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ABSTRACT

This thesis presents a novel subband noise reduction technique for speech 

enhancement, termed as Adaptive Subband W iener Filtering (ASW F), based on a critical- 

band gammatone filterbank. The ASW F is derived from a generalized Subband Wiener 

Filtering (SWF) equation and reduces noises according to the estimated signal-to-noise 

ratio (SNR) in each auditory channel and in each time frame. The design of a subband 

noise estimator, suitable for some real-life noise environments, is also presented. This 

denoising technique would be beneficial for some auditory-based speech and audio 

applications, e.g. to enhance the robustness of sound processing in cochlear implants. 

Comprehensive objective and subjective tests demonstrated the proposed technique is 

effective to improve the perceptual quality of enhanced speeches.

This technique offers a time-domain noise reduction scheme using a linear filterbank 

structure and can be combined with other filterbank algorithms (such as for speech 

recognition and coding) as a front-end processing step immediately after the analysis 

filterbank, to increase the robustness of the respective application.
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1. Introduction

In real life, it is highly probable that speech signals are interfered by some 

environmental noises (e.g. ventilation, fan, car engine, and cockpit noise etc.). Sometimes, 

the interferences are very annoying and would greatly increase the hearing fatigue. 

Speech enhancement is involved in restoring the original clean speech signal from a 

noisy speech signal.

The main goal of speech enhancement is to improve the perceptual quality or 

decrease the hearing fatigue of a noisy speech. Speech enhancement can also work as a 

front-end processing module to increase the robustness of speech processing applications. 

Typical speech enhancement applications include:

• Cellular phone systems suffering from background and channel noises

• Air-ground communication systems in which the pilot’s speech is corrupted by 

cockpit noises

• Teleconference systems and paging systems

To date, researchers and engineers have proposed a number of speech enhancement 

algorithms, to improve the perceptual quality of speech signals. Yet, due to the 

complexity of speech signals, this area of research still faces considerable challenges. In 

general, it is difficult to reduce noise without speech distortion and thus, the speech 

enhancement performance is highly limited by the tradeoff between these two factors. 

Among a variety of speech enhancement techniques, the single-channel approach is one 

of the most difficult scenarios to deal with.

This thesis is organized as follows: chapter 1 introduces the human auditory system 

and various aspects of hearing which are critical to design the auditory filterbank; 

meanwhile, some popular single-channel speech enhancement techniques are introduced. 

Chapter 2 reviews the spectral analysis and synthesis models, including the Fourier-based 

uniform spectral analysis models and the non-uniform spectral analysis models. Chapter

l
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3 illustrates the structure, principle and designing issues of the proposed Adaptive 

Subband W iener Filtering (ASWF) algorithm and the Critical-band Gammatone 

Filterbank (CGTFB). Chapter 4 illustrates and analyzes the simulation results with the 

objective and subjective speech quality evaluation methods. Chapter 5 summarizes this 

thesis work as well as suggestions for future improvement.

1.1. Human Auditory System

To improve the perceptual quality of a speech, it is worthwhile examining the nature 

of the human auditory system first. In this section, the cochlea model as well as the 

human frequency scale will be introduced.

1.1.1. Cochlear M odel

The cochlea is a rigid, fluid-filled tube located in the inner ear. It is a cone-shaped 

spiral in which the auditory nerve terminates. The cochlear is the most complex part of 

the ear, wherein the mechanical pressure waves are converted into electrical pulses.

A simplified view of the auditory periphery is shown in Figure 1-1. Sound travels 

through the air as a longitudinal pressure wave. After passing through the outer ear, the 

sound with varying air pressures impinges upon the eardrum and is transduced 

mechanically by bones in the middle ear onto a round window at the base of the cochlea.

outer
ear

middle
ear cochlea

Figure 1-1: Auditory Periphery

2
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The cochlea is depicted in its uncoiled state in Figure 1-2. The Basilar Membrane 

(BM) runs along the length of the cochlea, separating the tube into two chambers. In 

response to the mechanical action of the input at the base of the cochlea, a standing wave­

like pattern passes down the BM. Because of the hydrodynamics of the cochlear fluid and 

stiffness variation in the membrane, the displacement patterns along the membrane vary 

depending on the frequency of the input signals at the round window. High frequency 

inputs cause maximal displacement closer to the base of the cochlea, while low 

frequencies cause maximal displacement at the apex. Inner Hair Cells (IHC) situated 

along the length of the membrane convert the mechanical displacement into neural 

signals by increasing the ring rates of connected nerve fibers when they are sheared by 

vertical membrane motion.

ova! window

cochlear duct

from
middle /  

ear

basilar membrane

Figure 1-2: The cochlea

Since each point in the BM  responds best to one specific frequency, it will effectively 

decompose the acoustical energy into different frequency bands. The cochlea near its 

base (where the sound enters) is most sensitive to high frequency components and as the 

wave travels down the cochlea, it becomes more sensitive to low frequencies.

The frequency-dependent response of cochlea can be best modeled as a set of 

continuous differential equations. However, for implementation purpose, it is normally 

modeled in discrete sections as a bank of bandpass filters. These filters, called the 

auditory filters or cochlear filters, separate the input signal to the ear into different 

frequency bands. Outputs of an auditory filter would be further processed by the Half-

3
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wave Rectifier (HWR) and the Automatic Gain Controller (AGC). The HW R models the 

non-linearity of the hair cells by providing a non-negative output representing neural 

responses. The AGC is used to capture other nonlinear activities of the human ear, such 

as the saturation and masking activities. Figure 1-3 shows the schematic diagram of the 

cochlear model. The outputs of the cochlear model are a set of M signals, where M is the 

total number of auditory channels.

Audio/Speech
Input

Channel 0

Channel 2 
 ►

Channel M-1 
 ►► ►

HWR

HWR

HWR

AGC

HWR

Auditory 
Filter 0

AGCAuditory 
Filter 2

AGC

Auditory 
Filter 1 AGC

Auditory 
Filter M-1

Outer/Middle 
Ear Filter

Figure 1-3: Schematic diagram of the cochlear model

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.1.2. Critical Band and Bark Scale

The frequency selectivity of masking effects is generally described in terms of 

Critical Bands (CB). A CB is the bandwidth around a center frequency, which marks a 

sudden change in subjective response [25]. For example, the perceived loudness of a 

narrowband noise of fixed power density is independent of its bandwidth, as long as the 

noise is confined within a CB. If the bandwidth of the noise is wider than a CB, the 

perceived loudness will increase accordingly.

Moore [26] describes CB as a measure of the 'effective bandwidth' of the auditory 

filters, which refers to a band of frequencies that are likely to be masked by a strong tone 

at the center frequency. As shown in Table 1-1 [38], the CB bandwidth becomes wide 

with increasing of the center frequencies. Hence, the human ear can be considered as a 

spectrum analyzer with logarithmic rates. In psychoacoustics, the bark scale is often used 

to quantify the frequencies (for example when calculating specific loudness). Though it 

may not be an accurate representation of exactly what happens in the ear (and there are 

other methods which model the frequency scaling of the auditory system, e.g. the 

Equivalent Rectangular Bandwidth (ERB)), it is widely accepted that the bark scale is 

useful to model how an individual may perceive a sound. The function regularly used to 

convert the linear frequency scale to the bark scale is expressed as:

z { f )  = 13 arctan (0 .00076 /) + 3.5arctan /
V7500y

(1.1.1)

Table 1-1: An example of critical bands in the frequency range 0-7700 Hz

Critical Band Lower Cutoff Upper Cutoff Critical Center
Number Frequency Frequency Band Frequency
(Bark) (Hz) (Hz) (Hz) (Hz)

1 100 _ _ _ 50
2 100 200 100 150
3 200 300 100 250

5
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4 300 400 100 350
5 400 510 110 450
6 510 630 120 570
7 630 770 140 700
8 770 920 150 840
9 920 1080 160 1000
10 1080 1270 190 1170
11 1270 1480 210 1370
12 1480 1720 240 1600
13 1720 2000 280 1850
14 2000 2320 320 2150
15 2320 2700 380 2500
16 2700 3150 450 2900
17 3150 3700 550 3400
18 3700 4400 700 4000
19 4400 5300 900 4800
20 5300 6400 1100 5800
21 6400 7700 1300 7000

Additionally, the bandwidth of the bark scale at certain frequency can be calculated 

with a simplified equation, as

B W ( f )  - 2 5  + 15 1 + 1.4
1000

0.69

( 1. 1.2)

1.2 Classification o f Speech Enhancement Techniques

In literature, a number of speech enhancement techniques have been proposed in the 

recent three decades. According to the number of channels used in the noise suppression, 

these techniques can be classified into the single-channel systems or the multi-channel 

systems.

Multi-channel systems use two or multiple channels in the speech noise suppression 

process, of which the dual-channel systems are most commonly seen. A dual-channel 

system has two input channels, the primary channel and the secondary channel. The

6
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primary channel is used to input the noisy speech containing the mixture of a clean 

speech and a noise, whereas the secondary channel takes a noise as a reference signal. 

The secondary-channel noise, picked up by some sensors located in the noise spots, is 

correlated to the noise in the primary channel. Thus, the primary-channel noise can be 

eliminated by applying adaptive algorithms, e.g. the LMS and the RLS algorithms, in the 

secondary channel. Normally, there will be an unknown model in the primary channel. If 

it is linear, an adaptive FIR or HR is sufficient to cancel the primary-channel noise. The 

famous Active Noise Canceller (ANC) is one such dual-channel model for noise 

reduction. Due to the availability of a secondary channel, the Neural Network (NN), the 

Radial Basis Function (RBF) and the Adaptive Fuzzy Filters (AFF) can be broadly 

classified into this category. These systems are especially powerful in suppressing noises 

corrupted by nonlinear models.

w (t)

s(f)
y(0=s(0+w(r)

s(n)
y («)

ADC Noise
Suppressor

Figure 1-4: Single-channel system

Single-channel systems only use one channel in the speech noise reduction process. 

As shown in Figure 1-4, an analog noisy speech y(t), the mixture of a clean speech s(t) 

and an additive background noise w(t), is picked up by a microphone. In digital 

implementation, the analog signal y(t) would be converted to its digital representation, 

noted as y(n), by an Analog-to-Digital Converter (ADC). Then, y(n) is sent to the noise 

suppressor module, to produce the noise-reduced speech y (n ) , which is regarded as the 

best estimate of its original s(n). The key task of a single-channel system is to design an 

effective and efficient noise suppressor module, which could precisely recover the 

original clean speech from a noisy input without excessive spectral distortions. In 

contrast to a multi-channel system, a single-channel system is usually easier and less 

expensive to build, although its performance is highly limited by the noise conditions.

7
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For example, the performance of the single-channel systems degrades drastically in 

adverse or varying noise environments.

In the single-channel systems, spectral subtraction is well-known and most commonly 

used, due to its simplicity and effectiveness. For its important role in the single-channel 

systems, the principle of spectral subtraction as well as its drawbacks will be furnished in 

detail in this section.

1.3. Spectral Subtraction

In [6], Boll proposed the first detailed treatment of spectral subtraction, as a stand­

alone noise suppressor for reducing the spectral effects of acoustically added noise in 

speech. This computational efficient algorithm suppresses stationary noise from speech 

by subtracting the spectral noise bias calculated during non-speech activity, and was 

demonstrated to be very effective in improving the speech quality and intelligibility.

In [8], M caulay et al proposed one way of enhancing speech in an additive acoustic 

noise environment by performing a spectral decomposition of a frame of noisy speech 

and attenuating a particular spectral line depending on how much the measured speech 

plus noise power exceeds an estimate of background noise. It applied the maximum 

likelihood estimator of the magnitude of the speech spectrum and results in a new class of 

noise suppression rule.

However, the above-mentioned spectral subtraction algorithms suffer from 

noticeable musical noises and spectral distortions. The speech enhanced by these methods 

sounds unnatural and sometimes, is even worse than the unprocessed one. To combat 

these deficiencies, some modifications to the classic spectral subtraction have been 

extensively researched in [4] [10] [30] [21],

1.3.1. Principle

8
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We assume a noisy speech is made of a clean speech and an additive background 

noise, where the clean speech and the background noise are statistically independent

y(n ) = s(n) + w(n) (1.3.1)

where n presents the discrete time instances. y(n) is the noisy speech, sin) is the clean 

speech, and w (n) is the additive background noise, all in the discrete time domain.

Since the Discrete Fourier Transform (DFT) is a linear transform, we apply the DFT 

transform on both sides of equation (1.3.1) and obtain

where Y (co), S(&>) and N(&>) are the corresponding frequency-domain representations of 

y(n), s(n) and w (n), respectively, co represents the frequency coefficient. Equation (1.3.2) 

states that if the noise spectrum W (co) (including both the magnitude and phase) is known 

accurately, then simply subtracting the noise spectrum from the noisy speech spectrum 

Y (co), the clean speech spectrum S(<y) can be accurately determined [38]. However, in 

practice, only the estimated noise magnitude spectrum is available. In spectral subtraction 

[6], the magnitude spectrum of the noisy speech is assumed to be the sum of the clean 

speech magnitude spectrum and the noise magnitude spectrum, as

where the symbol ‘| |’ generally denotes the magnitude spectrum of a signal in this thesis. 

Assuming W(co) the estimated noise spectrum, S(oo) the noise-reduced speech spectrum, 

equation (1.3.3) can be expressed as

S(co) = Y ( a ) - W ( a ) ) (1.3.2)

|T(ty)| = |5 (« )| + |W(ty)| (1.3.3)

5(ty) =| Y(co) \- \W(co)\ (1.3.4)

9
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where the symbol ‘A’ denotes the estimate of a signal. Equation (1.3.4) is called the 

Magnitude Spectral Subtraction (MSS), because it subtracts the magnitude spectrum of 

the noise.

The Power Spectral Subtraction (PSS) is a small variation of the MSS. Multiplying 

either side of equation (1.3.2) with its complex conjugate, we get

Y 2{oi) = S 2{co) + W 2(co) + S{(o)W*{co) + S\(o)W{(o) (1.3.5)

where S*{co) and W* (co) represent the complex conjugate of S(co) and W(co) 

respectively. Since the clean speech and the noise are assumed uncorrelated, the 

expectation of the two cross terms E[S(co)W* (co)\ and E[S* (co)W (co)] is approaching 

zero. Thus, equation (1.3.5) can be simplified to be

\s 2 ( co)\ =  \y 2 ( co) \ - \ w 2 ( co)\ (1.3.6)

The terms in equation (1.3.6) represent the power spectrum of the clean speech, the 

noisy speech and the background noise, respectively. Denoting the estimated power

spectrum of the background noise as W (co) and the power spectrum of the noise-

A. r.

reduced speech as S (a)) , and substituting these two terms into equation (1.3.6), we 

obtain

S 2(co) = Y 2{ c o ) - W 2{a>) (1.3.7)

In practice, the noise suppression is processed in a frame-by-frame manner. The 

original signal would be divided into overlapped short segments, based on which spectral 

subtraction applies. However, this approach introduces noise estimation errors, so that the 

magnitude spectrum or the power spectrum of the noise-reduced speech could be

10
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occasionally negative in equations (1.3.4) and (1.3.7). Usually, the negative values can be 

corrected by setting them to zero with a half-wave rectifier, or to a small positive value as 

a spectral floor to improve the speech naturalness.

