27 research outputs found

    Spike-Timing Theory of Working Memory

    Get PDF
    Working memory (WM) is the part of the brain's memory system that provides temporary storage and manipulation of information necessary for cognition. Although WM has limited capacity at any given time, it has vast memory content in the sense that it acts on the brain's nearly infinite repertoire of lifetime long-term memories. Using simulations, we show that large memory content and WM functionality emerge spontaneously if we take the spike-timing nature of neuronal processing into account. Here, memories are represented by extensively overlapping groups of neurons that exhibit stereotypical time-locked spatiotemporal spike-timing patterns, called polychronous patterns; and synapses forming such polychronous neuronal groups (PNGs) are subject to associative synaptic plasticity in the form of both long-term and short-term spike-timing dependent plasticity. While long-term potentiation is essential in PNG formation, we show how short-term plasticity can temporarily strengthen the synapses of selected PNGs and lead to an increase in the spontaneous reactivation rate of these PNGs. This increased reactivation rate, consistent with in vivo recordings during WM tasks, results in high interspike interval variability and irregular, yet systematically changing, elevated firing rate profiles within the neurons of the selected PNGs. Additionally, our theory explains the relationship between such slowly changing firing rates and precisely timed spikes, and it reveals a novel relationship between WM and the perception of time on the order of seconds

    An Efficient Method for online Detection of Polychronous Patterns in Spiking Neural Network

    Get PDF
    Polychronous neural groups are effective structures for the recognition of precise spike-timing patterns but the detection method is an inefficient multi-stage brute force process that works off-line on pre-recorded simulation data. This work presents a new model of polychronous patterns that can capture precise sequences of spikes directly in the neural simulation. In this scheme, each neuron is assigned a randomized code that is used to tag the post-synaptic neurons whenever a spike is transmitted. This creates a polychronous code that preserves the order of pre-synaptic activity and can be registered in a hash table when the post-synaptic neuron spikes. A polychronous code is a sub-component of a polychronous group that will occur, along with others, when the group is active. We demonstrate the representational and pattern recognition ability of polychronous codes on a direction selective visual task involving moving bars that is typical of a computation performed by simple cells in the cortex. The computational efficiency of the proposed algorithm far exceeds existing polychronous group detection methods and is well suited for online detection.Comment: 17 pages, 8 figure

    SIMPEL: Circuit model for photonic spike processing laser neurons

    Get PDF
    We propose an equivalent circuit model for photonic spike processing laser neurons with an embedded saturable absorber---a simulation model for photonic excitable lasers (SIMPEL). We show that by mapping the laser neuron rate equations into a circuit model, SPICE analysis can be used as an efficient and accurate engine for numerical calculations, capable of generalization to a variety of different laser neuron types found in literature. The development of this model parallels the Hodgkin--Huxley model of neuron biophysics, a circuit framework which brought efficiency, modularity, and generalizability to the study of neural dynamics. We employ the model to study various signal-processing effects such as excitability with excitatory and inhibitory pulses, binary all-or-nothing response, and bistable dynamics.Comment: 16 pages, 7 figure

    Short-Term Memory Through Persistent Activity: Evolution of Self-Stopping and Self-Sustaining Activity in Spiking Neural Networks

    Full text link
    Memories in the brain are separated in two categories: short-term and long-term memories. Long-term memories remain for a lifetime, while short-term ones exist from a few milliseconds to a few minutes. Within short-term memory studies, there is debate about what neural structure could implement it. Indeed, mechanisms responsible for long-term memories appear inadequate for the task. Instead, it has been proposed that short-term memories could be sustained by the persistent activity of a group of neurons. In this work, we explore what topology could sustain short-term memories, not by designing a model from specific hypotheses, but through Darwinian evolution in order to obtain new insights into its implementation. We evolved 10 networks capable of retaining information for a fixed duration between 2 and 11s. Our main finding has been that the evolution naturally created two functional modules in the network: one which sustains the information containing primarily excitatory neurons, while the other, which is responsible for forgetting, was composed mainly of inhibitory neurons. This demonstrates how the balance between inhibition and excitation plays an important role in cognition.Comment: 28 page

    Hebbian fast plasticity and working memory

    Full text link
    Theories and models of working memory (WM) were at least since the mid-1990s dominated by the persistent activity hypothesis. The past decade has seen rising concerns about the shortcomings of sustained activity as the mechanism for short-term maintenance of WM information in the light of accumulating experimental evidence for so-called activity-silent WM and the fundamental difficulty in explaining robust multi-item WM. In consequence, alternative theories are now explored mostly in the direction of fast synaptic plasticity as the underlying mechanism.The question of non-Hebbian vs Hebbian synaptic plasticity emerges naturally in this context. In this review we focus on fast Hebbian plasticity and trace the origins of WM theories and models building on this form of associative learning.Comment: 12 pages, 2 figures, 1 box, submitte

    Information Capacity of a Neural Network with Redundant Connections Between Neurons

    Get PDF
    © 2017 IEEE. In this work the model of a spiking recurrent neural network where any pair of neurons can form several connection lines (axons) with different spike propagation times is studied. Through simulation modeling, it has been shown that a neural network with redundant connections between neurons in the form of delay lines provides storage and playback of a significant number of independent temporal sequences of neural pulses. It has been suggested that multiple synaptic inputs from a single neuron in a natural neural network provide some of the information-processing properties of the network

    On the information in spike timing: neural codes derived from polychronous groups

    Get PDF
    There is growing evidence regarding the importance of spike timing in neural information processing, with even a small number of spikes carrying information, but computational models lag significantly behind those for rate coding. Experimental evidence on neuronal behavior is consistent with the dynamical and state dependent behavior provided by recurrent connections. This motivates the minimalistic abstraction investigated in this paper, aimed at providing insight into information encoding in spike timing via recurrent connections. We employ information-theoretic techniques for a simple reservoir model which encodes input spatiotemporal patterns into a sparse neural code, translating the polychronous groups introduced by Izhikevich into codewords on which we can perform standard vector operations. We show that the distance properties of the code are similar to those for (optimal) random codes. In particular, the code meets benchmarks associated with both linear classification and capacity, with the latter scaling exponentially with reservoir size
    corecore