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Abstract

This thesis explores the problem of determining an objective measure to represent human

perception of spectral discontinuity in concatenative speech synthesis. Such measures are

used as join costs to quantify the compatibility of speech units for concatenation in unit

selection synthesis. No previous study has reported a spectral measure that satisfactorily

correlates with human perception of discontinuity. An analysis of the limitations of existing

measures and our understanding of the human auditory system were used to guide the

strategies adopted to advance a solution to this problem.

A listening experiment was conducted using a database of concatenated speech with

results indicating the perceived continuity of each concatenation. The results of this ex-

periment were used to correlate proposed measures of spectral continuity with the percep-

tual results. A number of standard speech parametrisations and distance measures were

tested as measures of spectral continuity and analysed to identify their limitations. Time-

frequency resolution was found to limit the performance of standard speech parametrisa-

tions. As a solution to this problem, measures of continuity based on the wavelet transform

were proposed and tested, as wavelets offer superior time-frequency resolution to standard

spectral measures. A further limitation of standard speech parametrisations is that they are

typically computed from the magnitude spectrum. However, the auditory system combines

information relating to the magnitude spectrum, phase spectrum and spectral dynamics.

The potential of phase and spectral dynamics as measures of spectral continuity were in-

vestigated. One widely adopted approach to detecting discontinuities is to compute the

Euclidean distance between feature vectors about the join in concatenated speech. The

detection of an auditory event, such as the detection of a discontinuity, involves processing

high up the auditory pathway in the central auditory system. The basic Euclidean distance

cannot model such behaviour. A study was conducted to investigate feature transforma-

tions with sufficient processing complexity to mimic high level auditory processing. Neural

networks and principal component analysis were investigated as feature transformations.

Wavelet based measures were found to outperform all measures of continuity based

on standard speech parametrisations. Phase and spectral dynamics based measures were

vi



found to correlate with human perception of discontinuity in the test database, although

neither measure was found to contribute a significant increase in performance when com-

bined with standard measures of continuity. Neural network feature transformations were

found to significantly outperform all other measures tested in this study, producing corre-

lations with perceptual results in excess of 90%.

Keywords: Speech synthesis, unit selection, join cost, concatenative synthesis, spectral

discontinuity, perceptual experiment, feature extraction, wavelets, speech perception, phase

spectrum, spectral dynamics, feature transformation, neural networks.
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Chapter 1

Introduction

1.1 Thesis overview

Speech is the primary form of human communication and as such a demand exists for

real world computer applications that can communicate with human users through speech.

Most users of speech technology are highly critical of unnatural sounding synthesised speech

and this has proved to be a limiting factor in the widespread adoption of speech synthesis

technology. An ideal speech synthesis system should be capable of producing high quality,

natural-sounding, expressive speech that is indistinguishable from speech produced by a

human speaker. Current speech synthesis technology is quite far from this goal and many

challenges remain.

1.1.1 Speech synthesis

A number of methods exist to produce a speech waveform in speech synthesis. Currently

the prevailing methods are statistical parametric synthesis and concatenative-based syn-

thesis (King and Karaiskos, 2009; Karaiskos et al., 2008). Statistical parametric synthesis

produces the speech waveform by generating speech parameters from statistics acquired

from a speech database. These parameters are employed to synthesise the speech wave-

form to match a desired target output utterance. In concatenative synthesis a sequence of

pre-recorded speech units are connected together in sequence to produce the overall target
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utterance. Statistical parametric synthesis produces speech that is smooth, consistent in

quality and flexible for manipulating voice characteristics. The disadvantage is that it can

sound muffled and lacks the crisp sound quality of real speech. Concatenative synthesis can

vary significantly in quality depending on the compatibility of successive speech units and

it is difficult to make modifications to the voice characteristics. As concatenative synthesis

uses natural speech, high quality, natural-sounding speech can be produced provided the

joins between concatenated units are not perceptually noticeable. The objective of pro-

ducing a concatenative speech synthesis system that produces speech with a minimum -

ideally zero - number of audible joins is what motivates the work carried out and described

in this thesis.

1.1.2 Unit selection speech synthesis

A particular type of concatenative synthesis is unit selection speech synthesis. In unit

selection synthesis each target unit of speech is selected from a set of possible candidate

units. The sequence of units is selected with the aim of producing the best possible

quality speech output with respect to the desired target utterance. Unit selection based

concatenative synthesis is currently considered state-of-the-art in text-to-speech (TTS)

synthesis (King and Karaiskos, 2009; Lu et al., 2009; Karaiskos et al., 2008; Ling et al.,

2008) and has been the dominant technology since its development (Hunt and Black, 1996).

Unit selection synthesis is capable of producing highly natural-sounding synthetic speech,

although, as with all forms of concatenative synthesis it is also capable of producing low

quality speech. When the joins in concatenated speech are inaudible the synthesised speech

can sound very natural. When the joins are audible and perceived as discontinuities, the

quality degrades significantly. Human listeners are very quick to reject the resulting low

quality speech which requires significantly more listener effort to interpret. It is this lack

of consistent quality that is currently limiting the widespread use of unit selection based

TTS in many commercial applications.

The development of unit selection synthesis is due mainly to the availability of low-cost

memory and high computational power rather than new developments in speech science.

2



This is the case for most of the developments in concatenative speech synthesis since its

initial emergence as viable synthesis technique (Breen, 1994). The availability of low-cost

memory enables large databases of recorded speech to be employed for unit selection with

many instances of each possible unit, each with varied prosodic and spectral characteristics.

High computational power enables the timely selection of units at run-time to synthesise

the target utterance. A significant knowledge gap exists in that it is not fully understood

what distinguishes the natural-sounding speech from the low quality speech produced from

unit selection. The heart of the problem lies in understanding the conditions under which

the join between two concatenated segments of speech becomes an audible discontinuity.

Without a complete understanding of this problem it is not clear what is the best manner

to select consecutive speech units, from the units available in a given database, to produce

the optimum quality speech output.

1.1.3 Problem statement

In this thesis the problem of spectral discontinuity in concatenative speech synthesis is

investigated. When two units of speech are concatenated, sometimes natural-sounding

speech is produced and on other occasions the join is clearly audible and sounds discon-

tinuous. The goal of this thesis is to investigate under what conditions the join is audible

and to quantify its audibility. This will result in a better understanding of the processing

of abrupt spectral transitions in the human auditory system and will also provide a metric

to select the optimum units of speech in unit selection synthesis leading to more reliable

high quality speech synthesis.