It is well-known that human’s perception is insensitive to the phase spectrum of a 

speech, which had been later demonstrated by W ang et al [9] through a variety of 

experiments. Therefore, only the magnitude portion of the input noisy speech is required 

to modify, while the phase spectrum can be kept intact. In addition, appending the noisy 

phase to be the output’s is useful to maintain an identity system in the absence of noise. 

Thus,

where (p-(a)) and <py{ai) represent the phase spectrum of the noise-reduced speech and 

the noisy speech respectively.

Finally, the time form of the noise-reduced speech, denoted as s(n) , can be recovered 

by applying the short-time Inverse DFT (IDFT) on the noise-reduced spectral signal as

In addition, the spectral subtraction expressed in equation (1.3.3) can be generalized 

to the general form, as follows

where y is a positive constant. Obviously, the MSS (y = 1) and the PSS (y = 2) can be 

regarded as the special forms of equation (1.3.10). The block diagram of the generalized 

spectral subtraction is illustrated in Figure 1-5.

<pi {ai) = <py (ai) (1.3.8)

s(n) = ID FT [| S(o)) | ■em(a’ (1.3.9)

S ( J  = [[| Y{ai) |]r -  [| W{0)) I rYr I Y(co) |> I W ( 0J) \ (1.3.10)

11
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Phase

I DFT

DFT

Figure 1-5: Block diagram of the generalized spectral subtraction 

1.3.2. Limitations

Despite of its simplicity, unfortunately, spectral subtraction suffers from noticeable 

speech artifacts, which can be very annoying to listeners. Sometimes, the distorted speech 

sounds even worse than the unprocessed one.

One artifact is caused by phase distortion, the difference between the phase spectrum 

of the noisy speech and the clean speech. This distortion is inherent to the single-channel 

systems, in which the phase spectrum of the enhanced speech is taken exactly as that of 

the noisy speech (as shown in equation (1.3.8)). Experiments with “ideal” spectral 

subtraction (where the magnitude of each frame is taken from the clean speech and the 

phase from the noisy speech) show that this becomes significant as the SNR decreases, 

resulting in a “hoarse” or “rough” sounding voice.

Another artifact comes from the estimation error of the noise magnitude spectrum, 

which is usually conducted by a Voice Activity Detector (VAD). The performance of a 

VAD is critical to spectral subtraction. For example, an inaccurate VAD would increase 

chances of midsection of speech and silent frames, and thus degrade the performance of 

spectra] subtraction drastically.

12
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However, the main artifact of spectral subtraction is known as the musical noise, due 

to the random variations of the noise spectrum. No matter what kind of noise estimator is 

used, the true short-time noise spectrum will always fluctuate with a finite variance and 

result in an inevitable estimation error for the noise estimators. Additionally, the cross- 

product terms, e.g. the terms in equation (1.3.5), as well as the half-wave rectification, 

contribute to the production of musical noises in the processed speech.

Figure 1-6 plots the characteristics of the musical noise in 40 frames (16ms for each 

frame), of a typical noisy speech enhanced by the MSS. The x-axis represents the frame 

numbers from 1 to 40, the y-axis is the frequency bins from 0 to 128, and the z-axis 

represents the magnitude spectrum deviations between the clean speech and the 

processed speech.

Since the presence of spectral subtraction, many researchers have made their efforts 

to reduce the musical noise, to improve the perceptual quality of the enhanced speech 

[4] [10] [30] [21]. Yet, it is impossible to eliminate the musical noise without sacrificing 

the speech intelligibility. Hence, to find the optimal tradeoff between noise reduction and 

spectral distortion is a practical research subject in the field of single-channel speech 

enhancement systems.

13
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F r e q u e n c y  Bin 0 0
F r a m e  No.

Figure 1-6: M usical noises over 16 ms windows for 40 frames (5 dB Input SNR, 

white Gaussian noise, oversubtraction factor = 2)

1.4. M odifications of Spectral Subtraction

Among different treatments to combat the annoying musical noise, the Berouti’s 

spectral subtraction, the Nonlinear Spectral Subtraction (NSS), the Ephraim-Malah 

filtering and the perceptual-based spectral subtraction method etc. have achieved 

significant improvements over the classic spectral subtraction. These methods will be 

introduced in this section.

1.4.1. Oversubtraction and Spectral Floor

In [7], Berouti et al devised a modified spectral subtraction algorithm by introducing 

the oversubtraction and spectral floor parameters in the noise suppression and achieved 

significant improvement with the enhanced speech. This method consists of subtracting 

an overestimation of the noise power spectrum and preventing the resultant spectral 

components from going below a pre-set minimum level.

14
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Based on the power spectral subtraction expressed in equation (1.4.1), this algorithm 

is modified as in equation (1.4.2)

S{a>) \Y (a ) f  - a W ( a j ) (1.4.1)

S ( oj)

S(oo) i f  S(co) > j 3 W ( w )

(1.4.2)

f3W{(o) , Otherwise

where the oversubtraction factor a  is a function of signal-to-noise ratio and expressed as:

a  = a  _  —  SNR  -  5dB < SNR  < 20dB (1.4.3)
0 20

A O versubtraction CC

-10 ■5 0 5 10 15 20
Input SNR(dB)

Figure 1-7: Oversubtraction factor a ,  when cco = 4

The nature of this algorithm lies in the fact that there exist spectral peaks and valleys 

in the short-time power spectrum of noises. Their frequency locations in each frame are

15
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random and they vary randomly in frequency and amplitude from frame to frame. In the 

classic spectral subtraction, subtracting the smoothed noise spectrum results in all the 

spectral peaks shifted down while the valleys are set to zero. Thus, after subtraction, there 

still remain spectral peaks with relatively large spectral excursions. As a consequence, 

subtracting the smoothed noise spectrum more than necessary can reduce the height of 

spectral peaks and thus alleviate the disturbing musical noise effects.

The spectral floor prevents the spectral components of the enhanced speech spectrum 

from descending below a predefined lower bound, by “filling-in” the deep valleys 

surrounding narrow peaks (in the enhanced spectrum). With a small positive value p, the 

spectral valleys between peaks are not so deep compared to the case when P = 0, which 

implies reduced musical noise in the enhanced speech.

1.4.2. Nonlinear Spectral Subtraction

Based on Berouti’s spectral subtraction algorithm with fixed oversubtraction and 

spectral floor parameters, Lookwood and Boudy proposed the Nonlinear Spectral 

Subtraction algorithm (NSS), in which the oversubtraction factor is frequency dependent. 

As a result, the spectral subtraction becomes nonlinear and tends to be more robust to the 

slow-varying and color noises. With this approach, maximum subtraction applies to the 

lowest SNR while minimum subtraction applies to the highest SNR conditions. The 

method is written as below

Y(co) -</>(co) i f  Y(CO) ></>(Q)) + P W (( 0 )
S(eo) = -

P ' Y  (co) Otherwise
(1.4.4)

where p, |F(ft>)| and W(co) represent the spectral floor, the smoothed noisy speech and

the smoothed estimate of noise, respectively. 0{co) is the nonlinear function calculated in 

each frame and dependent on following parameters
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0(a)) = /  (a(co\ p(co\ | W (ft>)|) (1.4.5)

The oversubtraction factor a(co) is computed for each frame i as the maximum noise 

magnitude spectrum (estimated during speech pauses) over the last 40 frames.

(a) ) -  max [w(co)
i-4 0 < /< i

(1.4.6)

p(co) is the signal-to-noise ratio and is estimated as following

(1.4.7)

where y (oj) is the smoothed noisy speech spectrum smoothed with a factor 0.5.
p

1.4.3. Epharaim-M alah Filtering

In [10], Ephraim and M alah proposed an optimal M inimum M ean Square Error 

Short-Time Spectral Amplitude estimator (MMSE STSA) for speech enhancement in 

1984. This algorithm models the speech and noise spectral components (i.e. the Fourier 

coefficients) as statistically independent Gaussian random variables and is derived as an 

optimal spectral estimator in the sense of maximum likelihood. Let the observed signal 

y(t) is given by

where x(t) and d(t) denote the speech and the noise processes. Let X k = Ake j0lk, Dk, and

Yk denote the k-th spectral component of the signal x(t), the noise d(t) and the noisy 

observation y(t). According to the central limit theory, we model the Fourier expansion

y(t) = x(t) + d(t), 0 < t < T (1.4.8)
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coefficients of the observation frame of a speech or noise as independent Gaussian 

variables. The correlation level between these coefficients reduces to zero as the 

observation frame length approaches infinity. Thus, the M M SE amplitude estimator can 

be derived from Yk as

At ~ E{Ak\y(t), 0 < t < T )

= E{Ak\Y0,Yv •••}

= E { \ \ Y k \

r  A n  I_ 1 I akP(Yk\ak>a k)p(.ak’a k)dakd a k

f  £*P(Yk\ak,ock)p(ak,ak)dakdak
(1.4.9)

where Ak is the M M SE estimator of Ak. p(.) denotes a probability density function. In 

the assumed statistical model, p(Yk|ak,a k) and p(ak, a k) are given by

P(Yk \ak, a k) =
1

-exp
1

nAAk)  Ad{k)
Yk - a ke Ja> (1.4.10a)

P ( a k , a k ) exp< —
xAx(k ) I AA k )

(1.4.10b)

where Ah(k) -  E { \ X k |2}, and Ad{k) = E { \D k |2} , are the variances of the M i spectral

component of the speech and the noise, respectively. Substituting equation (1.4.10a) and 

(1.4.10b) into (1.4.9), the transfer function of the time-varying Ephraim-M alah filter can 

be derived as

Hk = T ( l . 5 ) ^ e  2 
Yk

( i + v , K
v 2 y

Z., X
R„ (1.4.11)
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where Io(-) and Ii(-) represent zero and first order modified Bessel functions respectively. 

Vk is given by

V , =  - ^ - n  (1.4.12)
* + bk

where ^  and Yk represent the a priori  and a posteriori signal-to-noise ratios for the k-th 

spectral component respectively. In practical application, can be obtained from the 

knowledge of previously enhanced spectral components.

The Ephraim-M alah filter results in the white-noise-like residual noise, rather than the 

annoying musical noise from the spectral subtraction algorithms. Similar to the spectral 

subtraction, however, the performance of Ephraim-M alah filter is also constrained by the 

accuracy of noise estimators.

1.4.4. Perceptual-based Method

Based on the human auditory masking phenomenon, a perceptual model has been 

successfully used in the audio coding applications. In [12], the perceptual model affiliated 

to each subband was used for bit allocation. To date, many researchers have successfully 

incorporated the perceptual model into some speech enhancement applications. The 

fundamental rationale for the effectiveness of these applications lies in the fact: weak 

sounds (normally refer to the noise components) would be masked by strong speech 

sounds simultaneously occurring in the neighboring frequency bands, and thus become 

inaudible. Therefore, the weak and inaudible noises can be prevented from subtracting, to 

minimize the effect of spectral distortion in the enhanced speech.

In [21], Tsoukalas et al presented a speech enhancement technique that relies on the 

definition of a psycho-acoustically derived quantity of audible noise spectrum. This 

quantity describes the amount of noise perceived as degradation by the auditory 

mechanism (inner ear). It has been demonstrated this optimal noise suppressor can lead to
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significant intelligibility gains (up to 40%) in the processed speech signals.

Virag [30] modified the nonlinear spectral subtraction function and proposed a 

scheme based on the human auditory masking properties. Instead of using the 

instantaneous signal-to-noise ratio for parameter fitting as in the nonlinear spectral 

subtraction, the human auditory masking threshold, calculated from frame to frame, was 

applied to adapt those parameters. The gain function was given below

G(co) -

1 - a

P-

|W(ry)|

\Y(a>)\

|W(ry)|

\Y((0)\

Ti

/
\ r i

if
|W(ry)|

\Y(co)\
<

otherwise

(1.4.13)

where the oversub traction factor a  and the spectral floor parameter (3 are the function of 

the human auditory masking threshold, respectively. These functions map the minimal 

oversubtraction factor and the minimal spectral floor to the maximum of the human 

auditory masking threshold and vice versa, the maximal oversubtraction factor and the 

maximal spectral floor to the minimum of the human auditory masking threshold.

The perceptual-based speech enhancement methods render the residue noise 

‘perceptually w hite’, which is done by introducing knowledge of human perception in 

noise suppression. Since only the audible noise components would be subtracted from the 

noisy speech, an optimal tradeoff of noise suppression against speech distortion can be 

derived. However, these techniques are not very successful in adverse or real-life noise 

environments, because it would be difficult to estimate the human auditory masking 

threshold accurately under those disturbing noise conditions. In [39], Jiang et al 

improved the perceptual-based model in adverse noise condition, by incorporating 

M artin’s noise estimate algorithm [34].
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2. Spectral Analysis Model

All the speech enhancement algorithms discussed in chapter 1 are based on the short- 

time Fourier spectral analysis model, which decomposes a signal into evenly distributed 

frequency bins. However, in chapter 1.1, we have also learned that the frequency 

resolution of the human ear is not uniformly distributed in the frequency band. Instead, it 

is non-uniform and commonly described by the critical-band scale. In this chapter, we 

will review the Fourier-based spectral analysis model. Also, some non-uniform spectral 

analysis models including the wavelet transform and the auditory filterbank would be 

examined.

2.1. Short-time Fourier Analysis

The short-time Fourier spectral analysis model is a variant form of the classic Fourier 

spectral analysis model, specializing in the joint time-frequency analysis for non- 

stationary signals, e.g. the speech signals. Normally, we define a time window with finite 

duration, within which both the speech and the noise can be assumed stationary or quasi- 

stationary. As a result, the instantaneous time-frequency relationships of the windowed 

signal can be precisely analyzed by applying the classic DFT transform.

