50 research outputs found

    On the Strong Convergence of an Algorithm about Firmly Pseudo-Demicontractive Mappings for the Split Common Fixed-Point Problem

    Get PDF
    Based on the recent work by Censor and Segal (2009 J. Convex Anal.16), and inspired by Moudafi (2010 Inverse Problems 26), we modify the algorithm of demicontractive operators proposed by Moudafi and study the modified algorithm for the class of firmly pseudodemicontractive operators to solve the split common fixed-point problem in a Hilbert space. We also give the strong convergence theorem under some appropriate conditions. Our work improves and/or develops the work of Moudafi, Censor and Segal, and other results

    Strong Convergence of an Algorithm about Strongly Quasi-Nonexpansive Mappings for the Split Common Fixed-Point Problem in Hilbert Space

    Get PDF
    Based on the recent work by Censor and Segal (2009 J. Convex Anal.16), and inspired by Moudafi (2010 Inverse Problem 26), in this paper, we study the modified algorithm of Yu and Sheng [29] for the strongly quasi - nonexpansive operators to solve the split common fixed-point problem (SCFP) in the framework of Hilbert space. Furthermore we proved the strong convergence for the (SCFPP) by imposing some conditions. Our results extend and improved/developed some recent result announced. Keywords:  Convex Feasibility, Split Feasibility, Split Common Fixed Point, Strongly Quasi-Nonexpansive Operator, Iterative Algorithm and Strong Convergence

    Strong convergence of inertial extragradient algorithms for solving variational inequalities and fixed point problems

    Full text link
    The paper investigates two inertial extragradient algorithms for seeking a common solution to a variational inequality problem involving a monotone and Lipschitz continuous mapping and a fixed point problem with a demicontractive mapping in real Hilbert spaces. Our algorithms only need to calculate the projection on the feasible set once in each iteration. Moreover, they can work well without the prior information of the Lipschitz constant of the cost operator and do not contain any line search process. The strong convergence of the algorithms is established under suitable conditions. Some experiments are presented to illustrate the numerical efficiency of the suggested algorithms and compare them with some existing ones.Comment: 25 pages, 12 figure

    Strict pseudocontractions and demicontractions, their properties and applications

    Full text link
    We give properties of strict pseudocontractions and demicontractions defined on a Hilbert space, which constitute wide classes of operators that arise in iterative methods for solving fixed point problems. In particular, we give necessary and sufficient conditions under which a convex combination and composition of strict pseudocontractions as well as demicontractions that share a common fixed point is again a strict pseudocontraction or a demicontraction, respectively. Moreover, we introduce a generalized relaxation of composition of demicontraction and give its properties. We apply these properties to prove the weak convergence of a class of algorithms that is wider than the Douglas-Rachford algorithm and projected Landweber algorithms. We have also presented two numerical examples, where we compare the behavior of the presented methods with the Douglas-Rachford method.Comment: 27 pages, 3 figure

    Iterative algorithms for approximating solutions of variational inequality problems and monotone inclusion problems.

    Get PDF
    Master of Science in Mathematics, Statistics and Computer Science. University of KwaZulu-Natal, Durban, 2017.In this work, we introduce and study an iterative algorithm independent of the operator norm for approximating a common solution of split equality variational inequality prob- lem and split equality xed point problem. Using our algorithm, we state and prove a strong convergence theorem for approximating an element in the intersection of the set of solutions of a split equality variational inequality problem and the set of solutions of a split equality xed point problem for demicontractive mappings in real Hilbert spaces. We then considered nite families of split equality variational inequality problems and proposed an iterative algorithm for approximating a common solution of this problem and the multiple-sets split equality xed point problem for countable families of multivalued type-one demicontractive-type mappings in real Hilbert spaces. A strong convergence re- sult of the sequence generated by our proposed algorithm to a solution of this problem was also established. We further extend our study from the frame work of real Hilbert spaces to more general p-uniformly convex Banach spaces which are also uniformly smooth. In this space, we introduce an iterative algorithm and prove a strong convergence theorem for approximating a common solution of split equality monotone inclusion problem and split equality xed point problem for right Bregman strongly nonexpansive mappings. Finally, we presented numerical examples of our theorems and applied our results to study the convex minimization problems and equilibrium problems
    corecore