1.1.4 Goals of the thesis

The ultimate goal of this thesis is: To develop a deeper understanding of human

perception of discontinuity for concatenative TTS and to apply this knowledge

to the development of new measures of spectral continuity that correlate with

human auditory perception.

This is a broad ranging, abstract objective and needs to be broken down into a set of
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more refined objectives that provide a more definite path towards the ultimate solution.

Defining these objectives reflects the nature of the approach adopted. These objectives are

as follows:

1. To analyse the limits of current measures of spectral continuity and to gain an under-

standing of why these measures fail to consistently correlate with human perception

of discontinuity.

2. To identify the underlying auditory processes that are active in the identification of

spectral discontinuities. Such knowledge could be exploited in the development of

new measures of continuity.

3. To explore and identify new independent sources of discontinuity and to quantify the

level of correlation between measures computed from these new independent sources

with human perception of discontinuity.

4. To establish a more sophisticated framework for measuring discontinuity that enables

the application of advanced pattern recognition algorithms.

1.2 Thesis organisation

The thesis is structured as follows:

• Chapter 2 contains a broad ranging literature review. This review covers: the state-

of-the-art in speech synthesis, a review of the literature investigating perceptually

salient distance measures for unit selection and an overview of relevant topics in

speech perception.

• Chapter 3 describes the perceptual experiment conducted to label a database of

concatenated speech identified as perceptually continuous or discontinuous by human

listeners. This chapter contains the results of this experiment and details of the

design of the speech database and its analysis. The procedure applied to correlate

the perceptual results with the proposed distance measures is also presented.
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• Chapter 4 presents a systematic comparison of standard spectral measures. Each

measure is tested for its ability to detect discontinuities in the test database. The

results are presented and the measures are analysed to identify the limitations of such

measures for the task of detecting spectral discontinuities in concatenated speech.

• Chapter 5 introduces new spectral measures derived from the phase spectrum and

the wavelet transform. Each of the measures are tested with respect to their ability to

detect discontinuities in the test database. Each measure is analysed and compared

with the standard spectral measures.

• Chapter 6 presents an investigation of spectral dynamics as a source of disconti-

nuity in concatenated speech. A feature extraction method for spectral dynamics is

presented and applied to a number of standard feature sets. The results for detecting

discontinuities with spectral dynamic measures are presented. The results are fur-

ther analysed to determine if spectral dynamic mismatch represents an independent

source of discontinuity.

• Chapter 7 introduces a feature space framework for the task of detecting discon-

tinuities. Feature space transformations are investigated to determine if they can

enhance the performance of a given feature set in detecting discontinuities.

• Chapter 8 summarises the work presented in the thesis and presents a set of con-

clusions. Further research is also discussed.

1.3 Contributions of the thesis

The work presented in this thesis makes a number of original contributions.

• Establishment of a database of concatenated speech with perceptual results to label

each test sample in the database as continuous or discontinuous for experimentation.

• Identification of the limitations of standard feature extraction methods and condi-

tions in which they are unsuitable for the task of detecting discontinuities.
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• The development of new spectral measures that help in overcoming the limitations

of standard feature extraction techniques.

• Identification of spectral dynamic mismatch as a potential source of discontinuity,

developing a spectral dynamic feature extraction method and determining the degree

of correlation with human perception of discontinuity.

• Identification of phase spectrum mismatch as a potential source of discontinuity,

investigating suitable feature sets to represent the phase spectrum and determining

the degree of correlation with human perception of discontinuity.

• The proposal of a novel feature space framework and feature transformations to

detect spectral discontinuities and evaluation of the proposed system.

1.3.1 Publications

The contributions of this thesis have resulted in the following publications to date.

1. B. Kirkpatrick, D. O’Brien and R. Scaife, ‘A comparison of spectral continuity mea-

sures as a join cost in concatenative speech synthesis’, in Proc. of the Irish Signal

and Systems Conference (ISSC), Dublin, 2006.

2. B. Kirkpatrick, D. O’Brien and R. Scaife, ‘Feature extraction for spectral continuity

measures in concatenative speech synthesis’, in Proc. International Conference on

Spoken Language Processing (ICSLP), Pittsburgh PA, USA, September, 2006.

3. B. Kirkpatrick, D. O’Brien, R. Scaife, and A. Errity, ‘Spectral dynamics as a source

of discontinuity in concatenative speech synthesis’, in Proc. of the 15th Int. Conf.

on Digital Signal Processing (DSP), Cardiff, Wales, July 2007.

4. B. Kirkpatrick, D. O’Brien, R. Scaife, and A. Errity, ‘On the role of spectral dy-

namics in unit selection speech synthesis’,in Proc. of Interspeech 2007 - Eurospeech,

Antwerp, Belgium, August 2007.
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5. B. Kirkpatrick, D. O’Brien and R. Scaife, ‘Feature transformation applied to the de-

tection of discontinuities in concatenated speech’, in Proc. of the 6th ISCA Workshop

on Speech Synthesis (SSW6), Bonn, Germany, August 2007.
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Chapter 2

Literature Review

An ideal TTS system should be able to produce speech of equal quality to that of a

human speaker reading out the same input text. Currently no such system exists and a

human listener can easily identify artificially generated speech. To improve current TTS

systems it is essential to understand the key factors that influence the quality of the speech

generated and to develop strategies that address these issues. Many factors are known to

influence the perceived quality of synthetic speech. In concatenative speech synthesis

the audibility of joins between successive speech units is the primary limiting factor in

producing consistently high quality speech.

In this chapter a literature review is presented that consists of three main components:

(1) text-to-speech synthesis with emphasis on unit selection, (2) join costs and (3) the

auditory system. Firstly text-to-speech synthesis technologies and techniques are reviewed

including waveform generation techniques and a review of benchmark TTS systems. A

literature review is presented based on previous studies investigating join costs for unit

selection speech synthesis. A review is presented on selected topics in human auditory

perception that is required to establish the framework and foundations for later chapters.

8



2.1 Speech synthesis

This section contains a review of speech synthesis systems, waveform generation techniques,

a more detailed presentation of unit selection synthesis and a review of selected speech

synthesis systems.

