201 research outputs found

    A Novel Vector-Field-Based Motion Planning Algorithm for 3D Nonholonomic Robots

    Full text link
    This paper focuses on the motion planning for mobile robots in 3D, which are modelled by 6-DOF rigid body systems with nonholonomic kinematics constraints. We not only specify the target position, but also bring in the requirement of the heading direction at the terminal time, which gives rise to a new and more challenging 3D motion planning problem. The proposed planning algorithm involves a novel velocity vector field (VF) over the workspace, and by following the VF, the robot can be navigated to the destination with the specified heading direction. In order to circumvent potential collisions with obstacles and other robots, a composite VF is designed by composing the navigation VF and an additional VF tangential to the boundary of the dangerous area. Moreover, we propose a priority-based algorithm to deal with the motion coupling issue among multiple robots. Finally, numerical simulations are conducted to verify the theoretical results

    Reactive Control Of Autonomous Dynamical Systems

    Get PDF
    This thesis mainly consists of five independent papers concerning the reactive control design of autonomous mobile robots in the context of target tracking and cooperative formation keeping with obstacle avoidance in the static/dynamic environment. Technical contents of this thesis are divided into three parts. The first part consists of the first two papers, which consider the target-tracking and obstacle avoidance in the static environment. Especially, in the static environment, a fundamental issue of reactive control design is the local minima problem(LMP) inherent in the potential field methods(PFMs). Through introducing a state-dependent planned goal, the first paper proposes a switching control strategy to tackle this problem. The control law for the planned goal is presented. When trapped into local minima, the robot can escape from local minima by following the planned goal. The proposed control law also takes into account the presence of possible saturation constraints. In addition, a time-varying continuous control law is proposed in the second paper to tackle this problem. Challenges of finding continuous control solutions of LMP are discussed and explicit design strategies are then proposed. The second part of this thesis deals with target-tracking and obstacle avoidance in the dynamic environment. In the third paper, a reactive control design is presented for omnidirectional mobile robots with limited sensor range to track targets while avoiding static and moving obstacles in a dynamically evolving environment. Towards this end, a multiiii objective control problem is formulated and control is synthesized by generating a potential field force for each objective and combining them through analysis and design. Different from standard potential field methods, the composite potential field described in this paper is time-varying and planned to account for moving obstacles and vehicle motion. In order to accommodate a larger class of mobile robots, the fourth paper proposes a reactive control design for unicycle-type mobile robots. With the relative motion among the mobile robot, targets, and obstacles being formulated in polar coordinates, kinematic control laws achieving target-tracking and obstacle avoidance are synthesized using Lyapunov based technique, and more importantly, the proposed control laws also take into account possible kinematic control saturation constraints. The third part of this thesis investigates the cooperative formation control with collision avoidance. In the fifth paper, firstly, the target tracking and collision avoidance problem for a single agent is studied. Instead of directly extending the single agent controls to the multiagents case, the single agent controls are incorporated with the cooperative control design presented in [1]. The proposed decentralized control is reactive, considers the formation feedback and changes in the communication networks. The proposed control is based on a potential field method, its inherent oscillation problem is also studied to improve group transient performance

    STABILIZATION OF THREE-DIMENSIONAL COLLECTIVE MOTION

    Full text link
    peer reviewedThis paper proposes a methodology to stabilize relative equilibria in a model of identical, steered particles moving in three-dimensional Euclidean space. Exploiting the Lie group structure of the resulting dynamical system, the stabilization problem is reduced to a consensus problem on the Lie algebra. The resulting equilibria correspond to parallel, circular and helical formations. We first derive the stabilizing control laws in the presence of all-to-all communication. Providing each agent with a consensus estimator, we then extend the results to a general setting that allows for unidirectional and time-varying communication topologies

    Underwater Robots Part II: Existing Solutions and Open Issues

    Get PDF
    National audienceThis paper constitutes the second part of a general overview of underwater robotics. The first part is titled: Underwater Robots Part I: current systems and problem pose. The works referenced as (Name*, year) have been already cited on the first part of the paper, and the details of these references can be found in the section 7 of the paper titled Underwater Robots Part I: current systems and problem pose. The mathematical notation used in this paper is defined in section 4 of the paper Underwater Robots Part I: current systems and problem pose

