334 research outputs found

    Tropical Cyclone Center Determination Algorithm by Texture and Gradient of Infrared Satellite Image

    Get PDF
    A novel algorithm for tropical cyclone (TC) center determination is presented by using texture and gradient of infrared satellite image from geostationary satellite. Except those latter disappearing TC satellite images that are little valuable to a TC center determination, generally other periods of TC, all have an inner core. And the centers are generally determined in the inner core. Based on this, an efficient TC center determination algorithm is designed. First, the inner core of a TC is obtained. Then, according to the texture and gradient information of the inner core, the center location of the TC is determined. The effectiveness of the proposed TC center determination algorithm is verified by using Chinese FY-2C stationary infrared satellite image. And the location result is compared with that of the “tropical cyclone yearbook,” which was compiled by Shanghai Typhoon Institute of China Meteorological Administration. Experimental results show that the proposed algorithm can provide a new technique that can automatically determine the center location for a TC based on infrared satellite image

    An Advanced Operational Approach for Tropical Cyclone Center Estimation Using Geostationary-Satellite-Based Water Vapor and Infrared Channels

    Get PDF
    Tropical cyclones (TCs) are destructive natural disasters. Accurate prediction and monitoring are important to mitigate the effects of natural disasters. Although remarkable efforts have been made to understand TCs, operational monitoring information still depends on the experience and knowledge of forecasters. In this study, a fully automated geostationary-satellite-based TC center estimation approach is proposed. The proposed approach consists of two improved methods: the setting of regions of interest (ROI) using a score matrix (SCM) and a TC center determination method using an enhanced logarithmic spiral band (LSB) and SCM. The former enables prescreening of the regions that may be misidentified as TC centers during the ROI setting step, and the latter contributes to the determination of an accurate TC center, considering the size and length of the TC rainband in relation to its intensity. Two schemes, schemes A and B, were examined depending on whether the forecasting data or real-time observations were used to determine the initial guess of the TC centers. For each scheme, two models were evaluated to discern whether SCM was combined with LSB for TC center determination. The results were investigated based on TC intensity and phase to determine the impact of TC structural characteristics on TC center determination. While both proposed models improved the detection performance over the existing approach, the best-performing model (i.e., LSB combined with SCM) achieved skill scores (SSs) of +17.4% and +20.8% for the two schemes. In particular, the model resulted in a significant improvement for strong TCs (categories 4 and 5), with SSs of +47.8% and +72.8% and +41.2% and +72.3% for schemes A and B, respectively. The research findings provide an improved understanding of the intensity- and phase-wise spatial characteristics of TCs, which contributes to objective TC center estimation

    A multispectral study of an extratropical cyclone with Nimbus 3 medium resolution infrared radiometer data

    Get PDF
    Four registered channels (0.2 to 4, 6.5 to 7, 10 to 11, and 20 to 23 microns) of the Nimbus 3 Medium Resolution Infrared Radiometer (MRIR) were used to study 24-hr changes in the structure of an extratropical cyclone during a 6-day period in May 1969. Use of a stereographic-horizon map projection insured that the storm was mapped with a single perspective throughout the series and allowed the convenient preparation of 24-hr difference maps of the infrared radiation fields. Single-channel and multispectral analysis techniques were employed to establish the positions and vertical slopes of jetstreams, large cloud systems, and major features of middle and upper tropospheric circulation. Use of these techniques plus the difference maps and continuity of observation allowed the early detection of secondary cyclones developing within the circulation of the primary cyclone. An automated, multispectral cloud-type identification technique was developed, and comparisons that were made with conventional ship reports and with high-resolution visual data from the image dissector camera system showed good agreement

    An Ensemble Machine Learning Approach for Tropical Cyclone Detection Using ERA5 Reanalysis Data

    Full text link
    Tropical Cyclones (TCs) are counted among the most destructive phenomena that can be found in nature. Every year, globally an average of 90 TCs occur over tropical waters, and global warming is making them stronger, larger and more destructive. The accurate detection and tracking of such phenomena have become a relevant and interesting area of research in weather and climate science. Traditionally, TCs have been identified in large climate datasets through the use of deterministic tracking schemes that rely on subjective thresholds. Machine Learning (ML) models can complement deterministic approaches due to their ability to capture the mapping between the input climatic drivers and the geographical position of the TC center from the available data. This study presents a ML ensemble approach for locating TC center coordinates, embedding both TC classification and localization in a single end-to-end learning task. The ensemble combines TC center estimates of different ML models that agree about the presence of a TC in input data. ERA5 reanalysis were used for model training and testing jointly with the International Best Track Archive for Climate Stewardship records. Results showed that the ML approach is well-suited for TC detection providing good generalization capabilities on out of sample data. In particular, it was able to accurately detect lower TC categories than those used for training the models. On top of this, the ensemble approach was able to further improve TC localization performance with respect to single model TC center estimates, demonstrating the good capabilities of the proposed approach.Comment: 27 pages, 8 figures, 1 table, submitted to Journal of Advances in Modeling Earth System

    High-resolution modeling of typhoon morakot (2009): Vortex rossby waves and their role in extreme precipitation over Taiwan