In terms of the interpolation method, the short-time Fourier spectral analysis model 

can be implemented with the DFT filterbank structure or the Overlap-Add (OLA) method. 

In [5], Rabiner illustrated these two approaches are interchangeable, for the same 

mathematical framework they root from.

2.1.1. DFT Filterbank Model

The DFT filterbank model would be explained from a single channel. Then, the 

composite frequency response of the whole filterbank would be discussed.
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Figure 2-1 illustrates the (a) analysis, and (b) synthesis stages of the k-th channel in a

K-channel DFT filterbank. e~J0Jk" and e jCOkn represent the complex bandpass modulator 

in the analysis and synthesis channel respectively.

(a)

Figure 2-1: Single channel in the (a) analysis; (b) synthesis DFT filterbank

In the analysis stage, the input signal x(n) is modulated by the function C JWkn and 

lowpass filtered by the filter h(n). It is then down-sampled by a factor M  to produce the 

subband signal Xk(m) in the k-th channel. The filter h(n) in this system is called the 

analysis filter.

The subband signals can be expressed as

X k{ m ) = ^ h ( m M - n ) x ( n ) W - kn, k = 0 ,1 , . . . ,£ - 1  (2.1.1)
n = - o o

where Wk = e j('2rt/K'> and (Ok k  = 0 ,1 ,. . . ,X -1
K
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The DFT synthesis filterbank interpolates all the channel signals back to their high 

sampling rate and modulates them back to their original spectral locations. It then sums 

the channel signals to produce a single output. In Figure 2 -1(b), the input signal is 

interpolated by a factor M with the interpolation filter g(n), which is often referred to as 

the synthesis filter. It is then modulated by the function W f  = eJ"v ‘ to shift the channel 

signal back to its original location ci)k. The resulting output of the channel is denoted as 

xk(n).

{ K-2)„

f A T -l)n

(« )
3
<D
O)TJ
<D
a
3

h ( n ) — ►Dr My ►

o
Q .

O
CO
£!•

g(n)

h ( n )

3
W

— ►d m )— ► g(n)

'' — ► g(n) —► (X)

(K -2 )n

Figure 2-2: Structure of the DFT filterbank

Figure 2-2 plots the whole DFT filterbank structure. The overall expression for the 

reconstructed fullband signal x(n)  has the following form

x (n )=  E  g ( n - m M ) ^ X k( m )W ^  (2.1.2)
m=-~ & k=0

For perfect reconstruction of the DFT filterbank, the filter designs h(n) and g in) are 

interdependent and must satisfy
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1 s = 0
Y  g ( n - m M ) h ( m M - n - s K )  = u0(s) = \ ’ (2.1.3)

[0, otherwise

for all n. Alternatively, if we wish to have x(n)  be equal to the delayed version of x(n), 

such as x(n) = x(n  -  s' K ) , then the above equation must be zero for all values of s except 

s ’ (where it should be 1).

2.1.2. Overlap-Add M ethod

The Overlap-Add (OLA) method is a DFT-based block-by-block spectral analysis 

model, and has been widely applied in real-time applications. W ith this method, the input 

signal would be time-windowed and overlapped into segments with finite length. In order 

to remove the spectral aliases, a window function (e.g. the hanning or hamming window) 

is usually used to weight the time segments first. Then, the weighted time segments are 

DFT transformed to be spectral segments, based on which spectral modifications can be 

applied for noise suppression. In the synthesis stage, the noise-reduced spectral segments 

are transformed back to the corresponding noise-reduced time segments by the IDFT. 

Finally, we apply the overlap and add summation method to reconstruct the noise- 

reduced fullband signal from these noise-reduced time segments. In practice, the 

DFT/IDFT is replaced by more efficient FFT/IFFT algorithms.

Figure 2-3 illustrates the block diagram of the OLA method in real implementation. 

At the start of each processing epoch, a block of L new samples is shifted into an N- 

sample input buffer. The accumulated data are weighted by a length-N analysis window 

and then transformed via an N-point FFT. Then, spectral modifications are performed on 

the outputs of the FFT transform.

In the synthesis stage, the subband signals (outputs of the FFT) are transformed back 

to their time domain form via the IFFT, on which a synthesis-weighting window would 

be applied subsequently to cancel out the effect of the weighting window in the analysis
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stage. Finally, the result is overlapped and added in the N-sample accumulator, to 

produce L-sample noise-reduced time series in the output buffer.

In the OLA method, the block size L and transform size N  should be carefully chosen 

to maintain the following properties

• No time-domain aliasing at the subband level

• No frequency-domain aliasing at the subband level

• Unitary transfer function without intermediate processing

L newest Discard L old
samples of x(n) samples of x(n

L newest 
processed samples

FFT (N)

Output Buffer (N)

IFFT (N)

Input Buffer (N)

Analysis Window (N)

Synthesis Window (N)

Spectral Modification/ 
Noise Suppression

Figure 2-3: Signal flow of the overlap-add method
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2.2. Non-uniform Spectral Analysis

The perception of a sound by the listener is directly related to the physical 

characteristics of the sound wave. An important factor that contributes is that the ear is 

not equally sensitive to all frequencies in the audible range. A sound at one frequency 

may seem louder than the one of equal pressure at a different frequency. Normally, the 

human ear is more sensitive to low frequencies and vice versa, less sensitive to high 

frequencies. Therefore, humans are more likely to discriminate two adjacent frequencies 

in the low frequency region, rather than those in the high frequency region. As a result, 

non-uniform spectral analysis models (not limited to the speech processing applications) 

would be useful for analyzing the signals with inherently uneven spectral contents.

One method to simulate the non-uniform frequency response is to modify the 

structure of a classic polyphase filterbank. The classic polyphase filterbank is efficient 

implementation of the critical-sampled DFT filterbank, by introducing a delay chain and 

a prototype FIR in each channel. If we replace the delaying chain with all-pass filters, the 

frequency response of the polyphase filterbank would be warped, so as to emulate the 

frequency scale of the human ear. In [37], Gustafsson et al demonstrated the design of a 

modified polyphase filterbank and evaluated its performance for speech enhancement.

In addition to the modified polyphase filterbank approach, the wavelet transform and 

the auditory filterbank models have also been widely and successfully applied for some 

speech noise suppression applications [20] [22] [28].

2.2.1. W avelet Transform

The wavelet transform, as a powerful non-uniform spectral analysis tool, has 

established a reputation for improved time-frequency analysis: having high frequency- 

resolution and low time-resolution for the low frequency content of a signal, and vice 

versa. This is explained with the Continuous W avelet Transform (CWT) of the signal x(t) 

as below
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where \|/(0 is the prototype wavelet or the mother wavelet, which has to satisfy some 

constraints[16]. By shifting and scaling \|s{t) with the parameters ‘a’ and ‘b \  we obtain all

the basis functions = |^| U2v { ( t - b ) / a ) ) .  Large values of ‘a ’ cause to be a

dilated version of i//(t) with lower frequencies, while small values of ‘a’ make the

function y/ba(t) to be a contracted version of y/(t) with higher frequencies. As a

consequence, the resolution of the signal in the time-frequency plane is approximately 

rate-distributed.

(a)

Constant Bandwidth

6w0 7w0wO 2w0 3w0 4w0

Frequency

5w0

Constant Relative BandwidthAmplitude

8w04w0

Frequency

wO 2w0

Figure 2-4: Frequency resolution of the: (a) Fourier transform, and (b) wavelet 

transform.
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In the frequency domain, the wavelet transform can be regarded as a bank of 

constant-Q bandpass filters, of which the ratio of the bandwidth to the central frequency 

in each channel is a constant. Figure 2-4 illustrates the typical frequency resolution 

resulted from the (a) Fourier transform; and the (b) wavelet transform. In Figure 2-4(a), 

the bandwidth of the Fourier analysis remains constant at all the center frequencies, 

whereas in Figure 2-4(b), the bandwidth of the wavelet transform becomes wide with 

increasing of the center frequencies.

2.3. Auditory Filterbank

The significant advantage of a filterbank structure lies in the factor that it can flexibly 

decompose a signal into subband signals, of which the center frequencies and bandwidths 

can be arbitrarily defined. As explained in chapter 1.1, auditory filterbanks are used to 

model the basilar membrane motion of the human ear. The Gammatone Filterbank 

(GTFB) and the Gammachirp Filterbank (GCFB) are two of the well-known auditory 

filterbanks and have found their usage in some auditory-based speech processing 

applications. For the popularity of these auditory models, we will review the background 

of these two auditory models in this section.

2.3.1. Gammatone Filterbank

The gammatone function was first introduced by Johannesma [2] to characterize the 

physiological impulse response data gathered from the primary auditory fibers in the cat. 

The analog time domain form of the gammatone function is expressed as

g( t )  = a t n- 1 e ' 2MBUc)'cos(27rfct + <j>) ( t > 0 , N > l )  (2.3.1)

where ‘a’ is an arbitrary factor typically used to normalize the peak magnitude transfer to 

unity, n and B(fc) represents the order and bandwidth of this function respectively. fc 

denotes the center frequency and 0 is the initial phase of the tone. A typical waveform of
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the gammatone function is plotted in Figure 2-5, where it can be observed it consists of a 

tonal carrier with a gamma distributed envelop.

Based on the basic form of the gammatone function, de Boer developed a 

Gammatone Filter (GTF) to approximate the impulse response of the cat’s cochlea [3]. 

The original GTF is an analog filter and cannot be considered for practical auditory 

simulations (e.g. the cochlear implants). In practice, the GTF requires digital 

implementation and has been digitally realized with an FIR in [11][32], or an HR by 

Patterson et al  in [14],

The CB scale and the ERB scale are popular to model hum an’s frequency scale. The 

bandwidth of both of the two scales has been found proportional to their center 

frequencies above 500 Hz. In the low frequency region, the ERB bandwidth becomes 

narrow whereas the CB bandwidth remains nearly constant, with decreasing of the center 

frequencies. In general, the ERB bandwidth is narrower than the C B ’s in the whole 

spectral band, and related to a center frequency as

0 0.1 0.2 0.3 0.4 0.5

Figure 2-5: The waveform of the gammatone function

B ( f  ) = 1.019x24.7 1 + 4 . 3 7 - ^ -
^ 1000J

(2.3.2)
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The transfer function of the analog gammatone function can be derived by applying 

the Laplace transform to equation (2.3.1) directly, as was first done by Slaney [17]. The 

Laplace form of the transfer function in one channel can be expressed as

* W  = f l   Si’n * (2.3.3)i f ( 5 - P l ) ( v - P ; )

where s represents the Laplace operator, p; and pi* represent one complex conjugate pair 

of poles. Sj,n is the zero. Equation (2.3.3) states an N-th order gammatone function can be 

implemented as a cascade of N second-order IIRs. Each of these second-order IIRs 

contains a same complex conjugate pair of poles and one distinct zero.

In summary, the success and popularity of the GTF are results of the following 

reasons:

• It provides an appropriately shaped “pseudo-resonant” frequency transfer function 

with a simple parameterization, making it easy to reasonably well match measured 

responses.

• It has a very simple description in terms of its time-domain impulse response - a 

gamma-tone: a gamma distribution times a sinusoidal tone.

• It provides the possibility of an efficient digital or analog filter implementation.

The main drawback of the GTF is its symmetric-shaped frequency response, which is 

actually asymmetric-shaped. Therefore, the classic GTF is not adequate to describe the 

property of hum an’s frequency resolution. The all-pole GTF proposed in [24] removed 

the only zero from the classic pole-zero GTF function and approximated the shape of 

auditory filters more accurately.
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The Gammatone Filterbank (GTFB) was first proposed by Flanagan [1] to model the 

basilar membrane motion and subsequently used as an accurate alternative for auditory 

filtering. This parallel auditory filterbank outperforms the conventional transmission line 

auditory model in terms of computational simplicity and has its applications for various 

types of signal processing required to model human auditory filtering.

In [29], Kubin and Kleijn successfully applied the GTFB in speech coding, using 

gammatone IIRs in the analysis stage and gammatone FIRs in the synthesis stage. The 

coefficients of the synthesis FIR in one channel coincide to the time reversal of the 

truncated impulse response of the corresponding analysis HR. This filterbank is 

perceptually accurate with a compromise of about 20 ms delay in practical realization. In 

[36], Lin et al stated a perfect filterbank should be power-complementary as

where C is a positive constant, M is the total number of auditory channels, and Gm(.) for

The filterbank structure can be described with the type and location of the filters in 

the filterbank. For example, the filterbank with the FIR-IIR structure denotes FIRs and 

IIRs are used in the analysis and the synthesis stages of the filterbank respectively. 

Typical implementations of a filterbank, such as the GTFB, include the FIR-FIR, IIR-FIR 

and IIR-IIR structures [33].

• FIR-FIR Structure

All the analysis and synthesis filters in the filterbank are FIRs. This structure inherits 

the advantages of an FIR in signal processing. For example, it is easy to design, 

constantly stable and has linear-phase filtering property. However, it is difficult to be

M 2

(2.3.4)

1 < m <  M  is the composite transfer function of the analysis-synthesis filters in the m-th 

channel.
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applied for practical applications, due to some inherent drawbacks. First, the original 

gammatone function contains infinite time samples and requires the order of the FIRs in 

each channel sufficiently long for accurate approximation, especially for those centered at 

low frequencies. This greatly increases the computational complexity. In addition, the 

time delay of this filterbank structure is proportional to the order of the FIRs in both of 

the analysis and synthesis stages, which would be excessively long for most of the real­

time applications.

• IIR-FIR Structure

To resolve the deficiencies of the FIR-FIR structure, we replace the FIRs with IIRs in 

the analysis stage, and continue to use FIRs in the synthesis stage. The IIR-FIR structure 

has two main advantages. First, the overall computational load would be reduced to 

nearly half of the FIR-FIR structure’s, by using the computational advantageous IIRs in 

the analysis stage. Also, the time delay of the whole filterbank would be greatly reduced.

• IIR-IIR Structure

An IIR-IIR filterbank contains IIRs in both of the analysis and the synthesis stages. It 

can be implemented with a non-causal filtering structure, in which the synthesis HR in 

each channel is chosen exactly the same as the corresponding analysis HR. In the 

processing, the subband signals decomposed by the analysis filters should be time- 

reversed, before being passed to the synthesis filters. In the synthesis stage, the outputs of 

the synthesis filters should be time-reversed again to reconstruct the original fullband 

signal. Yet, this is a non-causal filtering approach and cannot be considered for real-time 

applications. A modification of this non-causal approach is to define a block window 

containing a number of frames. The block window should be long enough to let the 

synthesis IIRs forget the effect of the unknown initial conditions. Hence, time reversal 

can be applied in a block window, instead of the whole signal. W ith this structure, the 

computational load can be reduced greatly, but the time delay would be increased to the 

length of the block window.
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2.3.2. Gammachirp Filterbank

Through repeated experimental demonstrations, it was found that the skirt of an 

auditory filter broadens substantially with increasing of stimulus levels, and above its 

center frequency the skirt sharpens a little. The level dependence of an auditory filter has 

been initially modeled by a rounded-exponential (roex) function. But the roex auditory 

filter does not have a well-defined impulse response, which largely precludes its use in 

auditory filterbank.

