67 research outputs found

    Localization of JPEG double compression through multi-domain convolutional neural networks

    Get PDF
    When an attacker wants to falsify an image, in most of cases she/he will perform a JPEG recompression. Different techniques have been developed based on diverse theoretical assumptions but very effective solutions have not been developed yet. Recently, machine learning based approaches have been started to appear in the field of image forensics to solve diverse tasks such as acquisition source identification and forgery detection. In this last case, the aim ahead would be to get a trained neural network able, given a to-be-checked image, to reliably localize the forged areas. With this in mind, our paper proposes a step forward in this direction by analyzing how a single or double JPEG compression can be revealed and localized using convolutional neural networks (CNNs). Different kinds of input to the CNN have been taken into consideration, and various experiments have been carried out trying also to evidence potential issues to be further investigated.Comment: Accepted to CVPRW 2017, Workshop on Media Forensic

    Hybrid LSTM and Encoder-Decoder Architecture for Detection of Image Forgeries

    Full text link
    With advanced image journaling tools, one can easily alter the semantic meaning of an image by exploiting certain manipulation techniques such as copy-clone, object splicing, and removal, which mislead the viewers. In contrast, the identification of these manipulations becomes a very challenging task as manipulated regions are not visually apparent. This paper proposes a high-confidence manipulation localization architecture which utilizes resampling features, Long-Short Term Memory (LSTM) cells, and encoder-decoder network to segment out manipulated regions from non-manipulated ones. Resampling features are used to capture artifacts like JPEG quality loss, upsampling, downsampling, rotation, and shearing. The proposed network exploits larger receptive fields (spatial maps) and frequency domain correlation to analyze the discriminative characteristics between manipulated and non-manipulated regions by incorporating encoder and LSTM network. Finally, decoder network learns the mapping from low-resolution feature maps to pixel-wise predictions for image tamper localization. With predicted mask provided by final layer (softmax) of the proposed architecture, end-to-end training is performed to learn the network parameters through back-propagation using ground-truth masks. Furthermore, a large image splicing dataset is introduced to guide the training process. The proposed method is capable of localizing image manipulations at pixel level with high precision, which is demonstrated through rigorous experimentation on three diverse datasets

    Detecting Image Brush Editing Using the Discarded Coefficients and Intentions

    Get PDF
    This paper describes a quick and simple method to detect brush editing in JPEG images. The novelty of the proposed method is based on detecting the discarded coefficients during the quantization of the image. Another novelty of this paper is the development of a subjective metric named intentions. The method directly analyzes the allegedly tampered image and generates a forgery mask indicating forgery evidence for each image block. The experiments show that our method works especially well in detecting brush strokes, and it works reasonably well with added captions and image splicing. However, the method is less effective detecting copy-moved and blurred regions. This means that our method can effectively contribute to implementing a complete imagetampering detection tool. The editing operations for which our method is less effective can be complemented with methods more adequate to detect them

    Manipulation Detection in Satellite Images Using Deep Belief Networks

    Full text link
    Satellite images are more accessible with the increase of commercial satellites being orbited. These images are used in a wide range of applications including agricultural management, meteorological prediction, damage assessment from natural disasters, and cartography. Image manipulation tools including both manual editing tools and automated techniques can be easily used to tamper and modify satellite imagery. One type of manipulation that we examine in this paper is the splice attack where a region from one image (or the same image) is inserted (spliced) into an image. In this paper, we present a one-class detection method based on deep belief networks (DBN) for splicing detection and localization without using any prior knowledge of the manipulations. We evaluate the performance of our approach and show that it provides good detection and localization accuracies in small forgeries compared to other approaches

    Improved Tampering Localization in Digital image Forensics: Comparative Study Based on Maximal Entropy Random Walk and Multi-Scale Fusion

    Get PDF
    Nowadays the increasing ease of editing digital photographs has spawned an urgent need for reliable authentication mechanism capable of precise localization of potential malicious forgeries. In this paper we compare two different Techniques to analyze which technique can be used more efficiently in localization of Tampered Region In Digital Image .First Technique is Maximal Entropy Random Walk in which Strong localization property of this random walk will highlight important regions and to diminish the background- even for noisy response maps. Our evaluation will show that the proposed method can significantly perform both the commonly used threshold-based decision, and the recently proposed optimization approach with a Markovian prior. The second Technique which is based on Multi-Scale Fusion will investigate a multi-scale analysis approach which merge multiple candidate tampering maps, obtained from the analysis with different windows, to obtain a single, more efficient tampering map with better localization resolution. We propose three different techniques for multi- scale fusion, and verify their feasibility .In this slant we consider popular tampering scenario to distinguish between singly and doubly compressed region
    • …
    corecore