5 research outputs found

    Detection and Localization of GAN Manipulated Multi-spectral Satellite Images

    Get PDF
    Owing to their realistic features and continuous improvements, images manipulated by Generative Adversarial Network (GAN) have become a compelling research topic. In this paper, we apply detection and localization to GAN manipulated images by means of models, based on EfficientNet-B4 architectures. Detection is tested on multiple generated multi-spectral datasets from several world regions and different GAN architectures, whereas localization is tested on an inpainted images dataset of sizes 2048×2048×13. The results obtained for both detection and localization are shown to be promising

    Detection and localization enhancement for satellite images with small forgeries using modified GAN-based CNN structure

    Get PDF
    The image forgery process can be simply defined as inserting some objects of different sizes to vanish some structures or scenes. Satellite images can be forged in many ways, such as copy-paste, copy-move, and splicing processes. Recent approaches present a generative adversarial network (GAN) as an effective method for identifying the presence of spliced forgeries and identifying their locations with a higher detection accuracy of large- and medium-sized forgeries. However, such recent approaches clearly show limited detection accuracy of small-sized forgeries. Accordingly, the localization step of such small-sized forgeries is negatively impacted. In this paper, two different approaches for detecting and localizing small-sized forgeries in satellite images are proposed. The first approach is inspired by a recently presented GAN-based approach and is modified to an enhanced version. The experimental results manifest that the detection accuracy of the first proposed approach noticeably increased to 86% compared to its inspiring one with 79% for the small-sized forgeries. Whereas, the second proposed approach uses a different design of a CNN-based discriminator to significantly enhance the detection accuracy to 94%, using the same dataset obtained from NASA and the US Geological Survey (USGS) for validation and testing. Furthermore, the results show a comparable detection accuracy in large- and medium-sized forgeries using the two proposed approaches compared to the competing ones. This study can be applied in the forensic field, with clear discrimination between the forged and pristine images

    Splicing Detection and Localization in Satellite Imagery Using Conditional GANs

    No full text
    The widespread availability of image editing tools and improvements in image processing techniques allow image manipulation to be very easy. Oftentimes, easy-to-use yet sophisticated image manipulation tools yields distortions/changes imperceptible to the human observer. Distribution of forged images can have drastic ramifications, especially when coupled with the speed and vastness of the Internet. Therefore, verifying image integrity poses an immense and important challenge to the digital forensic community. Satellite images specifically can be modified in a number of ways, including the insertion of objects to hide existing scenes and structures. In this paper, we describe the use of a Conditional Generative Adversarial Network (cGAN) to identify the presence of such spliced forgeries within satellite images. Additionally, we identify their locations and shapes. Trained on pristine and falsified images, our method achieves high success on these detection and localization objectives
    corecore