2.1.1 TTS system architecture

All TTS systems share a common architecture with two distinct components; one for

natural language processing (NLP) and the other for speech generation (Huang et al.,

2001; Dutoit, 2001). This is depicted in Fig. 2.1. The NLP module receives the input

text and analyses it to determine the structure of the text and to determine the phonetic

composition of each word. This involves a number of tasks which can be further categorised

into text analysis, phonetic analysis and prosody generation.

The text analysis stage involves document structure detection, text normalisation and

linguistic analysis. Phonetic analysis converts abstract lexical symbols to phonemic rep-

resentation. This involves homograph disambiguation, morphological analysis and letter-

to-sound conversion (Huang et al., 2001; Dutoit, 2001). The prosodic generator module

typically produces the intonation pattern, durations and relative amplitudes to match the

underlying message, based on the linguistic analysis produced earlier.

The output from the NLP module forms the input to the speech generation module.

This module is responsible for generating a corresponding speech waveform from the data

supplied by the NLP module. This produces the final output utterance corresponding with

the original text input. Many techniques exist to generate the speech waveform and are

discussed in the next section.

2.1.2 Waveform generation

The role of the waveform generation module is to synthesise the speech signal from the

parameters provided by the NLP module. A number of different techniques exist to pro-

duce the speech waveform including formant synthesis, concatenative synthesis, statistical

parametric synthesis and articulatory synthesis. All of these approaches can be categorised
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Figure 2.1: Block diagram of a generic speech synthesis system indicating the primary
components; NLP and waveform generation.

as being either data-driven (corpus-based) or rule-based synthesis. In rule-based synthesis

a broad set of rules are applied to produce the desired output sounds for a target utterance.

In data-driven synthesis the output is built from recorded speech data.

Formant synthesis

Formant synthesis was the first widely adopted method of speech synthesis. Formant

synthesis uses the source-filter model of speech production. In the source-filter model

the voice source is modelled as noise for unvoiced speech and as the glottal waveform for

voiced speech. Speech is produced by passing an excitation signal, representing the glottal

waveform or noise, through a filter that represents the vocal tract. The parameters of

the filter are ‘hand derived’ to correspond with known formant values for target phones.

This is an example of generation by rule. With current technology the formant values and

transitions could be learned from a database of speech similar to the approach of statistical

parametric speech synthesis (Huang et al., 2001).

Formant synthesis by rule produces intelligible speech although it does not sound like
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natural speech and it does not retain the characteristics of individual speakers. This limits

its use in practice. Advantages are that it does not require a recorded database of speech

and is suitable for embedded applications. Formant synthesisers are often employed in

screen readers for the visually impaired, as they can produce produce intelligible speech

at very high speaking rates; something that is not currently possible with concatenative

synthesis.

Statistical parametric synthesis

In statistical parametric synthesis a database of speech is analysed to determine the statis-

tical parameters of its contents (Zen et al., 2009). These statistics are used in a parameter

generation algorithm that produces speech features corresponding with a target sound.

These features are subsequently employed to construct the desired speech waveform. Pro-

ducing the speech waveform from the parameters requires a speech model. Typically a

vocoder-type model is employed. As it uses signal processing techniques to produce the

speech waveform it does not sound as natural as recorded speech. The resulting speech can

sound muffled or buzzy. Most current statistical parametric synthesis systems are Hidden

Markov Model (HMM) synthesisers.

The key advantage of statistical parametric synthesisers over concatenative synthesisers

is the consistent nature of the speech output. The quality does not vary like in concatena-

tive synthesis, although it is generally accepted that the best quality concatenated speech

is superior in quality to speech generated by a statistical parametric synthesiser. Statistical

parametric synthesis offers a flexible framework for research and can be extended to incor-

porate ideas from other synthesis technologies; for example in Ling et al. (2009) concepts

from articulatory synthesis are integrated with a HMM based synthesiser to achieve better

quality speech synthesis. Statistical parametric synthesis requires a smaller database than

unit selection synthesis. The memory required for the speech generation engine is small

and it is suitable for embedded applications.
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Articulatory synthesis

Articulatory models can be used to produce speech using a rule-based system. In human

speech production the articulators in conjunction with the input airflow determine the

sound produced. It has been demonstrated that articulatory models can be employed with

only 15 parameters (Huang et al., 2001). Common articulatory parameters are; opening

area of the lips, location and size of constriction by the tongue, opening to the nasal

cavities, average glottal area and the rate of expansion/contraction of the vocal tract

behind a constriction. Current articulatory synthesis techniques are not of the quality of

formant, concatenative or statistical parametric synthesisers.

Concatenative synthesis

In concatenative synthesis the speech waveform is generated by concatenating pre-recorded

speech units, see Fig. 2.2. Concatenative synthesis is a data-driven technique and quality

depends critically on coverage in the speech database. In order for a sound to be produced

it must be represented in the database. A concatenative synthesiser can produce natural

sounding speech as it uses recordings of natural speech. The quality of concatenative

synthesis is inconsistent and the likelihood of consistently producing output speech at the

maximum possible quality is low. When two percptually incompatible units of speech are

concatenated the join is clearly audible and is referred to as a discontinuity. Discontinuities

are distracting for a listener and even a single discontinuity in a sentence can break the

flow of the utterance and significantly reduce the overall perceived quality (Klabbers et al.,

2007).

A key issue in concatenative synthesis is the choice of speech unit. For example,

phonemes would appear to be a natural choice as they are the fundamental unit of all

speech sounds. However concatenation of phonemes has proved to be difficult and does

not result in intelligible speech due to coarticulatory effects that are difficult to model

(Huang et al., 2001). A diphone is a unit of speech that contains the transition between

two phones. Diphones have proved to be more successful than phones at producing qual-

ity speech output. Diphone concatenation places joins in the stationary vowel centre and
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Figure 2.2: Illustrating the concatenation of speech to produce a desired output waveform.

captures rapid spectral transitions in the heart of the unit. This is advantageous as it is

more likely that discontinuities will occur in a join contained in a transient. The use of

diphones means that much more units need to be represented in the database. English

consists of approximately 42 phonemes giving rise to approximately 1700 (42×42) possible

diphones. In reality many of these phone transitions never occur in English and only 1300

diphones are required for complete coverage by a diphone database. A general trade off

exists between the size of a unit and the number of units required to provide sufficient cov-

erage to produce a waveform to represent an arbitrary text input. The general principle is

that as units get shorter a more flexible approach can be adopted and smaller databases

are required. However this results in many more concatenations, which inevitably leads to
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more audible discontinuities and a subsequent compromise in output quality. Using longer

units requires larger databases but results in fewer concatenations and consequently can

be capable of producing high quality speech. Limited domain applications are suited to

using longer units in which the lexicon is closed and relatively small.