In [23], Irino demonstrated the gammachirp function, analytic relative of the 

gammatone function, is a theoretically optimal auditory filter, in the sense that it leads to 

minimal uncertainty in a joint time-frequency representation of auditory signals. The 

analog form gammachirp function can be expressed as

g{t) = a t n-xe-2nB(f' )l cos(2^ .?  + c h u  + <z>) (2.3.5)

Based on equation (2.3.1), equation (2.3.5) introduces a new term clnf, where c is 

called the chirping factor and can be used to modify the asymmetric level of the 

frequency response of an auditory filter, and In t is the natural logarithm of time t.

Irino [23] also proposed a method to implement a Gammachirp Filter (GCF) by 

cascading a classic gammatone filter (GTF) with an Asymmetric Compensation Filter 

(ACF). The frequency response (shape) of the ACF is a monotonically decreasing 

function, of which the shape (level of asymmetry) is adjustable to the parameter c. Figure 

2-6 illustrates a GCF is equivalent to the cascade of a GTF and an ACF.

Gammatone
Filter
(GTF)

Asymmetric
Compensation

Filter
(ACF)

Gammachirp 
Filter 
(GCF)

Figure 2-6: Realization of the gammachirp filter
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In Figure 2-7, the solid curve represents the magnitude response of the GCF centered 

at 1 kHz with bandwidth 160 Hz, whereas the dashed curve is the magnitude response of 

the GTF at the same channel. It is shown the magnitude response of the GCF is 

asymmetric about its center frequency, the right side of which attenuates faster than its 

left side.

Gammachirp Filter (Center F requency9 1000 Hz)
0

— Gammachirp 
-  Gammatone

-20

-100
0 1 2 4 5 63 7 8

Frequency(kHz)

Figure 2-7: Frequency response of the GCF centered at 1 kHz.

Similar to the implementation of the GCF, a GCFB can be easily realized by 

cascading a GTFB with an Asymmetric Compensation Filterbank (ACFB). For example, 

an analysis GCFB can be constructed by cascading an analysis GTFB with an analysis 

ACFB. Since each ACF can be realized by an eighth-order minimum-phase HR, the 

inverse of the ACF is also stable and thus, it can be applied immediately before the 

synthesis GTFB. Figure 2-8 illustrates how a GCFB is realized by a GTFB and an ACFB.
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Analysis GCFB Synthesis GCFB

Synthesis
Gammatone

Filterbank

Analysis
Gammatone

Filterbank

Asymmetric
Compensation

Filterbank

Inverse
Asymmetric

Compensation
Filterbank

Figure 2-8: Realization of the GCFB
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3. Adaptive Subband W iener Filtering

3.1. Motivation

The classic single-channel speech enhancement systems discussed in chapter 1 are 

generally based on the short-time Fourier spectral analysis model. As we have discussed 

in chapter 1.1 and chapter 2, the short-time Fourier model as a uniform spectral analysis 

model may not be appropriate for speech processing applications. Using the human 

auditory properties, auditory filterbanks are presented to mimic the frequency response of 

the human ear. Generally, an auditory filterbank contains a set of auditory filters 

spanning the spectral band in the critical-band scale. In this thesis, an auditory filterbank 

has been chosen as the fundamental spectral analysis and synthesis model for the speech 

enhancement studies.

In the recent two decades, some of the auditory models have been comprehensively 

researched and successfully applied in some practical speech processing applications, e.g. 

the speech coding and speech recognition applications. Thus, a subband noise suppressor 

is highly needed to improve the robustness of these auditory-based applications. For 

example, it can be placed immediately after the application’s analysis filterbank, as a 

front-end step to reduce noise.

With an auditory filterbank structure (actually it can be generalized to any filterbank), 

a classic Subband W iener Filtering (SWF) equation in terms of the M MSE criterion is 

derived to reduce noise in each auditory channel. Based on the noise-reduced subband 

signals, consequently, the noise-reduced fullband speech can be recovered at the 

filterbank output. Similar to spectral subtraction, however, the mathematical form of the 

SWF is of subtractive-type and thus cannot be prevented from musical noises either. In 

[15], the performance of speech enhancement was significantly im proved by applying a 

frequency dependent oversubtraction parameter in each frequency bin. M otivated by this 

method, a bark-scale noise suppression rule, subjected to the variation of instantaneous
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signal-to-noise ratio in each auditory channel, is proposed and applied to the auditory 

filterbank for speech noise suppression.

To improve the performance of spectral subtraction, we require an accurate voice 

activity detector (VAD). Since the performance of the VAD is highly dependent on the 

noise conditions, the probability of misdetection could increase drastically and cause 

severe performance degrades in adverse or real-life noise environments. Therefore, a 

robust and accurate subband noise estimator is an important consideration in effectuating 

the proposed subband noise suppression scheme implemented in an auditory filterbank.

In summary, the main contributions of this thesis work include:

• The classic SW F equation is generalized to the general form by inserting the

oversubtraction and the noise floor parameters in each auditory channel. These 

parameters are adaptive to the variation of instantaneous a posteriori signal-to- 

noise ratio (SNRapost) in each auditory channel and in each time frame, through a 

piece-wise linear function. Thus, a large amount of noise would be subtracted 

under low SNRap0st conditions and vice versa, a small amount of noise would be 

subtracted under high SNRap0st conditions. This scheme results in the optimal 

tradeoff between noise reduction and speech distortion in each auditory channel.

• A novel subband noise estimator is proposed. It improves the robustness of 

subband noise estimate by tracking the minimum variance of the smoothed 

subband speech variances in a block window containing a number of frames. With 

this block window, the subband noise estimator is suitable for some slow-varying 

or color noise environments. It also avoids using an explicit voice activity detector.

• The critical-band gammatone filterbank (CGTFB) with the IIR-FIR structure has

been demonstrated effective and efficient for speech noise suppression. Compared 

to the conventional gammatone filterbank in the ERB scale, it requires fewer 

auditory channels so that the overall computational load can be reduced.
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In the following sections, the designing issues of the proposed CGTFB, the subband 

noise estimator and the subband noise suppression technique, termed as the Adaptive 

Subband W iener Filtering (ASWF), will be furnished.

3.2. Structure

The block diagram of the proposed technique, the ASW F based on the CGTFB, is 

illustrated in Figure 3-1. The proposed technique is based on the frame-by-frame manner, 

so that the input noisy speech should be divided into consecutive non-overlapping short 

frames or short segments first. For the statistical characteristics of the speech signals, the 

duration of each frame should be chosen within a short range, typically 20 to 40 ms. 

Then, the framed noisy speech would be decomposed by the analysis CGTFB into 

subband noisy speech signals, with which the subband noisy speech variance can be 

calculated in each channel. Subsequently, the subband noisy speech variance would be 

sent to the subband noise estimator to estimate the noise variance in each channel, of the 

current input frame. The estimated noise variance together with the subband noisy speech 

variance is then used to compute the SN R ap0st value in each channel, based on which the 

instantaneous oversubtraction and noise floor parameters are calculated. After that, a 

channel-specific scaling factor can be derived with these parameters available. In this 

technique, we suppress noise by multiplying the channel-specific scaling factor to the 

respective subband noisy speech signal in each channel. Finally, the noise-reduced 

fullband speech can be reconstructed by passing the noise-reduced subband speech 

signals through the synthesis CGTFB and summing up the corresponding filterbank 

outputs.
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3.3. CGTFB Design

For the similarity of the CGTFB and GTFB, the method of designing a GTFB can be 

applied to the design of a CGTFB directly. The only difference is that the CGTFB uses 

the critical-band flavored parameters for each auditory filter. Three different filterbank 

structures (FIR-FIR, HR-FIR and IIR-IIR) have been discussed in Chapter 2.3.1 and we 

come to the conclusion that the IIR-FIR structure is currently the best structure for 

practical applications.

In the next section, the design of the gammatone HR and FIR is illustrated. Also, the 

property of the auditory filterbank reconstruction is examined.

3.3.1. CGTFB Structure

Heuristically, the number of auditory channels in a CGTFB is determined by the 

number of critical bands in a certain frequency range. In other words, the composite 

frequency response of the CGTFB would cover the whole spectral range, typically from 0 

to half of the signal’s sampling frequency. In the CGTFB, the frequency response of the 

auditory filters coincides to the definition of critical bands, as shown in Table 1-1. For 

example, the center frequency and bandwidth of each auditory filter equal to the 

definition of the respective critical band. In this thesis, all the speech and noise signals 

are sampled at 16 kHz and therefore, 21 critical bands are required to cover the frequency 

range from 0 to 8 kHz.

In Figure 3-2, H |(z), Ha(z), ..., and FFKz) represent the 21 transfer functions of the 

filters in the analysis CGTFB. Gj(z), G2(z), ..., and G2i(z) represent the transfer functions 

of the filters in the synthesis CGTFB. The input noisy speech would be decomposed by 

the analysis CGTFB into 21 subband signals. The output of the i-th analysis filter Hj(z), 

denoted as y t (n) , represents the subband noisy speech signal in the i-th channel. Then,

subband noise suppression can be applied on these subband noisy signals ( y (.(n),  for
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1 < i < 21) to produce the subband noise-reduced speech signals, denoted as y t (n) in the 

i-th channel for 1 < i < 21. The noise-reduced fullband signal can be finally recovered by 

passing these noise-reduced subband speech signals through the synthesis filters and 

summing up the output signals. W ithout intermediate processing, i.e. passing the subband 

noisy speeches directly to the synthesis CGTFB, the original input speech should be 

precisely recovered at the filterbank output. A filterbank preserving this property is called 

a perceptual perfect filterbank.

Reconstructed
speech

Original
speech

- I_ l

Analysis Synthesis
CGTFB CGTFB

Figure 3-2: The CGTFB with the IIR-FIR structure

3.3.2. Gammatone HR Design

In the CGTFB with the IIR-FIR structure, the IIRs in the analysis stage, i.e. the 

critical-band gammatone IIRs, are derived from the gammatone function in the critical- 

band scale and can be designed with two steps. At first, the symbolic-form transfer 

function of the HR, with its center frequency and bandwidth set as mathematic symbols, 

is derived. Then, substituting these symbols with the channel specific parameters would 

produce the corresponding numerical-form transfer functions.
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Rewrite the time-domain analog form of the gammatone function as below

g( t )  = at n- le -2nB(-f''>t cos( 27tfct + <p) (3.3.1)

where n represents the order of the gammatone function. fc is the center frequency of the 

gammatone function. B(fc) determines the attenuation rate of the waveform, or the 

bandwidth of this function.

The Laplace transform of equation (3.3.1) is expressed as

where g(t) and G(s) represents the time-domain form and the 5-domain form of the 

gammatone function respectively, s is the Laplace operator.

The Laplace transform has the following two properties

Equations (3.3.3) and (3.3.4) state how the Laplace form of a high-order gammatone 

function can be derived from its basic term. In this example, equation (3.3.3) represents 

the basic term of the gammatone function, without the param eter f .  The order of the 

gammatone function is usually taken as 4 for accuracy and simplicity. Hence, substituting 

the order (n=4) into equation (3.3.4), we obtain

(3.3.2)

-B t  ,  \  o i Ue cos(tuf) —>----------------- -
(.s + B ) 2 + co2

(3.3.3)

t" le Bt cos(fttf) —> (-1) (3.3.4)
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-4 8 ( s  + ff)4 48(s + fl)4___________6

{(s + B f  + co2)* ((s + B )2 + co2J  ((s + B )2 + co2)2
(3.3.5a)

6(s2 + 2(B + co)s + B 2 + 2Bco-co2\ s 2 + 2 ( B - c o ) s  +  B 2 - 2 B a > - a ) 2)

(s2 + 2  Bs + B 2 + co2f
(3.3.5b)

where the symbols B and co denote the bandwidth and center frequency of this filter 

respectively. Equation (3.3.5b) represents the symbolic-form transfer function of the 

eighth-order analog recursive gammatone filter.

To convert the analog recursive filter of equation (3.3.5b) to the digital domain, we 

could consider a variety of analog-to-digital filter mapping methods, e.g. the invariant- 

impulse-response method, the bilinear transform or the matched-z transform. In this 

thesis, the invariant-impulse-response method is selected to design the gammatone IIRs.

In practice, an eighth-order HR can be decomposed into four cascaded second-order 

IIRs, of which the symbolic-form transfer functions are expressed in equations (3.3.6) to

(3.3.9), respectively,

. _  T z 2 -  T[e~BT cos(coT) + (V2 -  l)e~fir sin(ft/T)]z 

n ^ _  z 2 -  2e~BT cos(coT)z + e~2BT
(3.3.6)

T z2 -  T[e-BT cos {off)  -  (V2 + \)e~BT sin(ftjr)]z 
z 2 - 2 e ~ BT cos(coT)z + e -2BT

(3.3.7)

T z 2 -  T[e~BT cos (COT) + (V2 + l)e~sr sin (coT)]z
“ i 3 V - Z J — 2 ~  - BT , - 2  BTz 2 -  2e~BT cos(coT)z + e~2BT

(3.3.8)

Tz 2 -  T[e~BT cos (coT) -  (V2 -  l)g~fir sin(^T)]z 

'4 Z z 2 - 2 e BT cos(coT)z + e~2BT
(3.3.9)
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where Hn(z), Hi2(z), Hi3(z) and Hj4(z) represent the transfer functions of the four second- 

order IIRs in the i-th channel, respectively. T is the time division of the discrete digital 

signal (the inverse of the sampling rate).

Gain of the eighth-order HR in each channel can be normalized to 0 dB at its center 

frequency as below

where H ’ij(z) represents the normalized transfer function of Hy(z). The denominator of 

equation (3.3.10) denotes the magnitude response of the HR at the center frequency fc, i is 

the index of the auditory channels, j  represents the index of the four second-order IIRs in 

one channel.

