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A B S T R A C T   

Background and purpose: Spine delineation is essential for high quality radiotherapy treatment planning of spinal 
metastases. However, manual delineation is time-consuming and prone to interobserver variability. Automatic 
spine delineation, especially using deep learning, has shown promising results in healthy subjects. We aimed to 
evaluate the clinical utility of deep learning-based vertebral body delineations for radiotherapy planning 
purposes. 
Materials and methods: A multi-scale convolutional neural network (CNN) was used for automatic segmentation 
and labeling. Two approaches were tested: the combined approach using one CNN for both segmentation and 
labeling, and the sequential approach using separate CNN’s for these tasks. Training and internal validation data 
included 580 vertebrae, external validation data included 202 vertebrae. For quantitative assessment, Dice 
similarity coefficient (DSC) and Hausdorff distance (HD) were used. Axial slices from external images were 
presented to radiation oncologists for subjective evaluation. 
Results: Both approaches performed comparably during the internal validation (DSC: 96.7%, HD: 3.6 mm), but 
the sequential approach proved more robust during the external validation (DSC: 94.5% vs 94.4%, p < 0.001, 
HD: 4.5 vs 7.1 mm, p < 0.001). Subsequently, subjective evaluation of this sequential approach showed that 
experienced radiation oncologists could distinguish automatic from human-made contours in 63% of cases. They 
rated automatic contours clinically acceptable in 77% of cases, compared to 88% of human-made contours. 
Conclusion: We present a feasible approach for automatic vertebral body delineation using two variants of a 
multi-scale CNN. This approach generates high quality automatic delineations, which can save time in a clinical 
radiotherapy workflow.   

1. Introduction 

Spinal metastases are common in patients with cancer and can have 
serious quality of life limiting consequences including pain, pathologic 
fractures and spinal cord compression [1]. Radiotherapy, including 
stereotactic body radiotherapy (SBRT), successfully reduces pain in the 
majority of patients [2]. 

Since the introduction of high conformal treatments like Intensity 
Modulated Radiotherapy (IMRT) and Volumetric-Modulated Arc Ther-
apy (VMAT), an essential step in radiotherapy treatment planning is 
structure delineation on medical images, usually computed tomography 
(CT). Structure delineations are needed to optimize planned radiation 
dose in the tumor and minimize radiation dose in organs at risk. 

Consequently, clinical outcome of radiotherapy is dependent on the 
quality of structure delineations. 

Manual delineation of structures is time-consuming and susceptible 
to interobserver variability [3]. Unsurprisingly, automatic structure 
delineation has received great scientific interest [4]. Automatic spine 
delineation can be divided into two separate tasks: segmentation 
(correctly distinguishing vertebrae from background) and labeling 
(correctly identifying each vertebral level). Various approaches for 
automatic spine delineation on CT have been proposed, yielding 
promising results [5–13]. 

In recent years, deep learning has increasingly become the method-
ology of choice for automatic structure delineation due to its favorable 
performance: reliable and fast output [14]. Deep learning is a form of 
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machine learning and uses neural networks with multiple layers to 
progressively extract higher level features from raw input [15]. More 
specifically, in medical image analysis, convolutional neural networks 
(CNN) are mainly used [14]. 

Although automatic spine delineation using deep learning yielded 
promising results in publicly available datasets from healthy subjects 
[10], the utility for clinical radiotherapy practice is unclear. The 
objective of this study was to investigate the clinical utility by quanti-
tatively and subjectively evaluating the quality of CNN-generated 
vertebral body delineations for radiotherapy planning purposes. To 
achieve this, we trained and validated multi-scale CNN’s using images 
directly from clinical practice. 

2. Materials and methods 

2.1. Training and internal validation data 

The CT image series used to develop the automatic delineation 
method were selected from the PRESENT cohort that includes all pa-
tients with bone metastases referred to the radiation oncology depart-
ment in the University Medical Center Utrecht [16]. From this cohort, a 
random selection of 60 scans was made using the following criteria: 
presence of bone metastases in the trunk (vertebrae, ribs, sternum and/ 
or pelvis); CT slice thickness of 1 mm; visibility of at least 5 thoracic 
and/or lumbar vertebrae; absence of artefacts (e.g. due to surgically 
inserted metal). The 60 scans were divided into four groups of 15, to 
perform four-fold cross-validation, with each fold containing 45 training 
and 15 test scans. 