2.1.3 Unit selection synthesis

Unit selection speech synthesis is a specific type of concatenative speech synthesis. In unit

selection the speech database contains many instances of each possible unit, each of which

has varied prosodic and spectral characteristics. This allows the selection of a unit from

a set of potential candidate units, as illustrated in Fig. 2.3. Units are selected to match

the target characteristics and to minimise the potential of concatenating consecutive units

that will result in a discontinuity.

Two dominant strategies have emerged as methods for selecting the optimum sequence

of units. Hunt and Black presented a model for unit selection in Hunt and Black (1996)

and the other dominant method was presented in Donovan and Eide (1998). Hunt and

Black’s model is based on defining a target cost and a join cost. The target represents

the degree of match between candidate units and the desired target unit and the join cost

represents the degree of match between two consecutive units. The units are selected to

minimise the overall cost. Donovan and Eide’s method adopts a unit clustering strategy

in which the units populate a decision tree. The location of the units within the decision

tree depends on phonetic and prosodic characteristics with similar units being clustered

together. Both methods are relatively similar and each depends on the ability to define

suitable criteria to quantify the degree of compatibility between consecutive units.

Target cost

The target cost is used to represent the difference between the ideal desired unit and the

units in the database. This is computed as a weighted sum of the differences from features

such as; F0, phonetic, stress, syllable position, utterance position and position within a

word.
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Figure 2.3: Illustrating the concatenation of two speech units were each unit is selected
from a set of candidate units.

Join cost

The join cost in unit selection is used to represent the compatibility of two consecutive units.

An ideal join cost should correspond with human perception of discontinuity; producing

a large measure when an audible discontinuity is present and a measure of approximately

zero when the join is inaudible. An ideal join cost should also be able to rank joins that

are relatively more discontinuous.

The join cost is typically computed as a number of sub-costs including F0, energy and

spectral mismatch. The spectral sub-cost is usually computed as the Euclidean distance

between a set of Mel-Frequency Cepstral Coefficients (MFCC) from each unit. A detailed

description of spectral feature extraction is presented in Chapter 4. Spectral join costs do

not correlate sufficiently with human perception and have been identified as a key factor

limiting the quality and consistency of speech produced with unit selection synthesisers.
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Figure 2.4: Illustrating the selection of the optimum sequence of units from the available
candidate units using a Viterbi search through a state transition network using transition
and target costs.

Viterbi search

In most unit selection systems the optimum sequence of units are selected by applying the

Viterbi algorithm (Forney, 1973) as described in Hunt and Black (1996). A state transition

network is constructed to represent the available candidate units for a target utterance.

The cost of state occupancy is represented by the target cost and the cost of a transition

between two states is represented by the join cost. The Viterbi algorithm computes the op-

timum pathway through the state transition network and as such determines the optimum

sequence of units based on minimising the target and join costs. This scheme is illustrated

in Fig. 2.4 in which the target units are placed in the top row and the candidate units are

alligned below. A sample optimum path is illustrated.

The quality of the speech output from unit selection depends greatly on the coverage

of the recordings. In general more recordings typically lead to better coverage and in turn

to better synthesised speech. Practical considerations limit the size of a speech synthesis

database and the amount of memory required may preclude many applications (Breen and

Jackson, 1999; Breen, 2000). Recording a large database is difficult, costly and labour
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intensive, with great difficulty in sustaining consistent voice quality in all recordings over

significant durations of time (Stylianou, 1999; Breen, 2000).

2.1.4 Synthesis technologies

In recent years a number of benchmarks have been set in speech synthesis. Each cor-

responding with a particular speech synthesis system. The following section discusses a

number of these synthesis systems starting with the first effective demonstration of a unit

selection system, ATR v-talk (Sagisaka et al., 1992), and concludes with current HMM

based statistical parametric synthesis and unit selection systems. This is not an exhaus-

tive account of all speech synthesis systems but is intended to give an overview of the

current state-of-the-art and an understanding of how the current systems have evolved.

ATR v-talk

The v-talk system was produced in ATR Japan and was the first synthesis system to provide

an effective demonstration of unit selection (Sagisaka et al., 1992). Previous systems had

only one instance of each possible unit available in the database whereas the v-talk system

employs a database with multiple instances of each possible unit. The v-talk system

automatically selects units based on minimising the spectral distance between the desired

target units and the units available in the database. This system worked for Japanese and

produced high quality speech. Japanese has a simpler phonetic structure than English. To

produce the equivalent quality synthesis in English with a system of this type remained a

significant challenge at the time.

CHATR

The CHATR speech synthesis system was also developed at ATR Japan (Black and Taylor,

1994; Campbell, 1996). It built upon the success of the v-talk system and generalised

the techniques to multiple languages. CHATR, like the v-talk system, also employs unit

selection synthesis although the implementation had been further developed. The units are

of non-uniform size and the selection procedure uses both acoustic and prosodic features.
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The system employs a state transition network to select the optimum sequence of units as

proposed in (Hunt and Black, 1996) by defining appropriate target and join costs.

Festival

The Festival system was developed by Black and Taylor at CSTR in Edinburgh for syn-

thesising speech from an inventory of diphone units (Black and Taylor, 1997). Festival

was designed to be modular and flexible in order to enable research and experimentation

in speech synthesis. Festival provides a means to develop and test new independent mod-

ules that can be run within the Festival system without having to develop all the other

components required to achieve a functional speech synthesis system. Festival has become

the standard benchmark speech synthesis system and due to its flexible nature is used in

many systems that followed its release. Many further releases of Festival exist (Clark et al.,

2004).

BT Laureate

The Laureate speech synthesis system was developed by British Telecom (Breen and Jack-

son, 1998; Page and Breen, 1998). This system generates the output speech by unit selec-

tion. It differs from other unit selection systems in that it performs unit selection based

upon phonological features and does not use acoustic information. Each unit is represented

by time aligned annotations, units with the same annotations are effectively equivalent in

this system. Speech is generated by selecting units that optimise a global cost. A similarity

metric is used for unit selection that is defined on segmental identity and supra-segmantal

environment. Dynamic programming is used to determine the sequence of units.

