1,251 research outputs found

    Behavioural simulation of mixed analogue/digital circuits.

    Get PDF
    Continuing improvements in integrated circuit technology have made possible the implementation of complex electronic systems on a single chip. This often requires both analogue and digital signal processing. It is essential to simulate such IC's during the design process to detect errors at an early stage. Unfortunately, the simulators that are currently available are not well-suited to large mixed-signal circuits. This thesis describes the design and development of a new methodology for simulating analogue and digital components in a single, integrated environment. The methodology represents components as behavioural models that are more efficient than the circuit models used in conventional simulators. The signals that flow between models are all represented as piecewise-linear (PWL) waveforms. Since models representing digital and analogue components use the same format to represent their signals, they can be directly connected together. An object-oriented approach was used to create a class hierarchy to implement the component models. This supports rapid development of new models since all models are derived from a common base class and inherit the methods and attributes defined in their parentc lassesT. he signal objectsa re implementedw ith a similar class hierarchy. The development and validation of models representing various digital, analogue and mixed-signal components are described. Comparisons are made between the accuracy and performance of the proposed methodology and several commercial simulators. The development of a Windows-based demonstrations imulation tool called POISE is also described. This permitted models to be tested independently and multiple models to be connected together to form structural models of complex circuits

    Numerical Simulation of Electronic Systems Based on Circuit- Block Partitioning Strategies

    Get PDF
    Numerical simulation of complex and heterogeneous electronic systems can be a very challenging issue. Circuits composed of a combination of analog, mixed-signal and digital blocks or even radio frequency (RF) blocks, integrated in the same substrate, are very difficult to simulate as a whole at the circuit level. The main reason is because they contain a lot of state variables presenting very distinct properties and evolving in very widely separated time scales. Examples of practical interest are systems-on-a-chip (SoCs), very common in mobile electronics applications, as well as in many other embedded electronic systems. This chapter is intended to briefly review some advanced circuit-level numerical simulation techniques based on circuit-block partitioning schemes, which were especially designed to address the simulation challenges brought by this kind of circuits into the computer-aided-design (CAD) field

    CAD techniques for microwave circuits

    Get PDF
    In little more than 10 years computer-aided design (CAD) of microwave circuits has moved from dumb terminals on mainframe computers to PCs, and now to powerful RISC workstations. Commercial CAD software now integrates the various stages of microwave circuit design: schematic capture, simulation and layout. This paper reviews the different CAD packages that are available for microwave circuit design. The basic principles employed in the modelling of microstrip circuits are introduced and the reasons for the extensive use of frequency-domain simulations are explored. The developments in nonlinear, electromagnetic and system-level simulation methods are described.The authors would like to acknowledge the financial support of the Engineering and Physical Sciences Research Council, and the Comisidn Interministerial de Ciencia y Technologia (CICr?‘), Spain, under the project TIC95-0983-C03-02. We would like to thank Hewlett Packard, Barnard Microsystems, Sonnet Software, Optimization Systems Associates, Kimberley Communications Consultants and Ansoft Corporation for their generous educational discounting. The assistance of Dr. D. M. Brookbanks at GEC-Marconi Materials Technology Ltd. (Caswell) is gratefully acknowledged

    34th Midwest Symposium on Circuits and Systems-Final Program

    Get PDF
    Organized by the Naval Postgraduate School Monterey California. Cosponsored by the IEEE Circuits and Systems Society. Symposium Organizing Committee: General Chairman-Sherif Michael, Technical Program-Roberto Cristi, Publications-Michael Soderstrand, Special Sessions- Charles W. Therrien, Publicity: Jeffrey Burl, Finance: Ralph Hippenstiel, and Local Arrangements: Barbara Cristi

    Fast spatially-resolved electrical modelling and quantitative characterisation of photovoltaic devices

    Get PDF
    An efficient and flexible modelling and simulation toolset for solving spatially-resolved models of photovoltaic (PV) devices is developed, and its application towards a quantitative description of localised electrical behaviour is given. A method for the extraction of local electrical device parameters is developed as a complementary approach to the conventional characterisation techniques based on lumped models to meet the emerging demands of quantitative spatially-resolved characterisation in the PV community. It allows better understanding of the effects of inhomogeneities on performance of PV devices. The simulation tool is named PV-Oriented Nodal Analysis (PVONA). This is achieved by integrating a specifically designed sparse data structure and a graphics processing unit (GPU)-based parallel conjugate gradient algorithm into a PV-oriented numerical solver. It allows more efficient high-resolution spatially-resolved modelling and simulations of PV devices than conventional approaches based on SPICE (Simulation Program with Integrated Circuit Emphasis) tools in terms of computation time and memory usage. In tests, mega-sub-cell level test cases failed in the latest LTSpice version (v4.22) and a PSpice version (v16.6) on desktop PCs with mainstream hardware due to a memory shortage. PVONA efficiently managed to solve the models. Moreover, it required up to only 5% of the time comparing the two SPICE counterparts. This allows the investigation of inhomogeneities and fault mechanisms in PV devices with high resolution on common computing platforms. The PVONA-based spatially-resolved modelling and simulation is used in various purposes. As an example, it is utilised to evaluate the impacts of nonuniform illumination profiles in a concentrator PV unit. A joint optical and electrical modelling framework is presented. Simulation results suggest that uncertainties introduced during the manufacturing and assembly of the optical components can significantly affect the performance of the system in terms of local voltage and current distribution and global current-voltage characteristics. Significant series resistance and shunt resistance effects are found to be caused by non-uniformity irradiance profiles and design parameters of PV cells. The potential of utilising PVONA as a quality assessment tool for system design is discussed. To achieve quantitative characterisation, the PVONA toolset is then used for developing a 2-D iterative method for the extraction of local electrical parameters of spatially-resolved models of thin-film devices. The method employs PVONA to implement 2-D fitting to reproduce the lateral variations in electroluminescence (EL) images, and to match the dark current-voltage characteristic simultaneously to compensate the calibration factor in EL characterisations. It managed to separate the lateral resistance from the overall series resistance effects. The method is verified by simulations. Experimental results show that pixellation of EL images can be achieved. Effects of local shunts are accurately reproduced by a fitting algorithm. The outcomes of this thesis provide valuable tools that can be used as a complementary means of performance evaluation of PV devices. After proper optimisation, these tools can be used to assist various analysis tasks during the whole lifecycle of PV products