Altogether, the selection included scans from 59 unique patients (31 
female, 28 male). One male patient was included twice in the selection, 
but with sequential treatments and different regions of the spine visu-
alized on each CT scan. The dataset comprised 639 thoracolumbar 
vertebrae. Of these vertebrae, 580 were fully visualized, whereas the 
other 59 were only partially visible at the edges of the scans. The number 
of vertebrae per vertebral level ranged from 28 to 42, exact numbers are 
displayed in Supplementary Table 1. Because in our institute CT scans 
with 1 mm slice thickness are only used in treatment planning for SBRT, 
all selected patients were treated using this high-precision radiotherapy 
technique. The study protocol for PRESENT was approved by the Insti-
tutional review and Ethics board of the University Medical Center 
Utrecht (approval number 13–261/D). 

All images were acquired between November 2014 and December 
2019 using a Brilliance Big Bore CT (Philips, Best, the Netherlands), 
which has a reconstruction matrix of 512 × 512 voxels. Size of recon-
structed voxels was equal in anterior-posterior and right-left directions 
in the range 0.78–1.37 mm, depending on the used field-of-view. As a 
result of the selection criteria, slice thickness was 1 mm. 

Vertebrae were manually delineated by a single observer (SA) using 
RayStation v8.99.30.40 (RaySearch Laboratories AB, Sweden). All 
thoracic and lumbar vertebrae were delineated, in which 80–90% of 
spinal metastases occur [17,18]. To limit the required time, the vertebral 
body was delineated, as this is the predominant location of spinal me-
tastases [19]. 

2.2. External validation data 

After the four folds of internal validation, the networks were 
retrained on all 60 scans and evaluated using the publicly available 
VerSe 2019 dataset [20]. This dataset contains 160 CT image series with 
spine delineations. At the time of external validation, image series and 
delineations were available only for the 80 training scans. From these 
scans, a selection was made using the following criteria: visibility of at 
least 5 thoracic and/or lumbar vertebrae; absence of artefacts (e.g. due 
to surgically inserted metal); image quality comparable to training data 
(subjective assessment). Of the resulting 32 scans, 15 were chosen 
randomly to form the external validation set. These scans included 202 

fully visualized thoracolumbar vertebrae, with 8 to 15 vertebrae per 
vertebral level. Slice thickness of these image series was 0.9–1.0 mm, 
while sagittal resolution varied between 1 and 3 mm. Because the de-
lineations included the entire vertebrae instead of just the vertebral 
body, the vertebral arch was manually removed from the segmentations. 

2.3. Network architecture and training 

Two variants of a CNN were trained, one performing both segmen-
tation and labeling (identification), another only performing segmen-
tation. These networks will respectively be referred to as labeling network 
and binary network. The inferences by these networks were subsequently 
used to study the performance of two different approaches for automatic 
spine delineation. The sequential approach uses the binary network for 
segmentation and sequentially the labeling network for labeling of the 
vertebrae. The combined approach uses the labeling network for both 
segmentation and labeling. Although the sequential approach is 
computationally more expensive, it was expected to yield better per-
formance. An overview of the networks and approaches is depicted in 
Fig. 1. 

For creation and training of the networks, DeepMedic [21] was used. 
DeepMedic1 is software for a three-dimensional CNN with patch-based 
training, originally designed for brain lesion segmentation. To 
combine local and larger contextual information, a parallel pathway 
operating on down-sampled image patches is employed. For a more 
detailed description we refer to the original article by Kamnitsas et al. 
[21]. 

Architecture was the same for both the labeling and binary networks, 
except for the number of output classes: two for the binary network, 
eighteen for the labeling network. In addition to the original pathways 
with receptive fields of 173 and 513 voxels, a third, even lower resolution 
pathway was added with a receptive field of 853 voxels. This way, image 
patches with varying resolutions are combined to incorporate informa-
tion from different scales. The largest receptive field corresponds to a 
cube of 8.5 cm, when centered at a vertebral body this would include 
(parts of) adjacent vertebral bodies and surrounding tissues such as lung. 
Training configuration, as shown in Supplementary Table 2, was iden-
tical for both networks and largely the same as in a previous study of 
Savenije et al. [22]. Dice coefficient was used as loss function. All images 
and delineations were resampled to a voxel size of 1 × 1 × 1 mm and 
normalized to a range of − 0.5 to 1.5 before being supplied to the 
network. 

2.4. Post-processing 

Inferences by both networks were post-processed to obtain the final 
delineations. Post-processing consisted of improving the segmentation 
and labeling of the vertebrae. 

For the sequential approach, post-processing started with the output 
of the binary network. Potential vertebrae were detected using the sizes 
and positions of the segmented regions and distances between the re-
gions. Because sometimes vertebrae were connected in the segmenta-
tion, a watershed algorithm [23] was used to separate any connected 
vertebrae. 