IBM Trainable

The IBM trainable speech synthesis system was originally developed at IBM (Donovan and

Eide, 1998). It uses a speaker-dependent decision-tree state-clustered hidden Markov model

to automatically segment the database. To synthesise speech the system used dynamic

programming for selecting from the units aligned to each leaf in the decision tree during
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training. The dynamic programming used cost functions based on continuity, duration,

pitch and energy. The system used TD-PSOLA (Moulines and Charpentier, 1990) to

match the target prosody. The system aimed to select units such that the need for prosodic

modification would be minimised.

Next-Gen

The Next-Gen synthesis system was developed at AT&T Labs (Beutnagel et al., 1999). The

system built upon many of the systems that had gone before it, such as Festival, CHATR

and AT&T’s own Flextalk system. The Next-Gen system employed what was judged to

be the best components of these preceding speech synthesis systems. In addition the Next-

Gen system employed the harmonic plus noise model to generate the speech waveform

(Stylianou, 2001). This system was ranked first in a study by Alvarez and Huckvale (2002)

in a study of six commercially available systems and was found to produce natural sounding

speech.

HTS

The HTS system was developed at Nitech Japan. It is a HMM based speech synthesis sys-

tem and has been under development for many years. It has recently emerged as a viable

alternative to unit selection based synthesis. In the 2005 Blizzard Challenge (Black and

Tokuda, 2005) a number of the test sentences produced by the Nitech HTS system (Zen

and Toda, 2005) achieved mean opinion scores above that of unit selection synthesisers

(Bennett, 2005). The HTS system has continued to rank highly in subsequent Blizzard

challenges. Developments employing the global variance technique in the parameter gen-

eration algorithm (Toda et al., 2005) have contributed to the improvement in quality.

2.2 Join costs for unit selection

In unit selection systems following the framework proposed by Hunt and Black (1996) a

target cost and a join cost are both defined and are subsequently used to select the optimum

sequence of units. The target cost is easily defined and the natural default parameters, F0,
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phonetic, etc. employed for this task have been found to perform satisfactorily. Defining an

effective join cost has proved to be much more challenging, in particular the spectral sub-

cost has proven to be a limiting factor to date. The energy and F0 sub-costs are relatively

well understood and represent perceptually important information regarding continuity at

a join and each can be succinctly represented in a single parameter. Spectral continuity is

not well understood and studies to date have demonstrated that current measures do not

exhibit a significant correlation with human perception.

2.2.1 Previous studies investigating join costs

This section contains a literature review of studies comparing join costs for unit selection

speech synthesis. A summary of these studies is contained in Table 2.1.

Wouters and Macon

Wouters and Macon (Wouters and Macon, 1998) conducted a study to evaluate the per-

formance of a set of candidate join costs. In this study they employed a database of 166

test words where each word contained a join in a vowel centre. Four different vowels were

considered. Listeners were asked to rate the level of discontinuity on a 5 point scale. The

perceptual results were correlated with the join costs to quantify the agreement between

the human results and each of the join cost measures. In general the correlation was found

to be low. The best ranking measures were Mel-cepstral based measures with a correlation

of 0.64. The performance of these measures marginally improved with the addition of delta

features to a correlation of 0.66. Wouters and Macon also reported that using only delta

features as a join cost resulted in a correlation with human perception similar to that of

standard features.

Klabbers and Veldhuis

In the studies conducted by Klabbers and Veldhuis (1998, 2001) a number of spectral

measures were compared for the task of detecting discontinuities. An experiment was con-

ducted in which human listeners were asked if they could detect a discontinuity in a short
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section of synthesised speech. The test database contained 2415 samples consisting of five

Dutch vowels, each of which contained a join in the vowel centre. Klabbers and Veldhuis

(Klabbers and Veldhuis, 2001) found the Kullback-Leibler distance between LPC power

spectra to be the best predictor of discontinuities. They also reported that MFCC-based

measures had a very low level of correlation with human perceptual results and for the

task of predicting audible discontinuities, were only marginally better than random guess-

ing. Overall the degree of correlation between human perceptual results and the join costs

was not high. In a further study the contribution of various sources of discontinuity were

investigated (Klabbers et al., 2007). In Klabbers et al. (2007) the novel concept of em-

ploying formant re-synthesis to manipulate individual sources of discontinuity is presented.

The results of this study indicate that formant frequency mismatch is the most significant

source of discontinuity of the sources tested, followed by mismatch in energy. Formant

bandwidths were found to be the least significant source of discontinuity.

Vepa and King

In a series of studies conducted by Vepa and King (Vepa et al., 2002; Vepa and King,

2003, 2004a, 2006), a number of join costs were investigated and a new spectral measure

tailored as a join cost for spectral continuity was proposed (Vepa and King, 2003). They

also proposed the use of Mulitple Centroid Analysis (MCA) (Crowe and Jack, 1987) as an

alternative to formant estimates. The new measure was based on the Kalman filter and is

discussed further in the section 2.2.2. In each of these studies the test database of speech

stimuli consisted of sentences of concatenated speech. The joins under examination were

contained in American English diphthongs in a word that was stressed in the sentence.

Listeners were asked to rate the degree of perceived discontinuity on a scale from 1 to 5.

The listener results were correlated with the join costs. In Vepa et al. (2002) it is reported

that the inclusion of delta features did not significantly improve performance and in some

cases caused the performance to decrease. In Vepa and King (2006) it is reported that

the LSF-based measure is most consistent with human perceptual results, although the

preference of LSFs over other measures is not consistently statistically significant.
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Stylianou and Syrdal

Stylianou and Syrdal conducted a study in which a broad range of standard speech

parametrisations were tested for the task of detecting discontinuities in concatenated speech

(Stylianou and Syrdal, 2001). The test database consisted of 2016 concatenated words and

each word contained a single join in the vowel centre. Listeners were asked to state if they

could detect a discontinuity in the test words. The perceptual results were correlated with

the candidate join costs. No measure was found to correlate satisfactorily with human per-

ception of discontinuity. The Kullback-Leibler distance between FFT-based power spectra

was found to be the most successful measure, closely followed by an MFCC-based measure.

In general non-parametric measures were found to outperform parametric methods such

as LPC and PLP. LSFs were found to be the worst performing measure.