After the gain normalization, the transfer function of the eighth-order HR in each 

channel can be expressed as

Equation (3.3.11) is the symbolic-form transfer function of the eighth-order 

gammatone HR in the i-th channel, of which its numerical form can be derived by 

substituting the critical-band parameters to the four normalized second-order IIRs.

in the following context. According to Table 1-1, the center frequency and bandwidth in 

this channel are 1 kHz and 160 Hz respectively. Substituting these parameters as well as 

the sampling frequency (fs = 16 kHz) into equations (3.3.6)-(3.3.9), and then normalizing 

the gain of the second-order IIRs at their center frequency (fc = 1 kHz) as in equation

f o r  j  = 1,2,3,4 (3.3.10)

Hi  (z) = H 'a (z ) ■ H 'n  (z) • H 'a (z) • H \ a (z) (3.3.11)

Designing of the critical-band gammatone HR in the 9th channel would be illustrated
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(3.3.10), the numerical-form transfer function of the four second-order IIRs can be 

derived, as in equations (3.3.12)-(3.3.15)

, 0.072058 -0 .073245*"1
H  n ( z ) = ----------------------- :---------------- r- (3.3.12)

0 .626-1 .0863z + 0.5521z

H ' l2(z) = ---------------- 04)90072---------------
-1 .9875  + 3.4487z - 1.7528*-2

* ' n W  = _ ^ « ® ± 2 ^ 1 5 L L _  (3.3.14)
-0 .7 1 3 2  + 1.2375z -0 .6 2 8 9 z

^  ^ ^ 205840 5̂1792^
-  0.6903 +1. 1979z~' -  0.6088z~2

From equation (3.3.11), an eighth-order HR is implemented by multiplying the four 

second-order IIRs. Figure 3-3 plots the magnitude response of the eighth-order HR in 

channel 9. From -50 dB to 0 dB, its magnitude response is nearly symmetric about the 

center frequency with gain normalized to 0 dB.

Figure 3-4 demonstrates the magnitude responses of the 21 critical-band gammatone 

IIRs. The x-axis represents the spectral band from 0 to 8 kHz, while the y-axis is the 

magnitude response of these filters measured in dB. It can be observed their bandwidth 

becomes wide gradually with increasing of the center frequencies. Therefore, the joint 

time-frequency relationship of this filterbank reflects the actual frequency resolution of 

human’s hearing more accurately.
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Figure 3-3: Frequency response of the gammatone IIR at channel 9
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Figure 3-4: Frequency response of the analysis CGTFB.
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As mentioned earlier, in practice, a second-order HR is regularly used as a basic 

filtering unit to implement a more complicated high-order IIRs. The general form of a 

second-order HR can be expressed as

« o (3. 3. 16)
I + b, z +b7z

where a0, ai, and a2 in the numerator represent the filter’s feed-forward coefficients, bi 

and b2 in the denominator are feedback coefficients. Figure 3-5(a) illustrates the 

canonical form of the second-order HR as in equation (3.3.16). Figure 3-5(b) illustrates 

the realization of an eighth-order HR by cascading four second-order IIRs.

(a)

OutputInput

Figure 3-5: (a) Canonical form of a second-order HR; (b) Implementation of an 

eighth-order HR with second-order IIRs.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(b)

Input Output

Gain

Figure 3-5 (continued)

3.3.3. Gammatone FIR Design

In the CGTFB with the IIR-FIR structure, FIRs are used in the synthesis stage. Since 

these FIRs preserve the shape of the gammatone function in the critical-band scale, they 

are called the critical-band gammatone FIRs. Generally, an FIR has only zeros and no 

poles and therefore, is constantly stable. The typical structure of an N -order FIR is plotted 

in Figure 3-6, where h(0), h ( l ) , . . ,,and h(N -l) represent the coefficients of the FIR.

h(0) OutputInput
i i

h(1)

h(2)
z -1

Figure 3-6: Structure of an FIR filter
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r i

*  Hj(z) *  G ,(z)

Figure 3-7: Critical-band gammatone filters in channel i

For perfect reconstruction, we model the coefficients of each FIR in the synthesis 

stage as the time-reversed impulse response of the corresponding HR in the analysis stage. 

With this approach, the synthesis FIRs designed in this thesis result in a perceptual 

perfect CGTFB. However, time reversal is a non-causal operation and cannot be realized 

by linear filtering structure. Therefore, time delay can be introduced to the FIR for causal 

filtering. An L-order FIR should delay at least L samples, as

where hi(n) and gi(n) represent the impulse response of the analysis filter and the 

synthesis filter in the i-th channel, respectively. L is the time delay and equals to the order 

of the FIR. M represents the number of auditory channels in the CGTFB.

The property of the filterbank reconstruction would be explained from one channel. 

As shown in Figure 3-7, the i-th channel includes an analysis HR, denoted as Hj(z), and 

an synthesis FIR, denoted as G;(z). The composite transfer function of this analysis- 

synthesis filter-pair is Qi(z), then

gj(n)  = h j i L - n )  f o r  \ < i < M (3.3.17)

Q f z )  = Hj f z )  ■ G f z ) (3.3.18)

Also, the z-form of (3.3.17) can be expressed in one channel as
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G,.(z) = z~LH i(z~i) (3.3.19)

Substituting equation (3.3.19) into (3.3.18), we obtain

e , ( z ) - / / ; ( z ) - z - ^ , . ( z - 1) (3.3.20)

Assuming the overall transfer function of the whole filterbank is Q(z), then

M M  . M . ,

Q(z) = Y,QiW=Y,HiW'z~LH\z~)=z~LY,Hfc>H\z~) (3 -3 -2 1 )
i=\ i=1 i=l

The frequency response of Q(z) can be obtained by substituting z=eiwT into equation 

(3.3.21), thus

M 2
Q (eiair) = e -J“LT'£ i \Hi(eJaa')\ (3.3.22)

/=1

M 2
In equation (3.3.22), if the term ^ \Hi (eJa,r) can be made constant, the transfer

/-i

function of the whole filterbank becomes unitary. It means the output signal would be a 

scaled and time delayed version of its original, if there is no intermediate processing. To

M  2

compensate the reconstruction errors, the term ^T |H i(ejoir) can be eliminated by
/=i

applying an equalization filter on the input signal [29]. In practice, the equalization filter 

might not be necessary for speech processing applications, if the reconstruction errors are 

undetectable or inaudible [27]. Thus, a perceptual perfect filterbank is appropriate for our 

research in this thesis. W ithout further adjustment or equalization of the synthesis filters, 

the CGTFB containing 21 auditory channels (in the spectral range from 0 to 8 kHz), 

introduces a 2-3 dB spectral ripple, which is almost inaudible and can be tolerated.
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An analysis HR contains infinite time samples, so it is impractical for an FIR to 

model all the infinite time samples. Hence, the impulse response of the analysis HR 

should be truncated into a finite-length time sequence, to relax the design of the 

corresponding synthesis FIR. The level of truncation or the order of the FIRs is usually 

determined by the actual need of the applications. Thus, the FIR coefficients can be set to 

be the time reversal of the truncated impulse response of the corresponding analysis HR. 

It can be observed that the impulse response of the analysis IIRs centered at high 

frequencies attenuates to zero faster, so that fewer FIR coefficients are needed to 

approximate the non-zero time samples. On the contrary, a few more FIR coefficients are 

required for the IIRs centered at low frequencies. In this thesis, the property of the 

filterbank reconstruction was tested by choosing different orders of the synthesis FIRs 

(32, 64 and 128 respectively). It is demonstrated the filterbank reconstruction is getting 

better with increasing of the FIR order. With the order of the FIRs chosen as 128 

(sampling frequency is 16 kHz), the CGTFB would introduce about 8 ms time delay.

3.3.4, CGTFB Reconstruction

From equation (3.3.21), we derived a perfect reconstructed CGTFB, by setting the 

coefficients of the synthesis FIRs as the time reversal of the truncated impulse response 

of the analysis IIRs. W ith this approach, the accuracy of the CGTFB reconstruction is 

highly dependent on the order of the synthesis FIRs. It has been stated earlier that the 

reconstruction error of the whole filterbank is subjected to the order of the synthesis FIRs. 

In this thesis, the FIR order is chosen as 128 in all the simulation experiments.

The property of the CGTFB reconstruction is first tested by passing a Dirac function 

through the CGTFB without any intermediate processing. The Dirac function containing 

1000 samples (with 1 at the first time stamp and Os afterwards) can be used to generate 

the impulse response of a system, e.g. a filterbank. Based on the impulse response, the 

overall frequency response of the filterbank can be examined by spectral analysis. Since 

the human ear is insensitive to the phase spectrum of a speech, only the magnitude 

portion of a speech would be plotted and analyzed in the following context. The
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magnitude response of the CGTFB is plotted in Figure 3-8. The solid straight line 

represents the ideal magnitude response of the filterbank with a unitary transfer function, 

whereas the rippled curve represents the actual magnitude response of the CGTFB. In the 

frequency region from 0 to 7 kHz, the spectral ripple is from -1 to 1 dB. But in the high 

frequency region, e.g. from 7 kHz to 8 kHz, the actual magnitude response deviates 

significantly from the ideal one. This is due to the overall frequency response of the 

CGTFB receives small degree of composition at that spectral region.

A perceptual perfect filterbank means the recovered speech, passed through the 

filterbank without any intermediate modification, would sound similar or virtually same 

as its original. This property was tested on the CGTFB with a typical speech sentence 

drawn from the TIM IT database. In Figure 3-9, the solid curve represents the Power 

Spectral Density (PSD) of the original speech, whereas the dashed represents that of the 

reconstructed. It is shown the PSD curves of the original and the recovered speech 

signals are nearly same in most of the audible frequency regions (e.g. from 50 Hz to 7 

kHz). However, some spectral distortions still can be found in the spectral regions from 7 

kHz to 8 kHz and from 0 to 50 Hz. Generally, hum an’s hearing is insensitive to these 

spectral regions and thus, these spectral distortions are actually inaudible. Therefore, the 

CGTFB can be regarded as a perceptual perfect filterbank.
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Figure 3-9: PSD of the original and the reconstructed speech signals

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.4. Subband Noise Estimator

In a single-channel speech enhancement system, the performance of speech noise 

suppression is highly dependent on the accuracy of the noise estimator. A common 

approach in spectral subtraction is to employ a voice activity detector or a VAD to 

distinguish the speech frames from the silent frames, so that noise estimate is only 

performed in the silent frames, but neglected in the speech frames.

In [34], M artin proposed an alternative approach for noise estimate based on the 

minimum statistics of noise features, in which the noise is estimated as the minimal 

values of the smoothed power estimate of the noisy speech, multiplied by a factor that 

compensates the bias. The main drawbacks of this method include the slow update rate of 

the noise estimate in case of a sudden rise in the noise energy level and the tendency to 

cancel the signal.

From M artin’s observation in [34], the power of a noisy speech frequently decays to 

the power level of the disturbing noise, due to the statistical independence of the speech 

and the noise. Thus, the noise variance can be estimated by tracking the minimum 

variance of the noisy speech in a block window containing a number of frames. This 

principle can be applied to the subband noise estimators in an auditory filterbank as well, 

so that no explicit VAD is required. As illustrated in Figure 3-10, the detailed procedures 

of the subband noise estimator are explained in the following steps:
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Figure 3-10: Diagram of the subband noise estimator

1) The input noisy speech variance is smoothed by a single-pole exponential filter

as

<*l (p)=*y<y-y, ( P - 1)+(1 K  ip)  (3.4.1)

where

^ l ( p ) = ^ T , y f ^ p N  + k ) <3 A 2 )N k=0

represents the i-th channel subband noisy speech variance at the current frame p. 

N is the frame size and taken as 256 in this thesis. (p) is the smoothed
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subband noisy speech variance at frame p. is the time constant of the noisy

speech variance and set to be 0.7 in this thesis.

2) The smoothed noisy speech variance 5? (p) would be compared to the estimated 

noise variance of last frame ip-1), 1). in ea°h channel. If o^Xp) is

smaller, it would be regarded as the instantaneous noise variance in frame p, 

denoted as new(p ) . Then, the noise estimate jum ps to step 4.

If d? (p) is larger, the minimum variance cpv mm(p) would be searched in current 

frame p  and its previous (K -l) frames, assuming the window size is K.

cr, mJ p )  = mir^S?(p),^-2( p -1 ) ,... ,a \ (p - K + 1)) (3.4.3)

3) Once c r , nin(p) is found, it would be further compared to 2 times of the estimated 

noise variance of the p-th  frame. If er rnin(p) is smaller, it can be regarded as the 

instantaneous noise variance <72 „„Ap) . Otherwise, it will be treated as theWj  , / t e W  '  i  '  1

variance from  a speech frame. Hence, the estimated noise variance in the (p-1 )-th 

frame 1) is used as the instantaneous noise variancecr2 ^ ( p )  of the

current frame. It can be explained in the following form:

If (3.4.4)

then ^,,„™(P) = er2,min(p) (3.4.5)

otherwise o j mw{p) = Jinal(p -1 )  (3.4.6)

4) After the instantaneous subband noise variance of the current frame p  is obtained,

the final noise variance would be smoothed by a single-pole exponential filter as
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<*wl , final i~ P ) ~  A t @ Wj,final ( P  1 )  * K 1  A v  )^"k( ,new ( P ) (3.4.7)

where the time constant of the noise Aw corresponds to the time interval required

to smooth the noise variance. Since the noise is assumed stationary, the time 

constant should be large and is chosen as 0.98 in this thesis.

(a )
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Figure 3-11: Performance of the subband noise estimator at (a) channel 9; and (b)

channel 18.
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Figure 3-11 (continued)

The performance of the proposed subband noise estimator was tested with a speech 

sentence corrupted by the white noise at 5 dB initial SNR. The true subband noise 

variance is also computed on the subband signals, while only the noise passes through the 

CGTFB. As shown in Figure 3-11 (a), the dashed curve representing the estimated 

subband noise variances always goes through the rippled curve, which represents the 

actual subband noise variances in the 9-th channel. Figure 3 -11(b) plots the noise 

estimate performance in channel 18. Once again, the curve of the estimated noise 

variance goes through the ideal one. Similar results are also observed in other auditory 

channels and in other speech and noise combinations. Hence, this subband noise 

estimator is reliable and can be used for the subband noise suppression in the auditory 

filterbank.
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3.5. Subband Noise Suppression

The essential technique for the subband noise suppression in this thesis is based on 

the wiener filtering technique. In this section, the derivation of the classic subband wiener 

filter or the SW F is explained first. Then, the designing issues of the adaptive subband 

wiener filter or the ASW F are presented.