The improved binary segmentation was then combined with the 
labeled segmentation to create the final labeled segmentation. The 
labeled segmentation was used to determine the most likely label in each 
of the vertebral regions of the binary segmentation. The most confident 
label predictions (95% or more of the vertebra has the same label) were 
considered to be true, and the other vertebrae were labeled accordingly. 

For the combined approach, the labeled segmentation was first 
converted to a binary segmentation and improved as described above. 
This improved binary segmentation was then combined with the 

1 Available at https://github.com/Kamnitsask/deepmedic. 
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original labeled segmentation to create the final labeled segmentation. A 
detailed description of post-processing is included in the Supplementary 
Material. 

2.5. Quantitative evaluation 

Segmentation performance was evaluated on the internal and 
external validation data in terms of Dice similarity coefficient (DSC) and 
Hausdorff distance (HD). DSC and HD were calculated for each vertebra 
separately, both for correct and incorrect labels. Labeling performance 
was measured as proportion of correctly labeled vertebrae. In case of 
incorrectly labeled vertebrae, segmentation performance was measured 
as if they were correctly labeled when possible. For example, if two 
vertebrae are not adequately separated in the binary segmentation, both 
vertebrae will receive the same label. As a result of post-processing, all 
vertebrae above or below it will be offset by one from the correct label. 
In this case, for all vertebrae excluding the ones causing the incorrect 
labels, DSC and HD were calculated as if the labels were correct. 

2.6. Subjective evaluation 

Based on the method proposed by Gooding et al. [24], a subjective 
evaluation was designed. This evaluation was performed for the 
approach showing the most accurate results on the quantitative evalu-
ation. For each vertebral level from the first thoracic vertebra to the fifth 
lumbar vertebra, six slices were randomly selected from the external 
validation scans, three containing a human segmentation, three con-
taining an automatic segmentation. These images were presented in a 
random order to two experienced radiation oncologists. They were 
asked whether the contours were drawn by a human or computer, and 
how they would rate the contours: (1) large, obvious errors; (2) minor 
errors that need to be corrected for high precision radiotherapy; (3) 
minor, clinically not significant errors; (4) precise. 

The rationale behind this approach is that quantitative measures 
such as DSC and HD are not sufficiently capable of distinguishing sys-
tematic from random errors [25]. These measures compare the auto-
matic delineations to some “ground truth”, even though this ground 
truth is subject to inter- and intraobserver variability. The subjective 
assessment we performed, did not focus on how similar contours are to 
the ground truth, but on what proportion is deemed clinically acceptable 
compared to the ground truth, thus minimizing the effect of inter- and 
intraobserver variability. As shown by Gooding et al. [24], this type of 
assessment has a stronger correlation with time saved by automatic 

delineations than quantitative measures. 

2.7. Statistical analysis 

Statistical analysis was performed using R (version 4.0.2). Wilcoxon 
signed ranks tests were performed for comparison of DSC and HD values. 
Chi-squared tests were performed for analysis of the subjective assess-
ment. A p-value of 0.05 or less was considered statistically significant. 

3. Results 

Computation time was less than 5 min per network. In general, post- 
processing improved the delineations, but in 10–15% of cases it resulted 
in incorrectly changed labels because of segmentation errors. This is 
illustrated in Fig. 2. 

Quantitative assessment was performed only for the 580 plus 202 
fully visible vertebrae. The results of this evaluation are summarized in 
Table 1 and Fig. 3. No difference in segmentation performance was seen 
during the internal validation, but the sequential approach out-
performed the combined approach during the external validation (DSC: 
94.5% vs 94.4%, p < 0.001, HD: 4.5 vs 7.1 mm, p < 0.001). In general, 
better segmentation performance was seen for lumbar vertebrae (DSC 
difference: between +1.4% and +2.6%, HD difference: between +0.1 
and –1.1, compared to thoracic vertebrae). More detailed segmentation 
results per vertebral level are available in Supplementary Tables 3 and 4 
for the internal and external validation respectively. Labeling perfor-
mance was comparable during the internal validation, but a significant 
drop in performance was observed during the external validation for 
both approaches (sequential approach: 90.7% vs 79.6%, combined 
approach: 91.6% vs 55.7%). 