Chen and Campbell

Chen and Campbell conducted a study in which synthesised speech samples were evaluated

by listeners (Chen and Campbell, 1999). Each speech sample was scored by the listeners

on a scale of 1 to 5 and compared with the join costs. A join cost based on the Bispec-

trum (Mendel, 1991) was found to have the best correlation with human perceptual results.

It is conjectured by Chen and Campbell that phase continuity is important and that the

Bispectrum is more successful as a join cost as it encapsulates certain phase information.

Donovan

A study conducted by Donovan (2001) found that existing measures did not correlate

satisfactorily with human perception of join quality. Donovan proposed a novel join cost

that modified standard MFCC features. The MFCCs were modified to remove any con-

tribution to the join cost computed from inaudible components of the signal. During the

computation of the MFCCs a threshold was introduced to set to zero coefficients judged

to be below the threshold of hearing. The new measure was found to correlate better with

human perception of discontinuity than any of the standard measures tested in this study.

The Kullback-Leibler was the second best measure reported. This study also reported an
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increase in performance with the inclusion of delta features and double delta features.

Bjørkan et al.

Bjørkan et al. (2005) compared a number of distance measures for the of task detecting

discontinuities in two Norwegian long vowels. Most of the measures tested produced very

similar results. A weighted linear combination of features was found to produce the best

results. F0 was found to be the best detector of discontinuities and Bjørkan et al. argue

that results being corrupted by F0 discontinuities could be a source of inconsistency in

other studies.

Additional studies

A number of additional studies have been conducted that have proposed a new measure as

opposed to systematic comparison of standard measures. In Tsuzaki and Kawai (2002) the

Auditory Image Model (AIM) is investigated as a join cost for concatenative speech syn-

thesis. AIM is a computational model of the peripheral auditory system (Patterson et al.,

1995). The results indicated an advantage over LPC-based measures, but no significant

advantage over MFCCs. In Pantazis et al. (2005) a distance measure is proposed based on

a non-linear harmonic model and amplitude modulation (AM) and frequency modulation

(FM) features. Pantazis et al. report an improvement of 90% in the detection of disconti-

nuities over the Kullback-Leibler distance between power spectra, which was found to be

the best standard measure for this databse. It should be noted that a pattern recognition

procedure was employed that used the same database for testing and training. In Pantazis

and Stylianou (2007) the same feature sets are presented and the database is split with 80%

for training and 20% for testing. The reported gains in performance are significantly less.

This study does suggest that potentially significant gains can be achieved by employing

advanced pattern recognition techniques to detect discontinuities.
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Summary

Many studies have presented conflicting results with measures that ranked highly in one

study performing poorly in another. For example, Stylianou and Syrdal found the Eu-

clidean distance between LSFs to be the worst predictor of audible discontinuity, a finding

that is inconsistent with that of Vepa and King. Similarly, Klabbers and Veldhuis reported

that the Euclidean distance between MFCCs ranked poorly as a predictor of audible dis-

continuities, although this measure ranked highly in many other studies.

It is difficult to make direct comparisons between studies as many used different strate-

gies to test the distance measures. Furthermore, each of the studies used different databases

and different criteria to rank candidate join costs. A summary of the features tested and

the best and worst performing features for each study are presented in Table 2.1.

2.2.2 Purpose-designed join costs

To date most join costs investigated have used standard speech parametrisations. Donovan

(2001) modified standard MFCCs to better suit the task of a spectral join cost although

little work has been done to develop measures specifically tailored for the problem of

representing spectral continuity. Two join costs that have been proposed and designed

specifically for the function of representing spectral continuity in unit selection synthesis

are that of Vepa and King (2003) and Bellegarda (2004).

Kalman filter based join cost

Vepa and King (2003) proposed a measure in which the Kalman filter is used to model

LSF trajectories. The Kalman filter is trained on natural speech to model the dynamic

behaviour of LSFs for each phone. Once the Kalman filter parameters are determined for

a phone it can be applied across joins contained within that phone. The prediction model

inherent in the Kalman filter is thought to reflect the underlying articulatory movement.

The trajectory created by the prediction model is used to compare against the actual

trajectories across the join. The proposed join cost is defined from the error between the

trajectories produced by the model and the actual trajectories observed across the join.
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Study Features Tested Best Worst

Klabbers and Veld-
huis (1998)

Formants, Power spec-
tra, MFCC, Likelihood
ratio, log-spectrum,
Partial Loudness

LPC power
spectra (with
KL)

MFCC

Wouters and Macon
(1998)

Cepstra,LSF, Log Area
Ratios, Itakura dis-
tance, PLP and Delta
features

Mel-cepstra +
deltas

Log Area
Ratios

Chen and Campbell
(1999)

LPC, LSF, MFCC,
Bispectrum, Mellin
Transform, Wigner
Ville Distribution,
Residual MFCC

Bispectrum Wigner-
Ville Distri-
bution

Stylianou and
Syrdal (2001)

FFT, Log FFT, PLP,
LSF, Cepstra

FFT (with
KL)

LSF

Donovan (2001) Power Spectra, Cep-
stra, Perceptually
Modified Cepstra, Log
FFT, Itakura-Saito,
Deltas, Double Deltas

Perceptually
Modified
Cepstra

Log FFT

Vepa et al. (2002) LSF, Kalman Join Cost,
MCA

LSF Kalman
Join Cost

Tsuzaki and Kawai
(2002)

AIM, LPC, MFCC AIM LPC

Bjørkan et al. (2005) Power spectra, LPC
cepstra, MFCC, Pitch-
synchronous cross cor-
relation

Weighted
linear com-
bination of
features

Pitch-
synchronous
cross corre-
lation

Table 2.1: Perceptual studies to evaluate join costs, summarising the features tested and
the best and worst features for each study.
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When the Kalman filter is applied across a phone containing a join, the model trajectories

closely match the measured trajectories until a join is encountered. The magnitude of

the mismatch between the model trajectory and the observed trajectory reflect the lack of

continuity of the underlying articulator dynamics in the speech production system. This

measure was found to correlate with human perceptual results although it did not provide

a better correlation then standard spectral representations such as LSFs (Vepa and King,

2006).

Bellegarda’s modal decomposition

Bellegarda (2004) developed a join cost inspired by latent semantic analysis. The analysis

procedure operates directly on the speech database to produce a transform that is tailored

to represent continuity at the join. The central concept is to develop a transform matrix

from the speech data, using Singular Value Decomposition (SVD) analysis (Golub and Van

Loan, 1996), that can be used as an alternative to Fourier analysis. Bellegarda refers to

this as a ‘Boundary Centric’ approach. The following steps outline the key components of

this method:

• A matrix is constructed consisting of single pitch periods of speech. Each of these

frames straddle a unit edge.

