243 research outputs found

    Automated detection, labelling and radiological grading of clinical spinal MRIs

    Get PDF
    Spinal magnetic resonance (MR) scans are a vital tool for diagnosing the cause of back pain for many diseases and conditions. However, interpreting clinically useful information from these scans can be challenging, time-consuming and hard to reproduce across different radiologists. In this paper, we alleviate these problems by introducing a multi-stage automated pipeline for analysing spinal MR scans. This pipeline first detects and labels vertebral bodies across several commonly used sequences (e.g. T1w, T2w and STIR) and fields of view (e.g. lumbar, cervical, whole spine). Using these detections it then performs automated diagnosis for several spinal disorders, including intervertebral disc degenerative changes in T1w and T2w lumbar scans, and spinal metastases, cord compression and vertebral fractures. To achieve this, we propose a new method of vertebrae detection and labelling, using vector fields to group together detected vertebral landmarks and a language-modelling inspired beam search to determine the corresponding levels of the detections. We also employ a new transformer-based architecture to perform radiological grading which incorporates context from multiple vertebrae and sequences, as a real radiologist would. The performance of each stage of the pipeline is tested in isolation on several clinical datasets, each consisting of 66 to 421 scans. The outputs are compared to manual annotations of expert radiologists, demonstrating accurate vertebrae detection across a range of scan parameters. Similarly, the model’s grading predictions for various types of disc degeneration and detection of spinal metastases closely match those of an expert radiologist. To aid future research, our code and trained models are made publicly available

    Artificial Intelligence in Brain Tumour Surgery—An Emerging Paradigm

    Get PDF
    Artificial intelligence (AI) platforms have the potential to cause a paradigm shift in brain tumour surgery. Brain tumour surgery augmented with AI can result in safer and more effective treatment. In this review article, we explore the current and future role of AI in patients undergoing brain tumour surgery, including aiding diagnosis, optimising the surgical plan, providing support during the operation, and better predicting the prognosis. Finally, we discuss barriers to the successful clinical implementation, the ethical concerns, and we provide our perspective on how the field could be advanced

    A Review on the use of Artificial Intelligence Techniques in Brain MRI Analysis

    Get PDF
    Over the past 20 years, the global research going on in Artificial Intelligence in applica-tions in medication is a venue internationally, for medical trade and creating an ener-getic research community. The Artificial Intelligence in Medicine magazine has posted a massive amount. This paper gives an overview of the history of AI applications in brain MRI analysis to research its effect at the wider studies discipline and perceive de-manding situations for its destiny. Analysis of numerous articles to create a taxono-my of research subject matters and results was done. The article is classed which might be posted between 2000 and 2018 with this taxonomy. Analyzed articles have excessive citations. Efforts are useful in figuring out popular studies works in AI primarily based on mind MRI analysis throughout specific issues. The biomedical prognosis was ruled by way of knowledge engineering research in its first decade, whilst gadget mastering, and records mining prevailed thereafter. Together these two topics have contributed a lot to the latest medical domain

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Clinical utility of convolutional neural networks for treatment planning in radiotherapy for spinal metastases

    Get PDF
    Background and purpose: Spine delineation is essential for high quality radiotherapy treatment planning of spinal metastases. However, manual delineation is time-consuming and prone to interobserver variability. Automatic spine delineation, especially using deep learning, has shown promising results in healthy subjects. We aimed to evaluate the clinical utility of deep learning-based vertebral body delineations for radiotherapy planning purposes. Materials and methods: A multi-scale convolutional neural network (CNN) was used for automatic segmentation and labeling. Two approaches were tested: the combined approach using one CNN for both segmentation and labeling, and the sequential approach using separate CNN's for these tasks. Training and internal validation data included 580 vertebrae, external validation data included 202 vertebrae. For quantitative assessment, Dice similarity coefficient (DSC) and Hausdorff distance (HD) were used. Axial slices from external images were presented to radiation oncologists for subjective evaluation. Results: Both approaches performed comparably during the internal validation (DSC: 96.7%, HD: 3.6 mm), but the sequential approach proved more robust during the external validation (DSC: 94.5% vs 94.4%, p < 0.001, HD: 4.5 vs 7.1 mm, p < 0.001). Subsequently, subjective evaluation of this sequential approach showed that experienced radiation oncologists could distinguish automatic from human-made contours in 63% of cases. They rated automatic contours clinically acceptable in 77% of cases, compared to 88% of human-made contours. Conclusion: We present a feasible approach for automatic vertebral body delineation using two variants of a multi-scale CNN. This approach generates high quality automatic delineations, which can save time in a clinical radiotherapy workflow
    • …
    corecore