For subjective assessment, the sequential approach was used. The 
radiation oncologists correctly determined whether contours were made 
by a human or automatically in 63% of cases. As Fig. 4 shows, the 
human-made contours were in general rated to be of higher quality than 
the automatic contours (p = 0.03). Minor error rates (both clinically 
significant and not significant) were comparable for both sets of con-
tours. Automatic contours were more often rated as having obvious er-
rors (1% vs. 11%, p = 0.004), whereas human-made contours were more 
frequently considered precise (61% vs. 52%, p = 0.40). 88% of human- 
made contours were deemed clinically acceptable, compared to 77% of 
automatic contours. 

Fig. 1. Overview of networks and approaches. Different colors represent different vertebral labels. Left: sagittal CT image of the thoracic spine. Center: black and 
white projection of output from the binary network and color output from the labeling network where every vertebra has a distinct color. Right top: sequential 
approach output from binary and labeling networks; and right bottom: combined approach output. 
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4. Discussion 

Two approaches to automatically delineate thoracolumbar vertebral 
bodies using CNN’s were implemented and compared for clinical use in a 
spinal radiotherapy treatment workflow. The sequential approach, using 
one network for segmentation and another for labeling, demonstrated to 
be more robust when assessed quantitatively. Subsequently, subjective 
assessment of this sequential approach showed that automatic de-
lineations were difficult to distinguish from human-made contours by 
experienced observers. The automatic contours were rated as acceptable 

even for high precision radiotherapy in 77% of cases, compared to 88% 
of human-made contours. Since images directly from clinical practice 
were used, these results suggest that clinical implementation of this 
technique will lead to a significant reduction in the time needed to 
delineate vertebral bodies. In most cases, especially for palliative 
treatments, the contours can be used directly, without further editing. In 
many other cases, automatic contours are also expected to save time, 
since they provide a reasonable base upon which improvements can be 
made. 

Previous studies on automatic spine delineation on CT images [5–13] 
reported DSC values in the range of 89–96% and HD in the range 5.8–15 
mm, although HD was not always reported. Our sequential approach 
resulted in DSC values of 97% and 95%, and HD values of 3.6 and 4.5 
mm for the internal and external validation respectively. Therefore, the 
proposed method performs better than or comparable to previous 
studies. Lessmann et al. reported 93% accuracy of labeling on CT images 
[10]. The sequential approach achieved 91% and 80% accuracy on the 
internal and external validation respectively. 

The strength of this study lies in the focus on application of auto-
matic spine delineation for radiotherapy treatment planning. Previous 
studies were conducted mainly on small sets of healthy subjects [5–13]. 
However, clinical application of automatic delineation would require 
the technique to be accurate also for patients with pathological verte-
brae, such as spinal metastases and fractures. To achieve this, we used 
images directly from clinical practice for training and evaluation of the 
network. Moreover, most previous studies only used quantitative mea-
sures to evaluate the performance of their approaches, while the rela-
tionship between these measures and clinical utility in radiotherapy 
practice is limited [24]. We chose to evaluate our approach using sub-
jective assessment of delineations in addition to quantitative measures, 
as this is a better surrogate measure of clinical utility. 

Several limitations of this study must be discussed to allow accurate 
interpretation of the results. The most important concern is that seg-
mentation results could have been positively influenced by only delin-
eating the vertebral body. Although segmentation of the vertebral arch 
is not necessarily needed for many radiotherapy treatment plans, most 
other approaches of automatic spine delineation did include it. For 
example, Yao et al. [13] reported DSC of 94.7%, 96.4% and 91.7% for 
whole vertebra, vertebral body and vertebral arch segmentation 
respectively. In addition, only thoracic and lumbar vertebrae were 

Fig. 2. Examples of automatic delineations (using the combined approach) before and after post-processing, projected on the corresponding sagittal CT image in 
bone setting (W = 2500, L = 1000). Different colors represent different labels. Top row: mixed and incorrect labels in a part of the spine are corrected by post- 
processing. Bottom row: due to incorrect segmentation of one vertebra (arrows), all vertebrae below are labeled incorrectly even though they were largely cor-
rect before. 

Table 1 
Quantitative assessment: median (inter-quartile range) Dice similarity coeffi-
cient (DSC), Hausdorff distance (HD) and proportion (95% CI) of correctly 
labeled vertebrae. The sequential approach outperformed the combined 
approach during the external validation.   