• SVD analysis is performed on the matrix of speech frames.

• The left modal matrix resulting from SVD analysis is adopted as the transform

matrix.

• Each speech frame representing a unit is transformed by the left modal matrix re-

sulting from SVD analysis.

• A distance measure is computed from the transformed features using the Cos dis-

tance (Moon and Stirling, 2000).

A diagram illustrating the modal decomposition is illustrated in Fig. 2.5. In this ap-

proach the basis functions of the transform derived from SVD analysis are directly de-
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Figure 2.5: Block diagram illustrating Bellegarda’s modal decomposition-based join cost.

pendent on the speech units at unit boundaries. Bellegarda argues that such a tailored

transform is inherently more suited to the task then general purpose Fourier analysis. It is

also argued that as the transform is a real transform, it does not separate into phase and

magnitude components, like Fourier analysis. As a result the phase information is not dis-

carded; as with conventional spectral analysis of speech. Bellegarda has reported success

with this method in unit selection synthesis (Bellegarda, 2006, 2004) and unit boundary

training (Bellegarda, 2007).

2.2.3 Spectral smoothing

A number of studies have been conducted to develop algorithms that smooth the spectra

across the join between concatenated units (Dutoit, 2001; Chappell and Hansen, 2002;

Vepa and King, 2006). These algorithms are referred to as spectral smoothing techniques.

The objective is to smooth the parameters across the join to remove discontinuities in the

concatenated speech. The problem of defining a perceptually salient join cost is closely

related to the problem of developing an effective spectral smoothing technique. To define

an effective join cost requires knowing what features of the signal cause discontinuities.

To perform spectral smoothing the discontinuous features are interpolated across the join
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to smooth the transition with the aim of removing the discontinuity. Without a complete

understanding of what gives rise to the discontinuity it is difficult to determine what

features of the signal should be modified.

LSFs have good interpolation properties and Dutoit (2001) demonstrated that they are

a suitable choice for producing smoother spectral transitions between units. In Chappell

and Hansen (2002) a number of different spectral smoothing algorithms are compared.

Optimal coupling (Conkie and Isard, 1997) was found to be the most successful of the

techniques considered. In optimal coupling the boundaries of the units are varied such

that the unit edges can be selected to minimise any mismatch between the units. This

technique is critically dependent on the choice of join cost used to determine the optimum

location for the join. It was concluded that no algorithm tested was consistently successful

as a spectral smoothing technique to remove discontinuities. In some cases the smoothing

algorithm decreased the audibility of a discontinuity and in other cases caused the quality

to degrade further. It was also reported that a suitable measure of discontinuity is required

to direct the smoothing algorithm. In Vepa and King (2006) a spectral smoothing technique

based on the Kalman filter is reported. This technique is compared with linear interpolation

of LSFs. Interpolation of LSFs produced the best results and in a number of instances no

smoothing was preferred to either smoothing technique.

No study to date has reported a spectral smoothing algorithm that is satisfactory. This

problem depends critically on understanding spectral discontinuity and defining a suitable

join cost to represent spectral discontinuity.

2.3 Speech perception

A mutually informing relationship has existed between developments in speech perception

and speech synthesis since the success of early formant synthesisers. Speech synthesis

provides a framework to create speech stimuli to identify specific perceptual phenomena.

For example Gobl and Nı́Chasaide (2003) used a formant synthesiser to investigate the

acoustic correlates of emotionally affective speech. Klabbers et al. (2007) used a similar
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framework to determine the relative importance of independent sources of discontinuity.

Understanding the underlying perceptual processes at work when humans detect discon-

tinuities in concatenative speech is another example of the relationship between synthesis

and perception. In this section speech perception and the human auditory system are

reviewed and discussed in relation to human perception of discontinuities in concatenated

speech.

To date, strategies for investigating join costs have predominantly focused on standard

speech representations. These parameterisations have largely been developed for appli-

cations like automatic speech recognition (ASR) and speech coding. The results of these

studies have been disappointing suggesting that these techniques are fundamentally limited.

The objective here is to identify auditory mechanisms that may be potentially relevant to

the detection of discontinuities. This knowledge can provide a deeper understanding of the

problem and guide the development of new spectral join costs. In the following sections

key features of the peripheral and central auditory systems are presented and processes

specifically related to dynamic processing and event detection are highlighted.

2.3.1 The peripheral auditory system

When a human listener detects a sound it is first processed by the peripheral auditory

system. The peripheral auditory system consists of the outer, middle and inner ear and is

connected to the central auditory system by the auditory nerve. The primary components

of the peripheral auditory system are depicted in Fig. 2.6. The objective of the peripheral

auditory system is to transform the incoming acoustic signal into a form suitable for pro-

cessing in the central auditory system. When speech is sensed by a human, the peripheral

auditory system encodes the signal from an acoustic signal into a neural firing pattern

in the auditory nerve. The encoding process facilitates subsequent higher level decision

making processes in the central auditory system and retains critical information for speech

perception. A number of key stages in the peripheral auditory system are of interest with

respect to gaining deeper insight into human perception of discontinuities.

• Pre-cochlear processing: The stages in the peripheral auditory system that precede
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Figure 2.6: Diagram of the human ear, after Flanagan (1972).

the cochlea are typically modelled as a single functional unit. This system of phys-

iological elements is effectively modelled from a signal processing perspective by a

single filter (Patterson et al., 1995).

• Frequency selectivity: The basilar membrane is responsible for separating an incom-

ing signal into a set of distinct overlapping frequency bands (Flanagan, 1960, 1972).