    Full text link
    A high-resolution nonhydrostatic numerical model, the Advanced Regional Prediction System (ARPS), was used to simulate Typhoon Morakot (2009) as it made landfall over Taiwan, producing record rainfall totals. In particular, the mesoscale structure of the typhoon was investigated, emphasizing its associated deep convection, the development of inner rainbands near the center, and the resultant intense rainfall over western Taiwan. Simulations at 15- and 3-km grid spacing revealed that, following the decay of the initial inner eyewall, a new, much larger eyewall developed as the typhoon made landfall over Taiwan. Relatively large-amplitude wave structures developed in the outer eyewall and are identified as vortex Rossby waves (VRWs), based on the wave characteristics and their similarity to VRWs identified in previous studies. Moderate to strong vertical shear over the typhoon system produced a persistent wavenumber-1 (WN1) asymmetric structure during the landfall period, with upward motion and deep convection in the downshear and downshear-left sides, consistent with earlier studies. This strong asymmetry masks the effects of WN1 VRWs. WN2 and WN3 VRWs apparently are associated with the development of deep convective bands in Morakot's southwestern quadrant. This occurs as the waves move cyclonically into the downshear side of the cyclone. Although the typhoon track and topographic enhancement contribute most to the recordbreaking rainfall totals, the location of the convective bands, and their interaction with the mountainous terrain of Taiwan, also affect the rainfall distribution. Quantitatively, the 3-km ARPS rainfall forecasts are superior to those obtained from coarser-resolution models. © 2013 American Meteorological Society

    Meteorological interpretation of Nimbus High Resolution Infrared /HRIR/ data

    Get PDF
    Nimbus satellite high resolution infrared photographic data analysi

    Climatology of Rainfall Distribution and Asymmetries of Tropical Cyclones: A Global Perspective

    Get PDF
    Estimating the magnitude of tropical cyclone (TC) rainfall at different landfalling states is an important aspect of the TC forecast that directly affects the level of response from emergency managers in coastal areas. This research analyses the spatial distribution of the rainfall magnitude in tropical cyclones (TCs) at different stages over global oceans. The research’s central hypothesis is that TC rainfall exhibits distinct features in the long-term satellite dataset due to the evolution of the spatial distribution, radial variation, and asymmetries at the stages before, during, and after landfall. The resulting patterns are analyzed through a statistical approach that takes advantage of a 20-year global satellite database of rainfall retrievals from the TRMM/GPM constellation, with the aim to achieve two main objectives: 1) The first objective was to explore the global trends of TC rainfall rates using observational evidence provided by a satellite-based climatology. Results indicate there is an increasing trend in the global average TC rainfall rate of about 1.3% per year, with a more pronounced trend in the northern hemisphere than in the southern hemisphere. 2) The second objective was to examine the spatial distribution of the magnitude and axisymmetric intensity profiles of rainfall over the six TC-prone basins. The obtained differences were quantitatively investigated in terms of geographic location, sub-regions within the storm, and TC intensities. Results indicate that major hurricanes in the Atlantic basin exhibit heavier inner-core rainfall rates than those in any other basins, and this difference is highly correlated to specific environmental conditions. Overall, with the achievement of the above-described objectives, this document identifies and summarizes the dominant factors that control rainfall distribution in global TCs, mainly focused on the differences during landfilling processes

    Environmental influences on hurricane intensification

    Get PDF
    December, 1985.Includes bibliographical references (pages 139-149).Though qualitatively similar in structure, different hurricanes can attain different peak intensities during their lifetimes. Forecasters and empiricists relate the intensity to the sea surface temperature and the "effectiveness" of the upper tropospheric outflow, but offer no clear explanation of how the latter operates. Numerical modelers usually ignore the surrounding flow and emphasize interaction between the convective and vortex scales exclusively. This paper examines more closely the observed upper-tropospheric environmental flow differences between hurricanes which intensify and those which fail to do so, and combines them with previously published empirical and modeling results into a general conceptual model of environmental influences on hurricane intensification. Upper tropospheric wind observations (from satellite cloud tracking. aircraft reports, and rawinsondes) are composited for 28 hurricanes according to intensity tendency. A rotated coordinate system based on the outflow jet location is used so that the asymmetric flow structure is preserved. Little difference is observed in total outflow on the synoptic scale. However, intensifying hurricanes have a less constricted outflow with evidence or lateral connections with the surrounding flow. The asymmetric flow consists of a wave thought to be associated with barotropic instability or the anticyclonic flow above the hurricane and the juxtaposition of surrounding flow features. A quasi-equilibrium balance between hurricane convection and the upper tropospheric environment is proposed. The moist-neutral stratification of the vortex core is a balance between the convection which acts to increase stability and the outflow which acts to reduce it. Reduce the outflow layer cooling and the core stabilizes convective buoyancy is reduced, and a new balance with less vigorous convection is established. If vertically sheared, the environmental flow can also regulate intensity by inducing asymmetric convective structure. Vortex-convection feedbacks are considered to be important mainly in the stages of tropical cyclone development prior to eye formation, which is seen as the first indication that the stabilization process is occurring. Several observational and numerical tests for this conceptual model are then proposed.Sponsored by NSF/NOAA, grant no. ATM-8419116, National Science Foundation

    Interpretation of baroclinic systems and wind fields as observed by Nimbus 2 MRIR Final report, Jan. 1967 - Feb. 1968

    Get PDF
    Nimbus satellite infrared radiometer measurements on atmospheric absorption bands and detection of temperature and moisture change
    corecore