x (j). If x = E, then all the ti satisfy
Condition E (k). If x = F , then all the ti satisfy Condition F (l).

Theorem 2. Let C(G, T ) be a flat c-connected clustered graph whose underlying
graph G is an n-vertex biconnected series-parallel graph with a fixed planar embed-
ding E . The minimum number of splits turning C into a c-planar clustered graph while
maintaining the c-connectivity of every cluster can be computed in O(n4) time.

4.2 Series-Parallel Graphs with Variable Embedding

We sketch how to extend the result of Sect. 4.1 to the variable embedding scenario.
As in the fixed embedding case, we perform a bottom-up visit of the rooted SPQ-tree

T of G, while computing some labels for each node t of T . However, in this case, we
have to determine some embeddings of the series-parallel graph B corresponding to t.
For each node t of T , we compute five labels α(t), β(t), γδ(t), ε(t), and φ(t). Labels
α(t), ε(t), and φ(t) have the same meaning as in the fixed embedding case. Label β(t)
represents the minimum number of splits turning (B, T [B]) into a c-planar clustered
graph (B, T ′[B]) containing a path between u and v whose vertices all belong to μ(u),
and having vertices not belonging to μ(u) on both extreme paths of a computed planar
embedding. Label γδ(t) represents the minimum number of splits turning (B, T [B])
into a c-planar clustered graph (B, T ′[B]) containing a path between u and v whose
vertices all belong to μ(u) and having vertices not belonging to μ(u) on exactly one ex-
treme path of a computed planar embedding. Observe that labels β(t) and γδ(t) replace
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Fig. 5. (a) A pinwheel gadget of size three. Dashed lines join vertices of the same cluster. (b) An
illustration for the proof of Lemma 5. (c) A symbolic representation of the pinwheel gadget.

labels β(t), γ(t), and δ(t) of the fixed embedding scenario, as in the variable embedding
setting it is not known a priori which are the rightmost and the leftmost path of t.

Theorem 3. Let C(G, T ) be a flat c-connected clustered graph whose underlying
graph G is an n-vertex biconnected series-parallel graph. The minimum number of
splits turning C into a c-planar clustered graph while maintaining the c-connectivity of
every cluster at each split can be computed in O(n4) time.

5 Non-C-Connected Clustered Graphs

We open this section by showing that, given a flat non-c-connected clustered graph
C(G, T ), where G is a biconnected series-parallel graph, it is NP-hard to find the mini-
mum number of splits turning C into a c-planar clustered graph. Namely, we perform a
reduction from NAE3SAT [9], which takes in input a collection of clauses, each con-
sisting of three literals, and asks whether a truth assignment to the variables exists such
that each clause has at least one true literal and at least one false literal.

Given a clustered graph C(G, T ) and a vertex v of G with four incident edges e1, e2,
e3, and e4, we introduce a gadget that forces such edges to appear in this circular order
around v in any c-planar drawing of any clustered graph obtained from C with less than
σ splits. We construct around v a pinwheel gadget of size σ by inserting, in each edge
ei, 2σ vertices vi,j , with j = 1, . . . , 2σ. For each pair (ei, ei+1) we add σ child-clusters
to the root of T and assign vi,j and vi+1,j+σ to the same cluster, for j = 1, . . . , σ.
Figure 5 provides an example for σ = 3.

Lemma 5. Let C(G, T ) be a clustered graph containing a pinwheel gadget of size σ
around a vertex v. Any c-planar drawing of a clustered graph obtained from C with
less than σ splits preserves the circular order of the edges around v, up to a reversal.

Proof: Suppose, for a contradiction, that there exists a c-planar drawing of a clustered
graph obtained from C with less than σ splits such that the order of the edges around v
is e1, e3, e2, and e4, the other cases being analogous. Consider the σ clusters involving
vertices of both e1 and e2. Since less than σ splits are allowed, at least one of such
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Fig. 6. An illustration for the construction of instance 〈C(Gϕ, Tϕ), kϕ〉 of SPLIT-C-PLANARITY

corresponding to an instance ϕ of NAE3SAT with four variables and six clauses

clusters is not split. Hence, the region of the plane delimited by the border of such a
cluster, by e1, and by e2 either encloses vertices v3,j , with j = 1, . . . , 2σ, and does not
enclose vertices v4,j , with j = 1, . . . , 2σ, or vice versa. It follows that all the σ clusters
involving vertices of both e3 and e4 are split, contradicting the hypothesis. ��

Given an instance ϕ of NAE3SAT with n variables and c clauses we construct the
corresponding instance 〈Cϕ(Gϕ, Tϕ), 2c〉 of SPLIT-C-PLANARITY as follows. Graph
Gϕ contains a cycle C with two notable vertices vL and vR (see Fig. 6), and a path
(vL, u1, u2, . . . , un, v1, v2, . . . , vc, wn, wn−1, . . . , w1, vR). Observe that, in any planar
embedding of Gϕ, such a path, together with C, determines two regions (both inside or
both outside C) that we arbitrarily denote by RT and RF . Gϕ also contains two edges
eT

i = (ui, wi) and eF
i = (ui, wi), for each i = 1, . . . , n. Denote u0 = vL, un+1 = v1,

w0 = vR, and wn+1 = vc. For i = 1, . . . , n, two pinwheel gadgets of size 2c + 1
are inserted around ui and wi so that the circular order of the edges around ui and
wi is (ui−1, ui), eT

i , (ui, ui+1), eF
i , and (wi−1, wi), eF

i , (wi, wi+1), eT
i , respectively.

Figure 6 shows an example with n = 4 and c = 6. The insertion of the pinwheel gadgets
turns eT

i and eF
i into two paths, that we denote by pT

i and pF
i , respectively. Observe that,

by Lemma 5, in any c-planar embedding of a clustered graph obtained from Cϕ with
less than 2c + 1 splits, if pT

i lies into RT (RF ), then pF
i lies into RF (RT ).

For each clause j, we introduce two clusters νj,1 and νj,2. Also, we define two literal
gadgets l/∈(j) and l∈(j) as follows. Gadget l/∈(j) is a sequence of three vertices va,
vb, and vc belonging to clusters νj,1, νj,2, and νj,1, respectively (see variable x1 of
Fig. 7(a)). Gadget l∈(j) contains a sequence of four vertices vd, ve, vf , and vg , plus two
additional vertices vh and vi attached to both vd and ve. While vd and ve are assigned
to the root of Tϕ, vf belongs to νj,2 and vg , vh, and vi belong to νj,1. Finally, two
pinwheel gadgets of size 2c + 1 are inserted around vd and ve so that, in any c-planar
drawing of a clustered graph obtained from Cϕ with less than 2c + 1 splits, vh and vi

are on opposite sides with respect to edge (vd, ve) (see variable x2 of Fig. 7(a)).
For each variable xi, with i = 1, . . . , n, and for each clause cj , with j = 1, . . . , c,

we insert into pT
i (pF

i ) gadget l∈(j) if xi (xi, respectively) is a literal of cj and gadget
l/∈(j) otherwise, in such a way that the gadgets for clauses c1, c2, . . . , cc appear in this
order from ui to wi in pT

i and pF
i .
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Fig. 7. (a) Configuration of a clause (x2 ∨x3 ∨x4). (b) and (c) show drawings with two split. (d)
A configuration of a clause with all true literals. Any c-planar drawing of it needs three split (e).

We assign to the root of Tϕ vertices vL, vR, ui and wi, with i = 1, . . . , n. Vertex vj ,
for j = 1, . . . , c, is assigned to νj,1.

Lemma 6. Instance ϕ of NAE3SAT, with n variables and c clauses, admits a solution
if and only if instance 〈Cϕ(Gϕ, Tϕ), 2c〉 of SPLIT-C-PLANARITY admits a solution.

Proof sketch: Suppose ϕ admits a solution and consider an assignment of truth values
to the variables that satisfies ϕ. If variable xi is TRUE (FALSE), then draw pT

i into RT

(RF ) and pF
i into RF (RT ). Observe that, for each clause cj no three l∈(j) are in the

same region. Figure 7(b) shows a portion of a c-planar drawing of a clustered graph
obtained from Cϕ with two splits per clause. Hence, 〈Cϕ, 2c〉 admits a solution.

Suppose 〈Cϕ, 2c〉 admits a solution. In order to obtain a c-planar clustered graph
from Cϕ, at least two splits are needed for νj,1 and νj,2 as a whole (see Figs 7(b)
and 7(c)); further, if the literal gadgets l∈(j) of clause cj are all three in the same
region, then at least three splits are needed for νj,1 and νj,2 as a whole (see Fig. 7(e)).
It follows that, since only 2c splits turn Cϕ into a c-planar graph, there exists a truth
assignment such that each clause has a TRUE and a FALSE literal. ��

Since 〈Cϕ, 2c〉 can be constructed in polynomial time and since the problem is easily
seen to be in NP, the following holds.

