3 research outputs found

    Second generation and perceptual wavelet based noise estimation

    Get PDF
    peer-reviewedThe implementation of three noise estimation algorithms using two different signal decomposition methods: a second-generation wavelet transform and a perceptual wavelet packet transform are described in this paper. The algorithms, which do not require the use of a speech activity detector or signal statistics learning histograms, are: a smoothing-based adaptive technique, a minimum variance tracking-based technique and a quantile-based technique. The paper also proposes a new, robust noise estimation technique, which combines a quantile-based algorithm with smoothing-based algorithm. The performance of the latter technique is then evaluated and compared to those of the above three noise estimation methods under various noise conditions. Reported results demonstrate that all four algorithms are capable of tracking both stationary and non-stationary noise adequately but with varying degree of accuracyPUBLISHEDpeer-reviewe

    Speech enhancement using auditory filterbank.

    Get PDF
    This thesis presents a novel subband noise reduction technique for speech enhancement, termed as Adaptive Subband Wiener Filtering (ASWF), based on a critical-band gammatone filterbank. The ASWF is derived from a generalized Subband Wiener Filtering (SWF) equation and reduces noises according to the estimated signal-to-noise ratio (SNR) in each auditory channel and in each time frame. The design of a subband noise estimator, suitable for some real-life noise environments, is also presented. This denoising technique would be beneficial for some auditory-based speech and audio applications, e.g. to enhance the robustness of sound processing in cochlear implants. Comprehensive objective and subjective tests demonstrated the proposed technique is effective to improve the perceptual quality of enhanced speeches. This technique offers a time-domain noise reduction scheme using a linear filterbank structure and can be combined with other filterbank algorithms (such as for speech recognition and coding) as a front-end processing step immediately after the analysis filterbank, to increase the robustness of the respective application.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .G85. Source: Masters Abstracts International, Volume: 44-03, page: 1452. Thesis (M.A.Sc.)--University of Windsor (Canada), 2005

    The use of spectral information in the development of novel techniques for speech-based cognitive load classification

    Full text link
    The cognitive load of a user refers to the amount of mental demand imposed on the user when performing a particular task. Estimating the cognitive load (CL) level of the users is necessary to adjust the workload imposed on them accordingly in order to improve task performance. The current speech based CL classification systems are not adequate for commercial use due to their low performance particularly in noisy environments. This thesis proposes many techniques to improve the performance of the speech based cognitive load classification system in both clean and noisy conditions. This thesis analyses and presents the effectiveness of speech features such as spectral centroid frequency (SCF) and spectral centroid amplitude (SCA) for CL classification. Sub-systems based on SCF and SCA features were developed and fused with the traditional Mel frequency cepstral coefficients (MFCC) based system, producing an 8.9% and 31.5% relative error rate reduction respectively when compared to the MFCC-based system alone. The Stroop test corpus was used in these experiments. The investigation into cognitive load information in the form of spectral distribution in different subbands shows that the information distributed in the low frequency subband is significantly higher than the high frequency subband. Two different methods are proposed to utilize this finding. The first method, called the multi-band approach, uses a weighting scheme to emphasize the speech features in low frequency subbands. The cognitive load classification accuracy of this approach is shown to be higher than a system based on a non-weighting scheme. The second method is to design an effective filterbank based on the spectral distribution of cognitive load information using the Kullback-Leibler distance measure. It is shown that the designed filterbank consistently provides higher classification accuracies than other existing filterbanks such as mel, Bark, and equivalent rectangular bandwidth. A discrete cosine transform based speech enhancement technique is proposed in order to increase the robustness of the CL classification system and found to be more suitable than other methods investigated. This proposed method provides a 3.0% average relative error rate reduction for the seven types of noise and five levels of SNR used. In particular, it provides a maximum of 7.5% relative error rate reduction for the F16 noise (in NOISEX-92 database) at 20 dB SNR
    corecore