3.5.1. SWF

Assume a noisy speech signal y(n) is composed of a clean speech s(n) and a 

background noise w(n) as below

where the clean speech s(n) is assumed uncorrelated to the noise w(n). W hen the noisy 

speech y(n) is sent to the filterbank, it would be decomposed by the analysis filters into 

subband noisy speech signals, which can be expressed in one channel as

where y, (n) denotes the subband noisy speech in channel i. The symbol represents

the convolution operator. yi(n)= s(n)*hj(n) represents the ideal subband speech in channel 

z, when the input is the clean speech s(n) only. Similarly, Wi(n) = w(n)*hi(rz) is the true 

subband noise in channel z, when the input is the noise w(n) only. Since the IIRs (hi(n), i 

= 1,2, ..., 21) in the analysis filterbank are linear, the subband signals yi(n) and W j(rc )  can 

be assumed statistically independent in each channel. Hence, speech enhancement can be 

realized through the noise suppression in each channel of the auditory filterbank.

The SW F can be derived according to the M MSE criterion between the ideal subband 

speech signal y\{n) and the noise-reduced subband speech signal y, (n ) > in each channel.

y («) = s (n) + w(n) (3.5.1)

y t (n) = y(n)* hj(w) = y\(n) + w;(n) (3.5.2)
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The cost function of this criterion is defined as

E;,= £ [ ( £ . ( n ) - y i (n))2] for i = 0, 1, 2, M -l (3.5.3)

where M represents the total number of auditory channels in the filterbank, i is the index 

of the auditory channel. E[.] denotes the expectation operator, y, in)  and y,(n) represent 

the noise-reduced and the true subband speech signals in the i-th channel respectively.

In each channel, y^ri)  is approximated by multiplying a channel-specific scaling 

factor k| to y j (n) as

Since y;(n) is assumed uncorrelated to Wj(n) for 0 < i < M  - 1  , the expectation of the 

cross product term E [yi(n )w j(n )] in equation (3.5.5) is approaching zero and can be 

neglected. Thus, equation (3.5.5) is simplified to be

The SW F can be derived by setting the derivation of equation (3.5.6) to zero as

y Xn )  = k . - y A n ) (3.5.4)

Substituting equation (3.5.4) into (3.5.3), we obtain

£i -  E[(ki y t (n) -  y t (n))2 ]

-  E ^k i  - l ) 2y,2(n)] + 2 ^ ( ^  - l ) £ [ y > ) w > ) ] + £ [ * > ? ( « ) ]  (3.5.5)

£ i = E [ ( k l - l ) 2y f ( n ) ]  + E [ k f w f ( n ) \ (3.5.6)

(3.5.7)
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Then, the channel-specific scaling factor (k;, for 0 < i < M  - 1 )  can be derived to be

( j y  Gy
k> =  2 =  ~ 3 r  (3.5.8)

a y,

where o  \ is the variance of the subband speech variance, is the subband noise 

variance, and a 1- is the subband noisy speech variance, all in the i-th channel.

As we know, speech signals are globally non-stationary, but in a short duration, they 

can be assumed stationary or quasi-stationary. Therefore, the short-time frame-based 

signal processing methodology should be utilized in the CGTFB. In practice, however, 

neither the subband speech variance nor the subband noise variance is known during the 

signal processing. Hence, the instantaneous subband speech variance and subband noise 

variance should be estimated in each channel and in each time frame.

Denoting the estimate of the i-th channel subband noise variance as , the 

corresponding subband speech variance can be approximated by

Substituting equation (3.5.9) to (3.5.8), the channel-specific scaling factor kj can be 

derived to be

k, = (3.5.10)

Since the subband noisy speech variance and the subband noise variance in each 

channel are calculated in a frame-by-frame manner, estimation errors are unavoidable. 

For example, the estimated subband noise variance could be occasionally larger than the
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subband noisy speech variance, causing negative estimate of the subband speech variance. 

As in spectral subtraction, a half-wave rectifier can be used to prevent these errors by 

setting the negative scaling factors to be zero.

In addition, a small amount of the background noise can be added back into the 

processed speech, to mask the residue noises rested in the processed speech. In [35], 1% 

absolute of the calculated scaling factor is used as the spectral floor. Thus, the scaling 

factor kj can be written as

Equation (3.5.11) is also used as the classic SW F method in the simulation 

experiments in chapter 4. Its noise suppression performance would be compared with 

those of the proposed ASW F and the class MSS methods.

3.5.2. ASW F

The classic SW F in equation (3.5.10) can be generalized to its general form by 

inserting an oversubtraction factor cq and a noise floor factor (3; in each channel, as 

following

k (3.5.11)

Otherwise

(3.5.12)

Otherwise
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where 0Ci is the oversubtraction factor and (3i is the noise floor in the i-th channel. Both of 

the two factors are functions of the segmental SNRapost, and can be denoted as:

a M  = fA sN R ,„ „ (p .i ) )

P M  =

(3.5.13)

(3.5.14)

where SNRap0st(p,i) represents the instantaneous a posteriori signal-to-noise ratio in the 

p-th frame and i-th channel.

The nonlinear oversubtraction function fa( ) is used to adapt the oversubtraction 

factor 0Cj, in terms of instantaneous SNRapost levels in each channel. Through extensive 

experiments and the consideration of computational simplicity, the piece-wise linear 

function expressed in equation (3.5.15) is proposed

5 SNRapo,  < - 5 dB

5
1

apost - 5 d B < S N R apost< \5dB  

SNRnpost >15 dB

(3.5.15)

A Oversubtraction OC 
5

4

-10 -5 0 5 10 15 20
Segmental a posteriori SNR (dB)

Figure 3-13: The oversubtraction function fa(-)
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The rationale of the oversubtraction function fa(0 resides in the following reasons. If 

the estimated segmental SNRapost level is high, e.g. when it is higher than 15 dB, it is 

highly probable the noise power be relatively low, compared to the speech power in that 

auditory channel. Due to the human auditory masking phenomenon, the residue noises 

remained in the processed speech would be masked by the strong speech signal and thus 

becomes inaudible. Hence, a small oversubtraction factor a  can be applied to equation

(3.5.12) to minimize speech distortion in the i-th channel. On the other hand, in adverse 

environments, e.g. when the estimated segmental SNRapost is lower than -5  dB, a big 

amount of background noises could be resided in the noisy speech, so that a large 

oversubtraction factor a  is required to maximize the background noise reduction in the i- 

th channel.

In [7], the noise floor parameter (3 is instrumental to improve the speech naturalness. 

For the computational simplicity, the noise floor function fp ( ) is also chosen as a piece- 

wise linear function, as

In equation (3.5.16), if the segmental SNRapost is higher than 15 dB, the speech power 

is strong enough to mask the residue noises remained in the processed speech and thus, 

no background noise is needed to fill back into the processed speech. However, in 

adverse noise conditions, e.g. when the segmental SNRapost is lower than -5 dB, a big 

amount of residue noises could be rested in the processed speech. Then, adding back a 

big amount of background noise into the processed speech, e.g. the noise floor P chosen 

as 0.03, can maximally mask the residue noises. In normal noise conditions, e.g. when the 

segmental SNRapost is within the range of -5 dB to 15 dB, the noise floor P is inversely 

proportional to the segmental SNRapost level, so that the instantaneous noise floor P would 

vary with the changing noise conditions in each auditory channel and in each time frame.

/3 = ^ 0 .0 2 2 5 -

0.03

0

SNRapasl < - 5 dB 

5 d B < S N R aposl< l5 d B  

SNRapml > 15 dB

(3.5.16)
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4. Simulation and Comparison

This chapter evaluates and compares the speech noise suppression performance of the 

ASWF, SWF and MSS algorithms. The SWF and ASW F algorithms are based on the 

same CGTFB (with the HR-FIR structure) and the same subband noise estimator, but 

different subband noise suppression schemes. Comparisons between these two methods 

have demonstrated the adaptive approach is more efficient for speech noise suppression 

than the non-adaptive approach. Due to the popularity of spectral subtraction in this field, 

the magnitude spectral subtraction or the MSS is also included in all the simulation tests.

4.1. Speech Quality Evaluation Methods

Evaluating the perceptual quality of a speech is nontrivial and has been a challenging 

research subject in the speech processing area. In general, speech evaluation methods can 

be broadly divided into the objective and the subjective measures.

4.1.1. Objective M easure

Objective measures are based on some mathematical models to quantify the 

processed speech signal. Generally, a numerical distance measure would be computed to 

indicate how differently the processed speech is to its original, and thus an objective 

decision for the quality of the processed speech is obtained. Recently, the human auditory 

properties have been used to improve the correlation degree between the objective and 

the subjective results for speech quality evaluation. In addition, the subjective measures 

are generally expensive and time-consuming, so that it is desirable of finding some 

objective measures instead, for accurate prediction of the subjective results.

In this thesis, the following objective measures are employed to evaluate the speech 

quality

• Global signal-to-noise ratio (SNR)
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• Segmental Noise Reduction in all the time frames (SegNR)

• Segmental Noise Reduction in speech frames (SegNRspeech)

• Segmental Noise Reduction in silent frames (SegNRsiient)

4.1.1.1. SNR

The global SNR measure is computed as ratio of the clean speech power to the noise 

power, evaluated globally to all the time samples of the signals. The input SNR (noted as 

SNRinput) represents the SNR level of the input noisy speech, whereas the output SNR 

(noted as SNR0Utput) represents the SNR level of the processed output speech. The SNR is 

usually measured in decibels (dB) and denoted as

where s(n) is the clean speech, w(n) is the additive noise. s(n ) is the noise-reduced 

speech. N represents the total number of time samples in the speech or the noise.

The global SNR measure is commonly used in the signal processing area to evaluate 

the quality of a signal or the effectiveness of an algorithm. However, it presents low 

correlation degree to the subjective results and therefore, is not regarded as a good 

objective measure for speech quality evaluation [13].

SNRinpul= l (H o g 10 (4.1.1)

SNRoulpu, = 1 0 -logoutput (4.1.2)

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.1.1.2. SegNR/ SegNRspeech/ SegNRsiie„t

In [13], it is also stated that, if the same SNR measurement is taken over short 

segments of the speech waveform and averaged over all segments of that waveform, the 

result, called the segmental SNR, in a wider range of cases, is an extremely good 

estimator of speech quality. Similar to the segmental SNR measure, the segmental Noise 

Reduction (SegNR) calculates the ratio of the original noise power (of the unprocessed 

speech) to the residue noise power (of the processed speech), and averages these 

calculated ratios over all segments of the waveform. It can be denoted as

SegM? = | f ; i O -
m=0

where L represents the number of frames in the speech waveform. N is the number of 

time samples in each frame. w(n) represents the original noise in the unprocessed speech. 

s(n) and s(n ) denote the clean speech and the processed speech respectively.

log
^ [ w ( n  + miV)]2

n =0
10 , N - \

— X! [s (n + m^  -  ^ n + mN )YN  n -Q

(4.1.3)

The SegNR averaged over all the speech and silent frames may not be sufficient to 

assess the perceptual quality of a speech. Generally, the SegNR evaluated in the silent 

frames is relatively high and would bias the overall SegNR value. The SegNR evaluated 

in the speech frames directly indicates the degree of noise reduction on the speech signals. 

Therefore, it would be beneficial to distinguish the SegNR in the speech frames or the 

silent frames, denoted as the S egN R speech and the S egN R Sijent respectively, as

SegNR,ipeec.h

1 L S - 1

LS  m=o
log,

J - g k ' i  +  L.AO]2

10 , N-1
- £ k n  +  L J V ) - 5 ( n  + LmAO]2

(4.1.4)
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i  L N -l

SegNR,„„ = — X 10
Liy m -0

1 ° § 1 0  J  N -\

^ ■ l i k  n + LmN ) f
n = 0

^Zk-i+^vi-^+ijv)]2
N  n =0

(4.1.5)

where w (n), s(n) and s(n) denote the original background noise, the clean speech and the 

processed speech, respectively. LS and LN denote the number of the speech frames and 

the silent frames respectively. Lm represents the index of the speech frames in (4.1.4), or 

the index of the silent frames in (4.1.5).

4.1.2. Subjective M easure

Subjective measures are based on the subjective ratings by human listeners to 

evaluate the perceptual quality of a speech. They play an important role in the 

development of objective speech quality measures, because the performance of the 

objective measures is usually evaluated by their abilities of predicting the subjective 

measurement results. Human listeners listen to the speech and rate the speech quality 

according to the pre-defined categories in a subjective test. Although the procedure is 

simple, unfortunately, it is expensive and time-consuming. A frequently used subjective 

speech quality measure called the Mean Opinion Score (MOS) is used to assess the 

performance of telecommunication systems. However, the MOS is rigidly specified by 

the ITU-T recommendations P .80 [18] and P.830 [19] and therefore, may not be suitable 

for the subjective tests in this thesis research. Alternatively, the Informal Listening Test 

(ILT) with relaxed requirements for the subjective test is introduced. As in Table 4-1, the 

ILT score is defined similarly to the MOS definition.

Table 4-1: The Informal Listening Test (ILT) score

Grade Speech Quality

1 Bad

2 Poor

3 Fair
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4 Good

5 Excellent

This score in Table 4-1 represents the listener’s overall appreciation of a speech 

containing residual noises and spectral distortion. In this thesis, this score was evaluated 

by 5 listeners. Besides the five basic grades in Table 4-1, the listeners were also allowed 

to score their overall appreciation of the speech signals with an intermediate grade. For 

example, if their appreciation of a speech is ‘fairly good’, then the score 3.5 could be 

graded for this speech. The processed speech signals have been stored in the computer 

twice at a random order, and earphones have been used during the experiments. The final 

ILT score is the mean ILT score of a speech evaluated by all the five listeners.

4.2. Experiment Setup

In this section, we introduce the speech and noise signals chosen for the simulation 

tests, and the test scenarios used in the experiments.

4.2.1. Test Data

4.2.1.1. Speech

For the comprehensive evaluation of the speech enhancement algorithms, ideally, we 

need a large quantity of speech signals in the simulation tests. In this thesis, 10 speech 

sentences, spoke by 5 males and 5 females, are chosen from the TIMET database in all the 

experiments.

The TIM IT database is a well-known speech database for the assessment of speech- 

related applications, which was produced jointly by MIT, SRI International and Texas 

Instruments. Its speech sentences were recorded under very favorable acoustic conditions, 

and therefore are virtually free of distortion and background noises. They are quantized to 

16 bits and stored in digital form at the sampling rate of 16 kHz. Details of the 10 speech

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



sentences are described in Table 4-2.