    Vision-based control of multi-agent systems

    Get PDF
    Scope and Methodology of Study: Creating systems with multiple autonomous vehicles places severe demands on the design of decision-making supervisors, cooperative control schemes, and communication strategies. In last years, several approaches have been developed in the literature. Most of them solve the vehicle coordination problem assuming some kind of communications between team members. However, communications make the group sensitive to failure and restrict the applicability of the controllers to teams of friendly robots. This dissertation deals with the problem of designing decentralized controllers that use just local sensor information to achieve some group goals.Findings and Conclusions: This dissertation presents a decentralized architecture for vision-based stabilization of unmanned vehicles moving in formation. The architecture consists of two main components: (i) a vision system, and (ii) vision-based control algorithms. The vision system is capable of recognizing and localizing robots. It is a model-based scheme composed of three main components: image acquisition and processing, robot identification, and pose estimation.Using vision information, we address the problem of stabilizing groups of mobile robots in leader- or two leader-follower formations. The strategies use relative pose between a robot and its designated leader or leaders to achieve formation objectives. Several leader-follower formation control algorithms, which ensure asymptotic coordinated motion, are described and compared. Lyapunov's stability theory-based analysis and numerical simulations in a realistic tridimensional environment show the stability properties of the control approaches

    Robust Model Predictive Control for Linear Parameter Varying Systems along with Exploration of its Application in Medical Mobile Robots

    Get PDF
    This thesis seeks to develop a robust model predictive controller (MPC) for Linear Parameter Varying (LPV) systems. LPV models based on input-output display are employed. We aim to improve robust MPC methods for LPV systems with an input-output display. This improvement will be examined from two perspectives. First, the system must be stable in conditions of uncertainty (in signal scheduling or due to disturbance) and perform well in both tracking and regulation problems. Secondly, the proposed method should be practical, i.e., it should have a reasonable computational load and not be conservative. Firstly, an interpolation approach is utilized to minimize the conservativeness of the MPC. The controller is calculated as a linear combination of a set of offline predefined control laws. The coefficients of these offline controllers are derived from a real-time optimization problem. The control gains are determined to ensure stability and increase the terminal set. Secondly, in order to test the system's robustness to external disturbances, a free control move was added to the control law. Also, a Recurrent Neural Network (RNN) algorithm is applied for online optimization, showing that this optimization method has better speed and accuracy than traditional algorithms. The proposed controller was compared with two methods (robust MPC and MPC with LPV model based on input-output) in reference tracking and disturbance rejection scenarios. It was shown that the proposed method works well in both parts. However, two other methods could not deal with the disturbance. Thirdly, a support vector machine was introduced to identify the input-output LPV model to estimate the output. The estimated model was compared with the actual nonlinear system outputs, and the identification was shown to be effective. As a consequence, the controller can accurately follow the reference. Finally, an interpolation-based MPC with free control moves is implemented for a wheeled mobile robot in a hospital setting, where an RNN solves the online optimization problem. The controller was compared with a robust MPC and MPC-LPV in reference tracking, disturbance rejection, online computational load, and region of attraction. The results indicate that our proposed method surpasses and can navigate quickly and reliably while avoiding obstacles

    Planning Framework for Robotic Pizza Dough Stretching with a Rolling Pin

    Get PDF
    Stretching a pizza dough with a rolling pin is a nonprehensile manipulation. Since the object is deformable, force closure cannot be established, and the manipulation is carried out in a nonprehensile way. The framework of this pizza dough stretching application that is explained in this chapter consists of four sub-procedures: (i) recognition of the pizza dough on a plate, (ii) planning the necessary steps to shape the pizza dough to the desired form, (iii) path generation for a rolling pin to execute the output of the pizza dough planner, and (iv) inverse kinematics for the bi-manual robot to grasp and control the rolling pin properly. Using the deformable object model described in Chap. 3, each sub-procedure of the proposed framework is explained sequentially