    Modeling Approaches for Active Antenna Transmitters

    Get PDF
    The rapid growth of data traffic in mobile communications has attracted interest to Multiple-Input-Multiple-Output (MIMO) communication systems at millimeter-wave (mmWave) frequencies. MIMO systems exploit active antenna arrays transmitter configurations to obtain higher energy efficiency and beamforming flexibility. The analysis of transmitters in MIMO systems becomes complex due to the close integration of several antennas and power amplifiers (PAs) and the problems associated with heat dissipation. Therefore, the transmitter analysis requires efficient joint EM, circuit, and thermal simulations of its building blocks, i.e., the antenna array and PAs. Due to small physical spacing at mmWave, bulky isolators cannot be used to eliminate unwanted interactions between PA and antenna array. Therefore, the mismatch and mutual coupling in the antenna array directly affect PA output load and PA and transmitter performance. On the other hand, PAs are the primary source of nonlinearity, power consumption, and heat dissipation in transmitters. Therefore, it is crucial to include joint thermal and electrical behavior of PAs in analyzing active antenna transmitters. In this thesis, efficient techniques for modeling active antenna transmitters are presented. First, we propose a hardware-oriented transmitter model that considers PA load-dependent nonlinearity and the coupling, mismatch, and radiated field of the antenna array. The proposed model is equally accurate for any mismatch level that can happen at the PA output. This model can predict the transmitter radiation pattern and nonlinear signal distortions in the far-field. The model\u27s functionality is verified using a mmWave active subarray antenna module for a beam steering scenario and by performing the over-the-air measurements. The load-pull modeling idea was also applied to investigate the performance of a mmWave spatial power combiner module in the presence of critical coupling effects on combining performance. The second part of the thesis deals with thermal challenges in active antenna transmitters and PAs as the main source of heat dissipation. An efficient electrothermal modeling approach that considers the thermal behavior of PAs, including self-heating and thermal coupling between the IC hot spots, coupled with the electrical behavior of PA, is proposed. The thermal model has been employed to evaluate a PA DUT\u27s static and dynamic temperature-dependent performance in terms of linearity, gain, and efficiency. In summary, the proposed modeling approaches presented in this thesis provide efficient yet powerful tools for joint analysis of complex active antenna transmitters in MIMO systems, including sub-systems\u27 behavior and their interactions

    A surface-potential-based compact model for partially-depleted silicon-on-insulator MOSFETs

    No full text
    With the continuous scaling of CMOS technologies, Silicon-on-Insulator (SOI) technologies have become more competitive compared to bulk, due to their lower parasitic capacitances and leakage currents. The shift towards high frequency, low power circuitry, coupled with the increased maturity of SOI process technologies, have made SOI a genuinely costeffective solution for leading edge applications. The original STAG2 model, developed at the University of Southampton, UK, was among the first compact circuit simulation models to specifically model the behaviour of Partially-Depleted (PD) SOI devices. STAG2 was a robust, surface-potential based compact model, employing closed-form equations to minimise simulation times for large circuits. It was able to simulate circuits in DC, small signal, and transient modes, and particular care was taken to ensure that convergence problems were kept to a minimum. In this thesis, the ongoing development of the STAG model, culminating in the release of a new version, STAG3, is described. STAG3 is intended to make the STAG model applicable to process technologies down to 100nm. To this end, a number of major model improvements were undertaken, including: a new core surface potential model, new vertical and lateral field mobility models, quantum mechanical models, the ability to model non-uniform vertical doping profiles, and other miscellaneous effects relevant to deep submicron devices such as polysilicon depletion, velocity overshoot, and the reverse short channel effect.As with the previous versions of STAG, emphasis has been placed on ensuring that model equations are numerically robust, as well as closed-form wherever possible, in order to minimise convergence problems and circuit simulation times. The STAG3 model has been evaluated with devices manufactured in PD-SOI technologies down to 0.25?m, and was found to give good matching to experimental data across a range of device sizes and biases, whilst requiring only a single set of model parameters
    • 

    corecore