Table 4-2: Description of the clean speech sentences from TIM IT

No Name Sex Sentence Samples

1 sa l. wav Male
She had your dark suit in greasy wash 

water all year
68916

2 sa2.wav Female
Don't ask me to carry an oily rag like 

that
58061

3 si943.wav Male
Production may fall far below 

expectations
60109

4 sx304.wav Female
Cheap stockings run the first time 

they're worn.
54989

5 sx34.wav Male Don't do Charlie's dirty dishes. 48948

6 sx394.wav Male
Calcium makes bones and teeth 

strong.
50688

7 sxl39.w av Male
The bungalow was pleasantly situated 

near the shore.
37786

8 sx49.wav Male
At twilight on the twelfth day we'll 

have Chablis.
35226

9 sil550.w av Female Maybe today'll be a good-news day 54887

10 si920.wav Female

Too many new things are happening 

for it to be a complete erotic 

fulfillment.

82023

The waveform of the speech sentence s i ,  “She had your dark suit in greasy wash 

water all year”, is plotted in Figure 4 -1(a). It can be observed it consists of the speech 

frames (speech bursts) and the silent frames (speech pauses). Figure 4 -1(b) plots the 

spectrogram of this speech. The spectrogram is an excellent 2-dimensional time- 

frequency analysis tool and especially suitable for analyzing non-stationary signals, e.g. 

the speech signals. The horizontal axis of the spectrogram represents the time instances,
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while the vertical axis denotes the spectral range, typically from 0 to half of the sampling 

frequency of the speech. In spectrogram, the energy or strength of the spectral contents at 

certain time and frequency region is represented by gray shades at that location. In other 

words, light shades indicate low spectral magnitude values, whereas dark shades denote 

large spectral magnitude values. Thus, the joint time-frequency characteristics of a 

speech can be easily examined by visual inspection. As the spectrogram of a typical clean 

speech in this figure, a large portion of the spectrogram is practically blank (i.e., un­

shaded) and the speech energy is concentrated in a few isolated regions. The voiced 

portion of a speech is characterized by dark parallel “strips” , whereas the unvoiced 

portion is characterized by gray patches. The PSD of the speech s i  is plotted in Figure 4- 

1(c). It can be observed it has large power spectral distribution in the frequency range 

from 500 Hz to 1500 Hz.
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Figure 4-1: The (a) waveform, (b) spectrogram, and (c) PSD of the speech s i.
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Figure 4-1 (continued)

4.2.1.2.Noise

Two kinds of noises, the computer-generated artificial noises and the real-life noises, 

are used in the experiments to simulate a variety of noise environments.

Artificial noises can be generated on a computer directly and have been frequently 

used in signal processing applications. The most popular artificial noises include the 

White Gaussian Noise (WGN) and the Colored Gaussian Noise (CGN). In this thesis, the 

WGN is generated by the randn(.) function in MATLAB directly, while the CGN is 

simulated by passing the W GN through a lowpass filter. This lowpass filter is chosen as a 

sixth-order butterworth lowpass filter, with the cutoff frequency normalized at 0.5.

Real-life noises are actual noises recorded from some noise spots. In this thesis, the 

F16 cockpit noise and the multi-talker babble noise drawn from the NOISEX-92 database 

are chosen as the real-life noises in the experiments. The F16 cockpit noise was recorded 

at the co-pilot's seat in a two-seat F I 6, traveling at a speed of 500 knots and at an altitude 

of 300-600 feet, while the source of the babble noise was 100 people speaking at a 

canteen. The original noises sampled at 19.98 kHz have been down-sampled to 16 kHz in 

this thesis.
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Figure 4-2(a) plots the PSD of the WGN with 65000 time samples at the sampling 

frequency of 16 kHz. It can be observed this PSD curve is virtually flat in the whole 

spectral band from 0 to 8 kHz, reflecting the true characteristics of the ideal Gaussian 

white noise. The PSD of the CGN is plotted in Figure 4-2(b), where it is nearly flat at -36 

dB in the lower spectral band from 0 to 4 kHz, but attenuates quickly to -8 0  dB in the 

higher spectral band from 6 kHz to 8 kHz. Figure 4-2(c) and 4-2(d) illustrate the PSD of 

the F I6 and the babble noises respectively.
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Figure 4-2: The PSD of the (a) WGN, (b) CGN, (c) F16 cockpit and (d) Babble noises
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Figure 4-2 (continued)

4.2.1.3.Noisy Speech

A noisy speech is generated by adding a noise w (n) to a clean speech s(n) directly. To 

simulate the noisy speech at a certain level of SNR, we could pre-multiply the additive 

noise w(n) by a scaling factor X, and then add it to the clean speech. Denote the noisy 

speech as y(n), then

y(n)  = s(n) + A ■ w{n) (4.2.1)

where s(n) and w(n) represent the clean speech and the background noise. X is the scaling
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factor and can be computed as

input

A = 10 10

I n=0

where SNRjnput measured in decibel (dB) is the input SNR level of the input noisy speech. 

N is the number of time samples in the speech or noise signals.

In this thesis, we use the SNRinput levels from -5  dB to 15 dB at the increment of 5 dB 

to simulate a variety of initial noise conditions. For example, the SNRinput level at -5  dB 

or 0 dB represents adverse noise conditions, 5 dB denotes moderate noise conditions, 

while 10 dB or 15 dB represents low noise conditions.

(a )

Noisy Speech (SNR=5 dB)

Time

Figure 4-3: The (a) waveform and (b) spectrogram of the speech (WGN, 5dB SNRinput)
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Figure 4-3 (continued)

The waveform of the noisy speech generated by corrupting the clean speech s i by the 

W G N  at 5 dB SN R input is plotted in Figure 4-3(a). It can be observed the waveform 

becomes rough in contrast to that of the original speech, in which the silent frames have 

been padded with the background noise. Figure 4-3(b) illustrates the spectrogram of the 

clean speech corrupted by 5 dB W G N  noise. The overall gray shade of this noisy speech 

spectrogram becomes darker than its original’s, for the extra energies received from the 

additive background noise.

4.2.2. Test Scenarios

In this thesis, the CGTFB with the IIR-FIR structure is the fundamental spectral 

analysis and synthesis model for the subsequent noise suppression for speech 

enhancement. Each auditory filter in the CGTFB coincides to the definition of a critical 

band, as shown in Table 1-1. For the perfect reconstruction, the CGTFB requires at least 

21 auditory channels to span the whole spectral band from 0 to half of the sampling 

frequency (from 0 to 8 kHz). In addition, as explained in Chapter 3, we choose the 

eighth-order gammatone IIRs in the analysis stage and 128-order gammatone FIRs in the 

synthesis stage of the CGTFB.

The magnitude spectral subtraction or the MSS suppresses the additive background 

noise through modifying the magnitude portion of the noisy speech. In this thesis, the
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MSS uses 256-point frame length and 50% overlapping rate and its results are compared 

with those from the SW F and ASW F algorithms. As a frequency-domain approach, the 

MSS can not utilize the subband noise estimators as in the SW F and ASW F algorithms 

directly. Hence, the magnitude spectrum of the noise, averaged over the first five frames 

of the noisy speech as in Boll’s method, has been adopted to estimate the magnitude 

spectrum of the background noise in the MSS.

In terms of the noise types, two test scenarios have been formed in the simulation 

tests in this thesis

• Speech corrupted by the artificial noises

• Speech corrupted by the real-life noises

4.3. Experiment Results

Substantial experiments have been performed using the ASW F, SW F and MSS 

algorithms, under various noise conditions, i.e. the artificial noise and the real-life noise 

conditions. In each test scenario, the spectrogram of the processed speech at certain 

SNRinpUt level is visually inspected first. Then, the objective measurement results of the 

ASWF, MSS and SW F algorithms are discussed respectively. Finally, the subjective 

measurement results of the processed speeches at selected SN R input levels (SN R input = 5 

dB) are presented.

4.3.1. Results with Artificial Noises

In this category, the speech noise suppression performance, of the ASW F, SW F and 

MSS algorithms, is evaluated upon the 10 TIMIT speech sentences, corrupted by the 

computer-generated artificial noises at a variety of initial signal-to-noise levels. With the 

full combination of the 10 speech sentences, 2 noises and 5 SNRjnput levels, 100 

simulation test cases can be formed for each algorithm. Since it is unnecessary to put all 

the experimental details in the following context, only the results with the W GN at 5 dB
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initial SNRinput are analyzed.

Figure 4-4 illustrates the spectrograms of the clean speech s i  corrupted by the WGN 

at 5dB initial SNRinput, enhanced by the MSS, SWF and ASW F algorithms, respectively. 

In these spectrograms, the MSS result reserves relatively clear spectral contents, but is 

severely contaminated by the residue noises (shown as small spectral speckles in Figure 

4-4(a)). Similarly, the SW F result preserves slightly better structure of spectral contents, 

but still suffers from excessive residue noises (shown as vertical slices in Figure 4-4(b)). 

Figure 4-4(c) demonstrates the spectrogram of the ASW F enhanced speech, where nearly 

no residue noises can be found in the non-speech regions. Also, its spectral contents are 

preserved well. Undoubtedly, the ASW F enhanced speech would be perceptually better 

than those by the MSS and SWF methods.
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Figure 4-4: Spectrograms of the enhanced speech signals (W G N , 5dB SNRjnput), by the (a)

MSS, (b) SW F and (c) ASW F algorithms.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(C)

ASWF Enhanced Speech

i
A L  fk

Time

Figure 4-4 (continued)

The global SN R  results are illustrated in Figure 4 -5 , for the 10 speech sentences 

corrupted by the W G N  at 5 dB SNR input, respectively, enhanced by the MSS, SW F and 

ASWF methods. The horizontal axis of this figure represents the index of the 10 speech 

sentences, while the vertical axis denotes the output SN R  (SN R outPut) values. The curves 

with the rectangular, diamond and triangular markers represent the SN R 0UtPut values 

resulted from the ASW F, SS and SWF algorithms, respectively. Obviously, the 

performance of the ASW F and SW F algorithms is consistently better than that of the 

MSS in all the 10 speech cases, although the SN R 0Utput curve of the SW F is slightly better 

than the A SW F’s. As we know, the SN R output as an objective speech quality measure 

doesn’t correlate well to the subjective results. Therefore, the global SN R  measure is not 

sufficient and some other objective or subjective measures are required to evaluate the 

speech quality.
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Figure 4-5: The SNRoutput value (WGN, 5 dB SNRinput).
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Figure 4-6: The mean S N R outPut value (W G N , SNRjnput: -5 dB to 15 dB)

To reduce the incidental experimental results, the mean SNRoutput, averaged over the
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10 speech sentences, is used to represent the overall SNR0UtPut level in a given SNRinput 

condition. The mean SNR0UtPut values, resulted from the clean speech corrupted by the 

WGN at different SNRinput levels, are shown in Figure 4-6. The x-axis represents the 

SNRinput levels from -5 dB to 15 dB, while the y-axis is the mean SNRoutput values in each 

SNR^ut condition. It is shown the mean SNR0UtPut values produced by the ASW F and 

SWF algorithms are better than the M SS’, when the SNRinput level is less than 10 dB.

The SegNR results, for the 10 speech sentences corrupted by the W GN at 5 dB 

SNR^put, enhanced by the MSS, SWF and ASW F methods, are illustrated in Figure 4-7. 

The x-axis represents the index of the 10 speech sentences, while the y-axis is the SegNR 

values in dB. It is shown the curve with the rectangular markers representing the ASWF 

results is consistently better than those from the MSS and SW F methods, in all the 10 

speech sentences.

SegN R (Noise: WGN; SNR.npiil = 5 d B )

O'

S p eech

Figure 4-7: the SegNR value (WGN, 5 dB SNRinput).

The mean S egN R  values, for the 10 speech sentences corrupted by the W G N  at a 

variety of SNRjnput conditions from -5 dB to 15 dB, enhanced by the M SS, SW F and
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ASWF methods, are illustrated in Figure 4-8. Clearly, the ASW F provides the best 

segmental noise reduction consistently in all the SNRinput conditions. For the high 

correlation degree between the SegNR and the subjective results, the ASW F enhanced 

speech would be perceptually better than those from the SWF and MSS algorithms.

M ean S eg N R  (N o ise : WGN)
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■  ASWF 
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A  SWF

SNR. . (dB )
i n p u t '  '

Figure 4-8: the mean SegNR (WGN, SNRinput: -5 dB to 15 dB)

Figure 4-9 plots the SegNR results over (a) the speech frames (SegNRspeechX and (b) 

the silent frames (SegNRsuent), for the 10 speech sentences corrupted by the W GN at 5 dB 

SNRinput, enhanced by the MSS, SWF and ASW F methods. In Figure 4-9(a), the 

SegNRSpeech values resulted from the SWF and ASW F algorithms are higher than the 

M SS’ in all the 10 speech sentences. In addition, the ASW F obtains better SegNRspeech 

results than the SW F’s in 6 out of the 10 speech sentences. In Figure 4-9(b), the 

SegNRSiient values of the ASW F are significantly larger than those of the SW F and MSS 

methods. In this SNRinput condition, there are approximately 30 dB, 15 dB and 8 dB 

SegNRsiient improvements, by the ASWF, SWF and MSS algorithms, respectively.
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Figure 4-9: The (a) SegNRspeech, and (b) SegNRsUent values (WGN, 5dB SNRinput)
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Figure 4-10: the mean (a) SegNRspeech and (b) SegNRSiient (WGN, SNRinput: -5 to 15 dB)
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The mean SegNRspeech and the mean SegNRSiient values, for the 10 speech sentences 

corrupted by the W GN under various SNRinput conditions from -5 dB to 15 dB, enhanced 

by the MSS, SWF and ASW F methods, are illustrated in Figure 4-10. It can be observed 

the ASWF achieved the largest mean SegNRspeech values in the lower SNRinput range from 

-5 dB to 5 dB. However, in the higher SNRjnput range from 5 dB to 15 dB, the SWF 

obtains the best mean SegNRspeech results. Consistent to the results in Figure 4-9(b), the 

ASWF produces significantly the best SegNRSiient results in all the SNRinput conditions.

Similar experiments have been tested with the artificial CGN noise as well. While it 

is unnecessary to detail all the experiment results here, only the mean objective 

measurement results, averaged over the 10 speech sentences, of the W GN and CGN 

noises are summarized from Table 4-3 to 4-6.

