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Abstract. Owing to their realistic features and continuous improve-
ments, images manipulated by Generative Adversarial Network (GAN)
have become a compelling research topic. In this paper, we apply detec-
tion and localization to GAN manipulated images by means of models,
based on EfficientNet-B4 architectures. Detection is tested on multiple
generated multi-spectral datasets from several world regions and different
GAN architectures, whereas localization is tested on an inpainted images
dataset of sizes 2048×2048×13. The results obtained for both detection
and localization are shown to be promising.

1 Introduction

In recent years, the development of deep learning (DL) techniques for image
forgery and authenticity verification has seen a steep increase in terms of research
interest [1]. The importance of the application of such techniques to satellite
images is manifold, for instance to fend off misinformation campaigns. A few
examples are present in the literature. For instance, in [2] the authors propose
a two steps workflow for forgery detection and localization in satellite imagery.
The first step makes use of a generative adversarial network (GAN) in order
to obtain features representation of the pristine satellite images. This first step
is followed by a one-class SVM classifier. In [3], instead, the authors use a
conditional GAN architecture trained using two classes, where the generator is
employed to estimate the forged mask. Another notable example is [4], where
the authors use an approach similar to [2] with the difference of training jointly
the autoencoder and a SVDD (Support Vector Data Descriptor). While in [5]
the authors proposed the use of a GAN-based inpainting nested U-net, trained
to estimate heatmaps of forged images. To the best of our knowledge, however,
all of the works present in the literature tackle the research problem using solely
3 bands images.

In our work, we propose to use either the full 13 bands of Sentinel-2 level1-C
samples or 4 bands out of the 13 bands for image forgery localization and detec-
tion, obtaining promising results. The forged datasets are either a translation of
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an image from barren to vegetation and vice versa or a translation from winter
to summer and vice versa. The paper is structured as follows. In Section 2 we
present an overview of the datasets used. In Section 3 the methodology employed
is sketched with the respective results and in Section 4 we draw conclusions and
outline future perspectives.

2 Datasets

All of the images used in the experiments are of two types: pristine Sentinel-
2 level1-C, or images generated from GAN architectures trained on Sentinel-2
level1-C datasets. We downloaded the pristine images from the ESA Copernicus
hub [6]. The images are made up of 13 bands, four of which, bands 2 (Green),
3 (Blue), 4 (Red) and 8 (Near InfraRed NIR), have a spatial resolution of 10m
and a pixel resolution of 10980×10980. Six bands have a spatial resolution of
20m. The remaining 3 bands have a spatial resolution of 60m. All bands have a
radiometric resolution of 16 bits. For the 13 bands datasets, we up–sampled all
of the bands not having a spatial resolution of 10m, in order to have the same
resolution of 10980×10980 analogously to the 10m bands. Subsequently the
images with all 13 bands were tiled into 512×512 resolution patches by using
gdal-retile from the gdal software library [7]. For what concerns the 4 bands
datasets, instead, we extracted only the 10m bands and then re–tiled them into
512×512 pixel resolution. Table 1 shows a summary of all the listed datasets
below.

(a) China
Pristine

(b) China
Generated

(season transfer)

(c) Scand
Pristine

(d) Scand
Generated

(season transfer)

(e) LC Pristine (f) LC Generated
(landcover
transfer)

Fig. 1: RGB examples of the Datasets.