    Robust hybrid control for autonomous vehicle motion planning

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2001.Includes bibliographical references (p. 141-150).This dissertation focuses on the problem of motion planning for agile autonomous vehicles. In realistic situations, the motion planning problem must be solved in real-time, in a dynamic and uncertain environment. The fulfillment of the mission objectives might also require the exploitation of the full maneuvering capabilities of the vehicle. The main contribution of the dissertation is the development of a new computational and modelling framework (the Maneuver Automaton), and related algorithms, for steering underactuated, nonholonomic mechanical systems. The proposed approach is based on a quantization of the system's dynamics, by which the feasible nominal system trajectories are restricted to the family of curves that can be obtained by the interconnection of suitably defined primitives. This can be seen as a formalization of the concept of "maneuver", allowing for the construction of a framework amenable to mathematical programming. This motion planning framework is applicable to all time-invariant dynamical systems which admit dynamic symmetries and relative equilibria. No other assumptions are made on the dynamics, thus resulting in exact motion planning techniques of general applicability. Building on a relatively expensive off-line computation phase, we provide algorithms viable for real-time applications. A fundamental advantage of this approach is the ability to provide a mathematical foundation for generating a provably stable and consistent hierarchical system, and for developing the tools to analyze the robustness of the system in the presence of uncertainty and/or disturbances.(cont.) In the second part of the dissertation, a randomized algorithm is proposed for real-time motion planning in a dynamic environment. By employing the optimal control solution in a free space developed for the maneuver automaton (or for any other general system), we present a motion planning algorithm with probabilistic convergence and performance guarantees, and hard safety guarantees, even in the face of finite computation times. The proposed methodologies are applicable to a very large class of autonomous vehicles: throughout the dissertation, examples, simulation and experimental results are presented and discussed, involving a variety of mechanical systems, ranging from simple academic examples and laboratory setups, to detailed models of small autonomous helicopters.by Emilio Frazzoli.Ph.D

    Motion Planning in Artificial and Natural Vector Fields

    Get PDF
    This dissertation advances the field of autonomous vehicle motion planning in various challenging environments, ranging from flows and planetary atmospheres to cluttered real-world scenarios. By addressing the challenge of navigating environmental flows, this work introduces the Flow-Aware Fast Marching Tree algorithm (FlowFMT*). This algorithm optimizes motion planning for unmanned vehicles, such as UAVs and AUVs, navigating in tridimensional static flows. By considering reachability constraints caused by vehicle and flow dynamics, flow-aware neighborhood sets are found and used to reduce the number of calls to the cost function. The method computes feasible and optimal trajectories from start to goal in challenging environments that may contain obstacles or prohibited regions (e.g., no-fly zones). The method is extended to generate a vector field-based policy that optimally guides the vehicle to a given goal. Numerical comparisons with state-of-the-art control solvers demonstrate the method\u27s simplicity and accuracy. In this dissertation, the proposed sampling-based approach is used to compute trajectories for an autonomous semi-buoyant solar-powered airship in the challenging Venusian atmosphere, which is characterized by super-rotation winds. A cost function that incorporates the energetic balance of the airship is proposed to find energy-efficient trajectories. This cost function combines the main forces acting on the vehicle: weight, buoyancy, aerodynamic lift and drag, and thrust. The FlowFMT* method is also extended to consider the possibility of battery depletion due to thrust or battery charging due to solar energy and tested in this Venus atmosphere scenario. Simulations showcase how the airship selects high-altitude paths to minimize energy consumption and maximize battery recharge. They also show the airship sinking down and drifting with the wind at the altitudes where it is fully buoyant. For terrestrial applications, this dissertation finally introduces the Sensor-Space Lattice (SSLAT) motion planner, a real-time obstacle avoidance algorithm for autonomous vehicles and mobile robots equipped with planar range finders. This planner uses a lattice to tessellate the area covered by the sensor and to rapidly compute collision-free paths in the robot surroundings by optimizing a cost function. The cost function guides the vehicle to follow an artificial vector field that encodes the desired vehicle path. This planner is evaluated in challenging, cluttered static environments, such as warehouses and forests, and in the presence of moving obstacles, both in simulations and real experiments. Our results show that our algorithm performs collision checking and path planning faster than baseline methods. Since the method can have sequential or parallel implementations, we also compare the two versions of SSLAT and show that the run-time for its parallel implementation, which is independent of the number and shape of the obstacles found in the environment, provides a significant speedup due to the independent collision checks
    • …
    corecore