592 research outputs found

    Frame Theory for Signal Processing in Psychoacoustics

    Full text link
    This review chapter aims to strengthen the link between frame theory and signal processing tasks in psychoacoustics. On the one side, the basic concepts of frame theory are presented and some proofs are provided to explain those concepts in some detail. The goal is to reveal to hearing scientists how this mathematical theory could be relevant for their research. In particular, we focus on frame theory in a filter bank approach, which is probably the most relevant view-point for audio signal processing. On the other side, basic psychoacoustic concepts are presented to stimulate mathematicians to apply their knowledge in this field

    Acoustical measurements on stages of nine U.S. concert halls

    Get PDF

    Medical image enhancement

    Get PDF
    Each image acquired from a medical imaging system is often part of a two-dimensional (2-D) image set whose total presents a three-dimensional (3-D) object for diagnosis. Unfortunately, sometimes these images are of poor quality. These distortions cause an inadequate object-of-interest presentation, which can result in inaccurate image analysis. Blurring is considered a serious problem. Therefore, “deblurring” an image to obtain better quality is an important issue in medical image processing. In our research, the image is initially decomposed. Contrast improvement is achieved by modifying the coefficients obtained from the decomposed image. Small coefficient values represent subtle details and are amplified to improve the visibility of the corresponding details. The stronger image density variations make a major contribution to the overall dynamic range, and have large coefficient values. These values can be reduced without much information loss

    Spectral discontinuity in concatenative speech synthesis – perception, join costs and feature transformations

    Get PDF
    This thesis explores the problem of determining an objective measure to represent human perception of spectral discontinuity in concatenative speech synthesis. Such measures are used as join costs to quantify the compatibility of speech units for concatenation in unit selection synthesis. No previous study has reported a spectral measure that satisfactorily correlates with human perception of discontinuity. An analysis of the limitations of existing measures and our understanding of the human auditory system were used to guide the strategies adopted to advance a solution to this problem. A listening experiment was conducted using a database of concatenated speech with results indicating the perceived continuity of each concatenation. The results of this experiment were used to correlate proposed measures of spectral continuity with the perceptual results. A number of standard speech parametrisations and distance measures were tested as measures of spectral continuity and analysed to identify their limitations. Time-frequency resolution was found to limit the performance of standard speech parametrisations.As a solution to this problem, measures of continuity based on the wavelet transform were proposed and tested, as wavelets offer superior time-frequency resolution to standard spectral measures. A further limitation of standard speech parametrisations is that they are typically computed from the magnitude spectrum. However, the auditory system combines information relating to the magnitude spectrum, phase spectrum and spectral dynamics. The potential of phase and spectral dynamics as measures of spectral continuity were investigated. One widely adopted approach to detecting discontinuities is to compute the Euclidean distance between feature vectors about the join in concatenated speech. The detection of an auditory event, such as the detection of a discontinuity, involves processing high up the auditory pathway in the central auditory system. The basic Euclidean distance cannot model such behaviour. A study was conducted to investigate feature transformations with sufficient processing complexity to mimic high level auditory processing. Neural networks and principal component analysis were investigated as feature transformations. Wavelet based measures were found to outperform all measures of continuity based on standard speech parametrisations. Phase and spectral dynamics based measures were found to correlate with human perception of discontinuity in the test database, although neither measure was found to contribute a significant increase in performance when combined with standard measures of continuity. Neural network feature transformations were found to significantly outperform all other measures tested in this study, producing correlations with perceptual results in excess of 90%

    Temporal integration of loudness as a function of level

    Get PDF

    Auditory Streaming: Behavior, Physiology, and Modeling

    Get PDF
    Auditory streaming is a fundamental aspect of auditory perception. It refers to the ability to parse mixed acoustic events into meaningful streams where each stream is assumed to originate from a separate source. Despite wide interest and increasing scientific investigations over the last decade, the neural mechanisms underlying streaming still remain largely unknown. A simple example of this mystery concerns the streaming of simple tone sequences, and the general assumption that separation along the tonotopic axis is sufficient for stream segregation. However, this dissertation research casts doubt on the validity of this assumption. First, behavioral measures of auditory streaming in ferrets prove that they can be used as an animal model to study auditory streaming. Second, responses from neurons in the primary auditory cortex (A1) of ferrets show that spectral components that are well-separated in frequency produce comparably segregated responses along the tonotopic axis, no matter whether presented synchronously or consecutively, despite the substantial differences in their streaming percepts when measured psychoacoustically in humans. These results argue against the notion that tonotopic separation per se is a sufficient neural correlate of stream segregation. Thirdly, comparing responses during behavior to those during the passive condition, the temporal correlations of spiking activity between neurons belonging to the same stream display an increased correlation, while responses among neurons belonging to different streams become less correlated. Rapid task-related plasticity of neural receptive fields shows a pattern that is consistent with the changes in correlation. Taken together these results indicate that temporal coherence is a plausible neural correlate of auditory streaming. Finally, inspired by the above biological findings, we propose a computational model of auditory scene analysis, which uses temporal coherence as the primary criterion for predicting stream formation. The promising results of this dissertation research significantly advance our understanding of auditory streaming and perception
    • 

    corecore