22,824 research outputs found

    Development of CUiris: A Dark-Skinned African Iris Dataset for Enhancement of Image Analysis and Robust Personal Recognition

    Get PDF
    Iris recognition algorithms, especially with the emergence of large-scale iris-based identification systems, must be tested for speed and accuracy and evaluated with a wide range of templates – large size, long-range, visible and different origins. This paper presents the acquisition of eye-iris images of dark-skinned subjects in Africa, a predominant case of verydark- brown iris images, under near-infrared illumination. The peculiarity of these iris images is highlighted from the histogram and normal probability distribution of their grayscale image entropy (GiE) values, in comparison to Asian and Caucasian iris images. The acquisition of eye-images for the African iris dataset is ongoing and will be made publiclyavailable as soon as it is sufficiently populated

    Review of Person Re-identification Techniques

    Full text link
    Person re-identification across different surveillance cameras with disjoint fields of view has become one of the most interesting and challenging subjects in the area of intelligent video surveillance. Although several methods have been developed and proposed, certain limitations and unresolved issues remain. In all of the existing re-identification approaches, feature vectors are extracted from segmented still images or video frames. Different similarity or dissimilarity measures have been applied to these vectors. Some methods have used simple constant metrics, whereas others have utilised models to obtain optimised metrics. Some have created models based on local colour or texture information, and others have built models based on the gait of people. In general, the main objective of all these approaches is to achieve a higher-accuracy rate and lowercomputational costs. This study summarises several developments in recent literature and discusses the various available methods used in person re-identification. Specifically, their advantages and disadvantages are mentioned and compared.Comment: Published 201

    Mapping and classification of ecologically sensitive marine habitats using unmanned aerial vehicle (UAV) imagery and object-based image analysis (OBIA)

    Get PDF
    Nowadays, emerging technologies, such as long-range transmitters, increasingly miniaturized components for positioning, and enhanced imaging sensors, have led to an upsurge in the availability of new ecological applications for remote sensing based on unmanned aerial vehicles (UAVs), sometimes referred to as “drones”. In fact, structure-from-motion (SfM) photogrammetry coupled with imagery acquired by UAVs offers a rapid and inexpensive tool to produce high-resolution orthomosaics, giving ecologists a new way for responsive, timely, and cost-effective monitoring of ecological processes. Here, we adopted a lightweight quadcopter as an aerial survey tool and object-based image analysis (OBIA) workflow to demonstrate the strength of such methods in producing very high spatial resolution maps of sensitive marine habitats. Therefore, three different coastal environments were mapped using the autonomous flight capability of a lightweight UAV equipped with a fully stabilized consumer-grade RGB digital camera. In particular we investigated a Posidonia oceanica seagrass meadow, a rocky coast with nurseries for juvenile fish, and two sandy areas showing biogenic reefs of Sabelleria alveolata. We adopted, for the first time, UAV-based raster thematic maps of these key coastal habitats, produced after OBIA classification, as a new method for fine-scale, low-cost, and time saving characterization of sensitive marine environments which may lead to a more effective and efficient monitoring and management of natural resource

    Classification of Humans into Ayurvedic Prakruti Types using Computer Vision

    Get PDF
    Ayurveda, a 5000 years old Indian medical science, believes that the universe and hence humans are made up of five elements namely ether, fire, water, earth, and air. The three Doshas (Tridosha) Vata, Pitta, and Kapha originated from the combinations of these elements. Every person has a unique combination of Tridosha elements contributing to a person’s ‘Prakruti’. Prakruti governs the physiological and psychological tendencies in all living beings as well as the way they interact with the environment. This balance influences their physiological features like the texture and colour of skin, hair, eyes, length of fingers, the shape of the palm, body frame, strength of digestion and many more as well as the psychological features like their nature (introverted, extroverted, calm, excitable, intense, laidback), and their reaction to stress and diseases. All these features are coded in the constituents at the time of a person’s creation and do not change throughout their lifetime. Ayurvedic doctors analyze the Prakruti of a person either by assessing the physical features manually and/or by examining the nature of their heartbeat (pulse). Based on this analysis, they diagnose, prevent and cure the disease in patients by prescribing precision medicine. This project focuses on identifying Prakruti of a person by analysing his facial features like hair, eyes, nose, lips and skin colour using facial recognition techniques in computer vision. This is the first of its kind research in this problem area that attempts to bring image processing into the domain of Ayurveda