Table 4-3: Mean SNR0Utput values with the artificial noises

Noise SNRinput A SW F M SS SW F

W G N

-5 6.10 1.84 4.89

0 8.74 6.17 8.59

5 11.56 10.35 12.00

10 14.35 14.45 14.99

15 16.83 18.53 17.35

CG N

-5 4.87 1.82 3.37

0 7.63 5.97 7.24

5 10.55 9.98 10.83

10 13.55 13.95 14.08

15 16.24 17.95 16.74

Table 4-4: Mean SegNR values with the artificial noises

Noise SNRinput ASWF MSS SW F

W GN -5 16.83 7.03 10.79
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0 14.29 6.45 9.86

5 11.89 5.76 8.73

10 9.42 5.00 7.36

15 6.82 4.20 5.54

CG N

-5 16.19 7.11 9.28

0 13.65 6.42 8.47

5 11.15 5.60 7.45

10 8.72 4.71 6.18

15 6.17 3.81 4.52

Table 4-5: Mean S egN R speech values with the artificial noises

Noise SNRjnput A SW F M SS SW F

W G N

-5 12.49 6.68 9.86

0 9.54 5.94 8.55

5 6.96 5.06 6.98

10 4.55 4.11 5.11

15 2.19 3.13 2.85

C G N

-5 11.84 6.71 8.46

0 8.81 5.82 7.30

5 6.11 4.77 5.85

10 3.73 3.65 4.11

15 1.40 2.55 2.02

Table 4-6: Mean SegNRSiient values with the artificial noises

Noise SNRjnput A SW F M SS SW F

W G N -5 31.72 8.25 13.98

0 30.56 8.23 14.34

5 28.75 8.20 14.74

10 26.04 8.11 15.10
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15 22.66 7.91 14.80

CGN

-5 31.13 8.50 12.06

0 30.23 8.49 12.47

5 28.39 8.45 12.90

10 25.78 8.36 13.25

15 22.48 8.14 13.08

To overcome deficiencies of the objective measures, the subjective speech quality 

measure or the Informal Listening Test (ILT) was conducted on the speech sentence s i,  

“She had your dark suit in greasy wash water all year corrupted by the WGN and CGN 

noises at 5 dB or 0 dB SNRinput respectively. As shown in Table 4-7, the ASW F enhanced 

speech signals achieve the highest ILT scores in both of the two initial SNRinput 

conditions and thus, are perceptually the best.

Table 4-7: The ILT score with artificial noises

SNRinput Noise Type Noisy
Speech

MSS SW F ASWF

5 dB W GN 2 2.5 2.5 3.0
CGN 2 2.5 2.5 3.0

0 dB WGN 1.5 2.0 2.0 2.5
CGN 1.5 2.0 2.0 2.5

4.3.2. Results with Real-life Noises

In this category, the real-life noises, i.e. the F16 cockpit noise and the speech-like 

babble noise, were included in the experiments. In general, real-life noises are non- 

stationary and thus difficult to treat by the single-channel systems. In the following 

context, the experimental results of the babble noise (of the noisy speech at 5 dB initial 

SNRinput level) would be detailed.

Figure 4-12 illustrates the spectrograms of the enhanced speeches, by the MSS, SWF 

and ASWF algorithms, respectively, when the input noisy speech s i  was corrupted by the 

babble noise at 5 dB SNRjnput. In Figure 4 -12(a), nearly all the background noise in the
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silent frames has been removed, so that the gray shades at the intervals of the speech 

frame are light-colored. However, some fine spectral contents, e.g. in the high frequency 

region, are lost. Obviously, the spectrogram of the SW F enhanced speech, shown in 

Figure 4-4(b), severely suffers from the residue noises, because most of the regions in 

this figure have been covered by darker shades. Figure 4-4(c) plots the spectrogram of the 

ASWF enhanced speech, where little residue noise exists and the spectral details are 

maximally preserved.

(a)

MSS Enhanced Speech

o
a» 3 ir  4>

Time

(b)

SWF Enhanced Speech

Time

Figure 4-11: Spectrograms of the enhanced speeches (Babble, 5dB SNRinput), by the (a) 

MSS, (b) SWF, and (c) ASW F algorithms
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Figure 4-11 (continued)
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Figure 4-12: The SNRoutput value (Babble, 5 dB SNRinput).

The global SNRoutPut values are illustrated in Figure 4-12, for the original 10 speech 

sentences corrupted by 5 dB babble noise, enhanced by the MSS, SW F and ASWF 

methods, respectively. The curve with rectangular markers representing the SNRoutput 

results of the ASW F is higher than those of the MSS and SW F methods, signifying the 

ASWF achieves the best global SNRoutput results among the three algorithms in

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



comparison. In addition, the SNR0UtPut values of the M SS are slightly better than the 

SW F’s, in all the 10 speech sentences in this SNR;nput condition.

Figure 4-13 shows the mean SNRoutput values, for the 10 speech sentences corrupted 

by the babble noise with the SNRinput level from -5 dB to 15 dB at the increment of 5 dB, 

enhanced by the M SS, SW F and ASW F methods, respectively. Obviously, the mean 

SNRoutput values of the ASW F are better than those of the other two methods, in the 

SNRjnput range from -5 dB to 10 dB, whereas the M SS produces the largest mean 

SNRoutput values in the higher SNRjnput range from 10 dB to 15 dB. In all the noise 

conditions, the mean SNRoutPut results from the SW F are the worst, indicating excessive 

residue noises rested in the enhanced speech.

Mean SNRoutput (Noise: babble)
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Figure 4-13: The mean SNR0UtPut value (Babble, SNRinput: -5 dB to 15 dB)

The advantage of the ASW F is best demonstrated by the SegNR measure, in the case 

of the babble noise. As shown in Figure 4-14, the SegNR values of the ASW F are 

consistently higher than those of the SW F and MSS algorithms. As a result, we could
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predict the ASW F enhanced speech is perceptually the best, among those by the three 

algorithms.

SegNR (Noise: Babble; SNR.nput = 5 dB )
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Figure 4-14: the SegNR value (Babble, 5 dB SNRjnput).

The mean SegNR results, for the 10 speech sentences corrupted by the babble noise 

under various SNRinput conditions from -5 dB to 15 dB, enhanced by the MSS, SWF and 

ASWF methods, are shown in Figure 4-16. The x-axis represents the SNRinput conditions 

from -5 dB to 15 dB, while the y-axis represents the mean SNR0UtpUt values. It is clearly 

shown the mean SegNR results of the ASW F are superior to those of the SW F and MSS 

methods, consistently, in all the SNRinput conditions.
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Figure 4-15: the mean SegNR value (WGN, SNRinput: -5 dB to 15 dB)

Further examination of the speech quality is conducted by distinguishing the SegNR 

values with the S egN R speech and SegN R Siiem measures. Figure 4-16 illustrates the 

SegN R speech and S egN R Siient results, for the 10 speech sentences corrupted by the babble 

noise at 5 dB SNRjnput, enhanced by the MSS, SW F and ASW F methods. The S egN R speech 

values of the ASWF, represented by the solid curve with rectangular markers in Figure 4- 

16(a), are better than those of the MSS and SW F methods, in most of the speech 

sentences. In the silent frames, the S egN R Siient values of the ASW F are significantly and 

consistently better than those of the SWF and MSS algorithms.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



SegNR u (Noise: Babble; SNR. = 5 dB )
9  s p e e c h '  in p u t  '

6 r      .....................................................

2  —

1 -
... » - ASWF
...♦ MSS

A SWF
q I_________ i__________i__________i_________ j_________ i__________i_________ i__________i__________i

1 2 3 4 5 6 7 8 9  10
Speech

(b)

S e 9 N R s i ie n t  <Noise: Babble! SNR|nput = 5 dB )

CD
S

■es

<D
CO

1 2 3 4 5 6 7 8 9  10
Speech

Figure 4-16: the (a) SegNRspeech and (b) SegNRSjiem value (Babble, 5 dB SNRinput).
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The mean SegNRspeech and SegNRSjient values are also evaluated, for the 10 speech 

sentences corrupted by the babble noise under various SNRinput conditions from -5 dB to 

15 dB, enhanced by the MSS, SWF and ASWF methods. As shown in Figure 4-17(a), the 

mean SegNRspeeCh values of the ASW F obtain the best results in the lower SNRinput range 

from -5 dB to 10 dB. However, in the higher SNRi„put range, e.g. when the SNRinput is 

higher than 10 dB, the MSS produces the best mean SegNRspeech results. In all the 

SNRinput range, the mean SegNRspeech values of the SW F are smaller than those of the 

MSS and ASW F algorithms. In Figure 4-17(b), the SegNRSiient values of the ASW F are 

significantly higher (about 9 dB) than those of the SW F and MSS algorithms, in all the 

SNRinput range from -5  dB to 15 dB.

9 r

,lx

CD 6■a
1  # £ 5.S’ 4£
Zo  .<1) 4
if)
C
<0

*

0
-5

(a)

Mean Se9NRspeech (Noise: babble)

, N
' i l k

....■ ... ASWF
...♦ .. MSS

it. SWF

S N R . „ p u « ( d B >

10 15

Figure 4-17: the mean (a) SegNRspeech and (b) SegNRsiient (Babble, SNRinput: -5 dB to 

15 dB)
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Figure 4-17 (continued)

As with the babble noise, similar experiments were also conducted with the F16 

cockpit noise. The experimental results with the real-life noises are summarized from 

Table 4-8 to 4-12.

Table 4-8: Mean SNR0UtPut values with the real-life noises

Noise SNRinput A SW F SS SW F

F16

C ockpit

-5 4.43 2.59 2.20

0 7.42 6.68 6.36

5 10.69 10.63 10.24

10 13.78 14.52 13.72

15 16.40 18.38 16.58

B abble -5 1.62 0.14 -1.12

0 5.36 4.46 3.52
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5 9.11 8.67 7.98

10 12.70 12.85 12.03

15 15.83 17.03 15.52

Table 4-9: Mean SegNR values with the real-life noises

Noise SNRinput ASWF SS SW F

F16

Cockpit

-5 14.96 8.08 8.36

0 12.62 7.28 7.62

5 10.46 6.37 6.65

10 8.22 5.38 5.41

15 5.79 4.34 3.81

Babble

-5 9.71 6.06 5.45

0 8.32 5.30 4.85

5 6.95 4.49 4.14

10 5.40 3.67 3.14

15 3.57 2.86 1.85

Table 4-10: Mean SegNRspeech values with the real-life noises

Noise SNRinput ASW F SS SW F

F16

Cockpit

-5 10.99 7.56 7.46

0 8.17 6.53 6.42

5 5.78 5.37 5.10

10 3.55 4.13 3.51

15 1.27 2.88 1.57

Babble

-5 7.67 5.55 4.83

0 5.85 4.58 3.99

5 4.10 3.55 3.03

10 2.32 2.52 1.77

15 0.38 1.53 0.19
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Table 4-11: Mean SegNRSjient values with the real-life noises

Noise SNRjnput ASWF SS SW F

F16

Cockpit

-5 28.61 9.95 11.51

0 27.92 9.93 11.83

5 26.50 9.89 12.03

10 24.27 9.77 12.02

15 21.34 9.49 11.63

Babble

-5 16.94 7.88 7.74

0 17.07 7.87 7.94

5 17.05 7.83 8.12

10 16.23 7.74 8.02

15 14.74 7.54 7.68

The subjective ILT test was also conducted, for the speech s i  corrupted by the real- 

life noises at 5 dB or 0 dB SNRjnput, enhanced by the MSS, SW F and ASW F methods 

respectively. The ILT scores in Table 4-14 illustrate the perceptual quality of the ASWF 

enhanced speech is superior to those of the MSS and SW F methods. This advantage is 

also observed for the noisy speech in other initial SNRinput conditions.

Table 4- 2: The ILT score with the real-life noises

S N R input Noise Type
Noisy

Speech
MSS SW F ASWF

5 dB
F16 cockpit 2.0 2.5 2.5 3.0

Babble 2.0 2.0 2.0 2.5

0 dB F16 cockpit 1.5 2.0 2.0 2.5
Babble 1.5 2.0 2.0 2.5
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5. Conclusion and Future Work

This thesis work addresses the problem of subband noise suppression for speech 

enhancement, based on the critical-band gammatone filterbank (CGTFB) in a variety of 

noise environments. The proposed ASW F algorithm is derived from a generalized 

subband wiener filtering equation and reduces noise in terms of the estimated segmental 

SNR level in each auditory channel and in each time frame. Thus, a large amount of 

background noises would be subtracted in low SNR conditions, and vice versa, a small 

amount of background noises would be subtracted in high SNR conditions. Thus, an 

optimal speech enhancement scheme is realized in this auditory filterbank structure.

A novel subband noise estimator is also proposed in this thesis. In each auditory 

channel, the subband noise variance is estimated by tracking the minimum variance of the 

smoothed speech variance, in a time window containing a num ber of frames. With this 

subband noise estimator, no explicit voice activity detector is needed. It has been 

demonstrated this subband noise estimator is effective for speech noise suppression in the 

auditory filterbank, even in some real-life noise environments.

Performance of the proposed ASW F algorithm was evaluated with a variety of short 

speech sentences drawn from the TIMIT database, and noises including the computer­

generated artificial noises and the real-life noises from the NOISEX-92 database. The 

SNRjnput levels of the input noisy speech have been chosen from -5  to 15 dB at the 

increment of 5 dB in all the experiments to simulate various noise conditions. Objective 

speech quality evaluation measures, i.e. the SNR, SegNR, SegNRspeech and SegNRSiient 

measures, demonstrated the overall speech noise suppression performance of the ASWF 

is better than those of the MSS and SWF methods. The subjective measure or the ILT 

was also performed on some selected speech signals enhanced by the SWF, MSS and 

ASWF algorithms. It is shown the speech enhanced by the ASW F is perceptually 

superior, with little musical noise perceivable.
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This technique offers a subband noise reduction solution in an auditory filterbank 

structure, and can be combined with other subband speech processing algorithms, as a 

front-end processing step immediately after their analysis filterbank, to increase the 

robustness of the respective applications.

Several improvements can be made for this research work. The experimental results 

demonstrated that the ASW F enhanced speech still suffers from spectral distortion, 

especially in the low SNR conditions or non-stationary noise environments. In low 

energy sections and during transitional segments of the speech waveform, this effect is 

even worse. Therefore, a psychoacoustic model exploring the human auditory masking 

property can be introduced into the auditory channels, and let the noise suppression 

parameters adaptive to the instantaneous noise masking level. Thus, the spectral 

distortion of the enhanced speech can be reduced. In addition, the structure of the 

auditory filterbank can be improved. Currently, each gammatone FIR in the synthesis 

stage has 128 orders and would present heavy computational load. Hence, it would be 

meaningful if we could use IIRs in the synthesis filterbank as well.
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