65,509 research outputs found

    The sphere packing problem in dimension 24

    Get PDF
    Building on Viazovska's recent solution of the sphere packing problem in eight dimensions, we prove that the Leech lattice is the densest packing of congruent spheres in twenty-four dimensions and that it is the unique optimal periodic packing. In particular, we find an optimal auxiliary function for the linear programming bounds, which is an analogue of Viazovska's function for the eight-dimensional case.Comment: 17 page

    New upper bounds on sphere packings I

    Get PDF
    We develop an analogue for sphere packing of the linear programming bounds for error-correcting codes, and use it to prove upper bounds for the density of sphere packings, which are the best bounds known at least for dimensions 4 through 36. We conjecture that our approach can be used to solve the sphere packing problem in dimensions 8 and 24.Comment: 26 pages, 1 figur

    On packing spheres into containers (about Kepler's finite sphere packing problem)

    Full text link
    In an Euclidean dd-space, the container problem asks to pack nn equally sized spheres into a minimal dilate of a fixed container. If the container is a smooth convex body and d≥2d\geq 2 we show that solutions to the container problem can not have a ``simple structure'' for large nn. By this we in particular find that there exist arbitrary small r>0r>0, such that packings in a smooth, 3-dimensional convex body, with a maximum number of spheres of radius rr, are necessarily not hexagonal close packings. This contradicts Kepler's famous statement that the cubic or hexagonal close packing ``will be the tightest possible, so that in no other arrangement more spheres could be packed into the same container''.Comment: 13 pages, 2 figures; v2: major revision, extended result, simplified and clarified proo

    Spherical codes, maximal local packing density, and the golden ratio

    Full text link
    The densest local packing (DLP) problem in d-dimensional Euclidean space Rd involves the placement of N nonoverlapping spheres of unit diameter near an additional fixed unit-diameter sphere such that the greatest distance from the center of the fixed sphere to the centers of any of the N surrounding spheres is minimized. Solutions to the DLP problem are relevant to the realizability of pair correlation functions for packings of nonoverlapping spheres and might prove useful in improving upon the best known upper bounds on the maximum packing fraction of sphere packings in dimensions greater than three. The optimal spherical code problem in Rd involves the placement of the centers of N nonoverlapping spheres of unit diameter onto the surface of a sphere of radius R such that R is minimized. It is proved that in any dimension, all solutions between unity and the golden ratio to the optimal spherical code problem for N spheres are also solutions to the corresponding DLP problem. It follows that for any packing of nonoverlapping spheres of unit diameter, a spherical region of radius less than or equal to the golden ratio centered on an arbitrary sphere center cannot enclose a number of sphere centers greater than one more than the number that can be placed on the region's surface.Comment: 12 pages, 1 figure. Accepted for publication in the Journal of Mathematical Physic

    Mathematical optimization for packing problems

    Full text link
    During the last few years several new results on packing problems were obtained using a blend of tools from semidefinite optimization, polynomial optimization, and harmonic analysis. We survey some of these results and the techniques involved, concentrating on geometric packing problems such as the sphere-packing problem or the problem of packing regular tetrahedra in R^3.Comment: 17 pages, written for the SIAG/OPT Views-and-News, (v2) some updates and correction

    Random perfect lattices and the sphere packing problem

    Full text link
    Motivated by the search for best lattice sphere packings in Euclidean spaces of large dimensions we study randomly generated perfect lattices in moderately large dimensions (up to d=19 included). Perfect lattices are relevant in the solution of the problem of lattice sphere packing, because the best lattice packing is a perfect lattice and because they can be generated easily by an algorithm. Their number however grows super-exponentially with the dimension so to get an idea of their properties we propose to study a randomized version of the algorithm and to define a random ensemble with an effective temperature in a way reminiscent of a Monte-Carlo simulation. We therefore study the distribution of packing fractions and kissing numbers of these ensembles and show how as the temperature is decreased the best know packers are easily recovered. We find that, even at infinite temperature, the typical perfect lattices are considerably denser than known families (like A_d and D_d) and we propose two hypotheses between which we cannot distinguish in this paper: one in which they improve Minkowsky's bound phi\sim 2^{-(0.84+-0.06) d}, and a competitor, in which their packing fraction decreases super-exponentially, namely phi\sim d^{-a d} but with a very small coefficient a=0.06+-0.04. We also find properties of the random walk which are suggestive of a glassy system already for moderately small dimensions. We also analyze local structure of network of perfect lattices conjecturing that this is a scale-free network in all dimensions with constant scaling exponent 2.6+-0.1.Comment: 19 pages, 22 figure
    • …
    corecore