2.1 Land cover transfer datasets

In an effort to create these land cover datasets, we trained two cycleGAN [8]
models, one for the 13 bands samples and another for the 4 bands samples. The
models were trained to transfer barren to vegetation landscapes and vice versa.
The training datasets were obtained having in mind that one domain should
contain mainly images dominated by vegetation while the other by barren ter-
rain. For that purpose, utilizing the organization for economic co-operation and
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development land cover classifications [9], we downloaded images from Salvador,
Congo, Montenegro, Gabon and Guyana, for what concerns the vegetation do-
main, while we downloaded images from South and Central America, for the
barren domain. Subsequently a total of 8000 images of 512×512 resolution per
domain were used to train the GAN models. Furthermore, we used 2000 images
per domain to obtain 2000 style transferred images per domain. We therefore
obtained two datasets: one from the models trained on the 4 bands datasets, and
a second one from the models trained on the 13 bands datasets. Each dataset
contains 8000 images 4000 of which are pristine (2000 barren and 2000 vegeta-
tion) and 4000 are generated (2000 barren and 2000 vegetation). In Figure 1e,
we show a couple of examples of the pristine images while Figure 1f shows a
couple of examples of the generated images.

2.2 China season transfer datasets

To build China dataset, we trained 2 pix2pix models [10] in order to transfer
summer images into to winter ones and vice versa. For each transfer direction,
we had to train a model, one that learns how to transfer from summer to winter
and another that learns how to transfer from winter to summer. In addition to
this, we had to train 2 models for the 13 bands datasets and 2 models for the
4 bands datasets. Training the models requires a paired dataset, therefore we
downloaded images located in China from the same exact region, but referring
to two different months. In particular images downloaded from the month of
August 2020 refer to the summer domain, while those downloaded in January
2021 belong to the winter domain. Overall the models were trained on 6000
coupled images. Consequently, we obtained two datasets, one from the models
trained on 13 bands and the other from the models trained on 4 bands. Each
dataset contains 8000 images where 4000 are pristine images (2000 summer and
2000 winter) and 4000 generated images (2000 summer and 2000 winter). In
Figure 1a, we show a couple of examples of the pristine images, while Figure 1b
shows two examples of the generated images.

2.3 Scandinavian season transfer datasets

We built the Scandinavian season transfer datasets similarly to the China sea-
son transfer dataset, by only changing the region from China to Scandinavian
countries. Images that represent the summer domain were downloaded in June
2020, whereas for the winter domain, the images correspond to February 2020.
In Figure 1c, we show a couple of examples of the pristine images, while Figure
1d shows a couple of examples of the generated images.

2.4 Inpainted dataset

This dataset was built to test localization of the manipulated content. The size
of the images is 2048×2048 for all the 13 bands. As a first step, we tiled images
gathered for the vegetation domain, as described in Section 2.1. Afterwards we
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used the vegetation to barren GAN model on a selected region of each image.
To pick the to-be-manipulated region, we segmented a gray scale version of the
image in order to obtain the binary mask with the region to be in-painted. After
that, we detected the contours of the binary mask in order to locate the largest
contour within a bounding box of 512×512. Furthermore we replaced the region
within the contour with the transferred image after applying a Gaussian blur
to the boundaries of the contour. Acting in this way we obtained a total of 50
manipulated images.

Channels Resolution Architecture Type of Transfer Number of Images
Land Cover Dataset (LC) 13 bands or 4 bands 512x512 CycleGAN Land Cover 8000
Scandinavian Dataset (Scand) 13 bands or 4 bands 512x512 Pix2pix Season 8000
China Dataset 13 bands or 4 bands 512x512 Pix2pix Season 8000
Inpainted dataset 13 bands 2048x2048 – – 50