    Minimalist AdaBoost for blemish identification in potatoes

    Get PDF
    We present a multi-class solution based on minimalist Ad- aBoost for identifying blemishes present in visual images of potatoes. Using training examples we use Real AdaBoost to rst reduce the fea- ture set by selecting ve features for each class, then train binary clas- siers for each class, classifying each testing example according to the binary classier with the highest certainty. Against hand-drawn ground truth data we achieve a pixel match of 83% accuracy in white potatoes and 82% in red potatoes. For the task of identifying which blemishes are present in each potato within typical industry dened criteria (10% coverage) we achieve accuracy rates of 93% and 94%, respectively

    Objective Classes for Micro-Facial Expression Recognition

    Full text link
    Micro-expressions are brief spontaneous facial expressions that appear on a face when a person conceals an emotion, making them different to normal facial expressions in subtlety and duration. Currently, emotion classes within the CASME II dataset are based on Action Units and self-reports, creating conflicts during machine learning training. We will show that classifying expressions using Action Units, instead of predicted emotion, removes the potential bias of human reporting. The proposed classes are tested using LBP-TOP, HOOF and HOG 3D feature descriptors. The experiments are evaluated on two benchmark FACS coded datasets: CASME II and SAMM. The best result achieves 86.35\% accuracy when classifying the proposed 5 classes on CASME II using HOG 3D, outperforming the result of the state-of-the-art 5-class emotional-based classification in CASME II. Results indicate that classification based on Action Units provides an objective method to improve micro-expression recognition.Comment: 11 pages, 4 figures and 5 tables. This paper will be submitted for journal revie

    Adaptive detection of volunteer potato plants in sugar beet fields

    Get PDF
    Volunteer potato is an increasing problem in crop rotations where winter temperatures are often not cold enough to kill tubers leftover from harvest. Poor control, as a result of high labor demands, causes diseases like Phytophthora infestans to spread to neighboring fields. Therefore, automatic detection and removal of volunteer plants is required. In this research, an adaptive Bayesian classification method has been developed for classification of volunteer potato plants within a sugar beet crop. With use of ground truth images, the classification accuracy of the plants was determined. In the non-adaptive scheme, the classification accuracy was 84.6 and 34.9% for the constant and changing natural light conditions, respectively. In the adaptive scheme, the classification accuracy increased to 89.8 and 67.7% for the constant and changing natural light conditions, respectively. Crop row information was successfully used to train the adaptive classifier, without having to choose training data in advanc

    Visual detection of blemishes in potatoes using minimalist boosted classifiers

    Get PDF
    This paper introduces novel methods for detecting blemishes in potatoes using machine vision. After segmentation of the potato from the background, a pixel-wise classifier is trained to detect blemishes using features extracted from the image. A very large set of candidate features, based on statistical information relating to the colour and texture of the region surrounding a given pixel, is first extracted. Then an adaptive boosting algorithm (AdaBoost) is used to automatically select the best features for discriminating between blemishes and non-blemishes. With this approach, different features can be selected for different potato varieties, while also handling the natural variation in fresh produce due to different seasons, lighting conditions, etc. The results show that the method is able to build ``minimalist'' classifiers that optimise detection performance at low computational cost. In experiments, blemish detectors were trained for both white and red potato varieties, achieving 89.6\% and 89.5\% accuracy, respectively
    • 

    corecore