Sequential 
approach 

Combined 
approach 

p 

Internal validation    
DSC (%)    

Thoracic 
vertebrae 

96.1 (95.0–96.9) 96.2 (95.0–97.0)  0.003 

Lumbar vertebrae 97.6 (97.3–97.9) 97.6 (97.1–97.9)  0.004 
All vertebrae 96.7 (95.5–97.4) 96.7 (95.4–97.4)  0.13 

HD (mm)    
Thoracic vertebrae 3.7 (2.8–5.4) 4.1 (2.8–5.8)  0.45 

Lumbar vertebrae 3.2 (2.4–4.0) 3.0 (2.2–4.2)  0.72 
All vertebrae 3.6 (2.8–5.1) 3.6 (2.4–5.7)  0.66 

Labeling (%)    
All vertebrae 90.7 (88.3–93.1) 91.6 (89.3–93.8)   

External validation    
DSC (%)    

Thoracic 
vertebrae 

93.4 (90.7–94.8) 93.9 (88.9–95.1)  0.09 

Lumbar vertebrae 96.0 (95.0–96.4) 95.4 (92.8–96.1)  <0.001 
All vertebrae 94.5 (91.8–95.8) 94.4 (91.4–95.5)  <0.001 

HD (mm)    
Thoracic 

vertebrae 
4.6 (3.6–5.9) 7.1 (3.6–21.3)  <0.001 

Lumbar vertebrae 4.0 (3.2–6.1) 7.2 (4.0–12.4)  <0.001 
All vertebrae 4.5 (3.4–6.0) 7.1 (3.7–15.1)  <0.001 

Labeling (%)    
All vertebrae 79.6 (74.0–85.2) 55.7 (48.9–62.6)   
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delineated, which could have had a positive impact on the results as 
well. Hanaoka et al. [7] reported inferior segmentation results for cer-
vical vertebrae and equal results for the sacrum when compared to 
thoracic and lumbar vertebrae. Nevertheless, most previous attempts of 
automatic spine delineation were also limited to segmentation of 
(thoracic and) lumbar vertebrae. Also, including the DSC and HD values 
for some incorrectly labeled vertebrae as if they had been labeled 
correctly, might have biased the results. Another limitation is that the 
external validation set did not include patients with vertebral metasta-
ses. This might have led to an overestimation of the results. Further-
more, no hyperparameter search was performed. Hyperparameter 
tuning could have led to improved segmentation performance. Simi-
larly, post-processing can probably be improved, because it caused large 
errors (mostly related to labeling) in some cases. A different approach, 
for example one where segmentation errors are detected and corrected 
might improve performance. Finally, we chose to only use image series 
with a slice thickness of 1 mm or less to ensure that vertebrae could be 
distinguished from one another. Further research is needed to study the 
impact of 2 or 3 mm slice thickness (commonly used in clinical practice) 
on the results of our approach. 

This study has shown that CNN’s can be used to generate high quality 

automatic delineations of thoracolumbar vertebral bodies, which are 
often indistinguishable from human-made delineations. Since radio-
therapy treatment planning always occurs under human supervision, 
complete automation is not required. Despite the potential for even 
further improvement, the sequential approach presented here is already 
likely to save precious time if implemented in a clinical workflow. 
Ideally, the method should delineate not only thoracic and lumbar 
vertebrae, but also cervical vertebrae and the sacrum (and perhaps even 
more bone metastasis-prone structures, such as the pelvis, ribs and 
sternum). Likewise, delineation of full vertebrae is preferred over 
delineation of vertebral bodies only. 

Although the focus of this study was on using automatic delineations 
for radiotherapy treatment planning, many other applications are 
conceivable as well. An example related to radiotherapy is to automat-
ically calculate the spinal instability neoplastic score (SINS) and thereby 
reduce the workload of clinicians and enable better treatment selection 
[26]. Other examples are automatic osteoporosis detection [27] and 
spine surgery planning [28]. For some applications, error margins are 
larger than for radiotherapy treatment planning, and automatic de-
lineations might even be used without manual corrections. Adapted 
evaluation is needed to determine the accuracy for these applications. 

Fig. 3. Quantitative assessment: boxplots of DSC (A) and HD (B) values for both the internal (int.) and external (ext.) validation. Both approaches performed 
similarly during the internal validation, but the sequential approach outperformed the combined approach during the external validation. 

Fig. 4. Subjective assessment of contours by radiation oncologists. DL contours were more often rated as having obvious errors (1% vs. 11%, p = 0.004), whereas 
human-made contours were more frequently considered precise (61% vs. 52%, p = 0.40). In total, 88% of human-made contours were deemed clinically acceptable, 
compared to 77% of automatic contours. 
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In conclusion, we present a feasible approach for automatic vertebral 
body delineation using two variants of a multi-scale CNN. This approach 
generates high quality automatic delineations, which can be useful in a 
clinical radiotherapy workflow. 
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