Table 1: List of generated datasets

3 Methodology and Evaluation

In order to detect if the images are fully manipulated or pristine, we trained
the base EfficientNet-B4 network (eff) with similar settings as the original pa-
per [11], with the only exception of varying the input size to fit our datasets
(13 bands or 4 bands). Training was carried out on either the LC dataset, the
Scand dataset or both datasets combined, then we cross– tested those models
on all the generated datasets. As proposed in [12], to enhance generalization, we
also trained EfficientNet-B4 with no down (eff nodown) where we refrained from
applying down-sampling in the initial layer. We compared the results with the
base EfficientNet-B4 models. All the models were trained with augmentation,
by applying Gaussian blur, random shift, random rotation and random flip. In
Table 2, we show the cross testing results of detection accuracy, on the 13 bands
datasets. The results show good detection performances when the datasets are
matched between training and testing (i.e. generated with the same GAN archi-
tecture). Also, the results we got might suggest that the eff nodown architecture
has better generalization capabilities than the base architecture. In addition, in
Table 3, we show the results of the models trained on the datasets generated
by GANs using the 4 bands input and tested on datasets generated by GANs
with 4 bands input and 13 bands input where we extracted only the 4 10m
sampled bands. The results show that the models generalize pretty well on the
cross datasets except for the LC dataset, for which detection only works in the
case where the training and the testing datasets are generated by the same GAN.

With regard to localization, we trained several models similar to the eff nodown,
on both LC and Scand datasets combined, but with varying input sizes of 32×32,
64×64, 128×128, 256×256 and 512×512 (the various image sizes were obtained
by cropping the original 512×512 images datasets). Then, using the trained
models, we applied a sliding window with stride 8, for the 32 input size and 64
input size models and stride 20 for the rest on the inpainted dataset. For each
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TEST
LC Scand LC and Scand ChinaResults of 13 bands

eff down eff nodown eff down eff nodown eff down eff nodown eff down eff nodown
LC 94.5 99.75 52.85 96 75.2 97.66 53.6 64.92

Scand 50.0 50 100 99 75.27 74.2 52.41 58.2TRAIN
LC and Scand 93.85 97.25 99.85 99.9 96.85 98.57 50.24 72.56

Table 2: EfficientNet detection results base vs. nodown of 13 bands

Results of 4 bands
TEST

LC Scand China
4 bands 4 out of 13 4 bands 4 out of 13 4 bands 4 out of 13

TRAIN
LC 100 67.5 84 99.65 90.62 99.6

Scand 54.75 50.15 100 96.7 93.1 70.42
LC and Scand 100 61.3 100 100 98 99.65

Table 3: EfficientNet detection results of 4 bands

prediction, only the centered pixels of the stride×stride are classified. For the
hierarchical models, we first used the 512×512 model with a stride of 100 to
obtain the mask. Afterwards, we multiplied the obtained mask with the image
and then we applied a smaller model (64 or 32) with stride 12 on the non-zero
pixels. Table 4, shows the Dice coefficient and the Jaccard index for all the
window sizes. The best results are achieved when using the hierarchical setup
of 512 and 64. Figure 2 shows an example of the obtained mask in each setting.

512 256 128 Hierarchical (512, 64) Hierarchical (512, 32)
Jaccard Index 0.68 0.77 0.81 0.84 0.8
Dice Coefficient 0.77 0.84 0.88 0.9 0.87

Recall 0.94 0.91 0.91 0.86 0.83

Table 4: Localization scores using EfficientNet models

(a)
Image

(b) Ground
Truth

(c)
512 model

(d)
256 model

(e)
128 model

(f)
512-64 model

(g)
512-32 model

Fig. 2: Localization Examples

4 Conclusion

In this work, we presented a novel application of EfficientNet–B4 architectures
for the detection and localization of multi-spectral manipulated GAN images.
We applied the EfficientNet–B4 architectures to detect manipulated satellite im-
ages, in particular to 13 or 4 bands of Sentinel-2 level-1C manipulated datasets,
generated by cycleGAN and pix2pix architectures. The manipulations were ei-
ther global or local. The results we obtained show that in a matched detection
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scenario (where the training and test sets are generated by the same GAN ar-
chitecture), we are able to achieve a detection accuracy above 98%, while in the
unmatched scenario improvements are still needed. In the case of localization,
the best Jaccard index and Dice coefficient we obtained were 0.84 and 0.9 re-
spectively. Future extensions of the present work concern the improvement of
the generalization of detection, by using a one-class classifier and the creation
of a more challenging inpainted dataset to test localization.
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