Theorem 4. SPLIT-C-PLANARITY is NP-complete when the input is a flat non-c-con-
nected clustered series-parallel graph.

By modifying the above reduction, it is possible to show that SPLIT-C-PLANARITY is
NP-complete even for a non c-connected clustered tree, path, or cycle.

Namely, we introduce the open pinwheel gadget of size σ, whose vertices have
degree at most two, to replace a pinwheel gadget of size σ in the reduction from
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Fig. 8. (a) An open pinwheel gadget. (b) A picture for the proof of Lemma 7. (c) A picture for
the proof of Theorem 5 (the literal gadgets of only one cluster are shown).

NAE3SAT. Such a gadget is obtained from a pinwheel gadget around vertex v by
removing v and joining edges e1 and e2 and edges e3 and e4 (or edges e1 and e4 and
edges e2 and e3) with a path of σ vertices belonging to clusters μ1, . . . , μσ (see Fig. 8).

Lemma 7. Let C∗(G∗, T ∗) be the clustered graph obtained from Cϕ(Gϕ, Tϕ) by re-
placing each pinwheel gadget of size σ with an open pinwheel gadget of the same size.
Then, C∗ can be turned into a c-planar clustered graph with less than σ splits if and
only if Cϕ can be turned into a c-planar clustered graph with less than σ splits.

Theorem 5. Problem SPLIT-C-PLANARITY is NP-complete when the input graph is a
non-c-connected cycle or path.

Proof sketch: Construct instance 〈Cϕ(Gϕ, Tϕ), 2c〉 corresponding to the instance ϕ of
NAE3SAT with c clauses as in the reduction used in Theorem 4. Add an edge con-
necting vL with vR and add two pinwheel gadgets around vL and vR. Observe that
all the vertices have degree two or four and that all the vertices of degree four have
a pinwheel gadget around them. Replace each pinwheel gadget with an open pinwheel
gadget of the same size in such a way that the underlying graph G∗ of the obtained clus-
tered graph C∗(G∗, T ∗) is a cycle, as shown in Fig. 8(c). By Lemma 7, any c-planar
drawing of a clustered graph obtained from C∗ with less than 2c splits corresponds to
a c-planar drawing of a clustered graph obtained from Cϕ with less than 2c splits, and
vice versa. Lemma 6 ensures that instance ϕ admits a solution if and only if instance
〈C∗(G∗, T ∗), 2c〉 of SPLIT-C-PLANARITY admits a solution.

To prove that the problem is NP-complete also for paths it suffices to turn G∗ into a
path by “opening” edge (vL, vR) (dashed edge of Fig. 8(c)). ��

Theorem 5 implies that SPLIT-C-PLANARITY is NP-complete when the input is a non-
c-connected tree both in the fixed and in the variable embedding setting.

6 Conclusions

In this paper we introduced the SPLIT-C-PLANARITY problem, which takes as an input
a clustered graph C(G, T ) and an integer k ≥ 0 and asks whether C can be turned into
a c-planar clustered graph C′(G, T ′) by performing at most k cluster splits.
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We proved that SPLIT-C-PLANARITY is NP-hard, even for non-c-connected clus-
tered paths and cycles, and for c-connected clustered triangulations. Further, SPLIT-C-
PLANARITY is not fixed-parameter tractable with respect to k, as it is NP-hard even with
k = 1. However, it could still be the case that SPLIT-C-PLANARITY is fixed-parameter
tractable with respect to k, when the underlying graph of the input clustered graph is a
path, a cycle, or a graph in a similarly simple graph family. Namely, the reduction we
presented in the c-connected case uses a constant k, but deals with triconnected graphs,
while the reduction we presented for the non-c-connected case deals with paths and
cycles, but uses a k which is function of the size of the problem.

We proved that for flat clustered graphs whose underlying graph is a biconnected
series-parallel graph SPLIT-C-PLANARITY is polynomial-time solvable, if the splits
are assumed to maintain the c-connectivity of the clusters. We believe the following
extensions of such a result to be interesting: (i) non-flat clustered graphs; (ii) simply-
connected series-parallel graphs; (iii) splits not maintaining the c-connectivity.
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