Different locations along the basilar membrane respond to input stimuli of distinct

frequencies (von Békésy, 1960) creating a frequency-place transformation. Each lo-

cation behaves similar to a bandpass filter. The frequency decomposition of the

peripheral auditory system is often modelled in signal processing applications as a

filterbank of bandpass filters (Meddis, 1999; Lyon and Mead, 1988). Each filter in

the filterbank represents an auditory channel. The bandwidth of each filter increases

with frequency, modelling the increased frequency discrimination at low frequencies

that decreases at higher frequencies. Most filterbank models employ linear filters, but

this is a simplifying approximation as the non-linear nature of the basilar membrane

transformation is not completely understood and is difficult to model. The output

of each frequency band is characterised by its instantaneous frequency, phase and

amplitude envelope, each of which excite particular neural firing patterns for higher

level auditory processing.
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• Neural encoding: After the incoming acoustic signal is decomposed into its con-

stituent frequency components, hair cells located on the basilar membrane are re-

sponsible for transforming mechanical vibrations into electrical signals that are trans-

mitted to the auditory nerve (Delgutte, 2002). Hair cells are categorised as inner and

outer hair cells depending on their location, see Fig. 2.7. Inner and outer hair cells

perform different tasks. Inner hair cells act as sound transducers and generate the

neural signal causing neural spikes to be generated in the auditory nerve fibre. Outer

hair cells play an accompanying role to facilitate the inner hair cell in reliably detect-

ing the incoming signal and can be thought of as an amplifier (Ashmore and Gale,

2004). Movement of the basilar membrane causes movement in the inner and outer

hair cells that in turn triggers neurotransmitters which create an electrical impulse

in the auditory nerve. A number of significant alterations occur in this transfor-

mation. The inner hair cell has characteristics that are critical in understanding

auditory processing of non-stationary acoustic signals. The hair cell is known to

exhibit adaptation behaviour ‘which correlates to the way attention is directed in an

auditory scene’ (Purwins et al., 2000). Computational models of the hair cell have

been developed by Meddis (Meddis et al., 1990). The auditory image model (AIM)

(Patterson et al., 1995) employs the Meddis hair cell model.

• Adaptation: The auditory system is known to display specific behaviour to deal

with transient signals. When a new stimulus is detected an auditory nerve will fire

at a high rate for approximately 5 to 15 ms (Smith, 1977) and this rate decreases

steadily over the next 100 ms. The decay in the discharge rate is referred to as

adaptation. Adaptation can occur on different time scales ranging from a few ms to

several seconds and is often categorised into short-term and long-term adaptation.

Short-term adaptation is assumed to be more relevant in the detection of spectral

discontinuity. Adaptation enhances spectral contrast in a signal (Delgutte, 2002) that

contains spectral dynamics. This has been demonstrated in numerous psychoacoustic

experiments (Summerfield et al., 1986). Hair cells exhibit adaptation.
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Figure 2.7: Diagram of the basialr membrane, hair cells and auditory nerve, after Flanagan
(1972).

The average discharge rate of impulses in the auditory nerve and the temporal dis-

charge patterns have been demonstrated to convey information relating to formant struc-

ture (Young, 2007). For a given auditory channel the discharge pattern contains informa-

tion relating to the magnitude of the stimulus, the temporal envelope, the frequency and

transient behaviour in the channel. The auditory nerve transmits this information to the

central auditory system for further high level processing.

2.3.2 The central auditory system

The central auditory system is supplied with information from the peripheral auditory

system by the auditory nerve. The peripheral auditory system has transformed the signal

and decomposed it in terms of its frequency content, amplified features of interest and dis-

carded certain information. This information is presented to the central auditory system in

which a large number of high level tasks critical to sound perception are performed (Breg-

man, 1990; Moore, 2004), for example source separation, sound interpretation etc. The

central auditory system has many processing units including; the cochlear nucleus, inferior

colliculus and the primary auditory cortex, each of which perform different tasks. The

constituent blocks of the peripheral auditory system are connected in series. In contrast,
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the central auditory system has a much more complicated topology with many parallel

interconnections and significant coupling between different locations.

When firing patterns produced from acoustic transients in the peripheral auditory

system pass up the auditory nerve to the central auditory system many complex processes

act on the signal. A number of these processes are specifically related to the detection and

enhancement of spectral changes in the signal (Quatieri, 2002; Yost, 2007). Such processes

are likely to play a significant role in the detection of discontinuities. For example, onset

cells occur in the cochlear nucleus and in most higher level locations in the auditory system.

These cells process transients and fire when an onset is detected (Quatieri, 2002). It has

been demonstrated that approximately one third of the neurons in the auditory cortex

will only fire when the auditory system is stimulated by a transient acoustic signal (Yost,

2007).

Lateral inhibition occurs in the primary auditory cortex and is associated with process-

ing dynamic features in the auditory signal (Pickles, 1988; Yost, 2007). Lateral inhibition

enhances changes in a signal along the frequency axis when neighbouring neurons are

coupled such that one neuron can inhibit the firing rate of the other when a significant

difference occurs in their inputs. Lateral inhibition occurs in the antero-ventral cochlear

nucleus (Quatieri, 2002). Results have been reported that suggest lateral inhibition is

active in the detection of sudden changes in frequency (May et al., 1999).

Studies into the how the brain processes sudden changes in auditory stimulus have

gained momentum over the last decade as a result of non-invasive electroencephalogram

(EEG) and magnetoencephalogram (MEG) measurements. The phenomenon of mismatch

negativity (MMN) has received significant attention and is used as a means to investigate

how the auditory system responds to changes in the auditory environment (Naatanen,

1995). MMN is the term used to describe the electrical response in the auditory system

to abrupt changes in a stimulus and is characterised by negative electrical response in the

brain due to any discriminable change detected in a repetitive sound. In Kraus et al. (1992)

it is stated that ‘The MMN appears to be an extremely sensitive electrophysiologic index

of minimal acoustic differences in speech stimuli’. In May et al. (1999) it is argued that
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MMN is due to both adaptation and lateral inhibition. MMN gives an indication of the

nature and complexity of the processes involved in processing sudden spectral changes in

the auditory system.

Much is unknown about the processing in the central auditory system. The level of

processing is complex and deviates significantly from the strategies adopted in conven-

tional signal processing feature extraction algorithms. Much of the processing is by neural

circuits with a complex network of coupled interconnections and exhibits highly non-linear

behaviour. Conventional speech feature extraction paradigms have evolved from linear sys-

tem theory and do not relate well to processing in the central auditory system, although

they do relate to certain aspects of processing in the peripheral auditory system.

2.3.3 Auditory processing and discontinuity detection

When a spectral discontinuity is detected in concatenated speech it is due to the incom-

patibility of the spectra on either side of the join. Signal components can change in a

number of ways at the join; an abrupt termination of signal components, an abrupt onset

of signal components and more subtle changes in signal components sustained across the

join. In this thesis the detection of a discontinuity is interpreted as the human auditory

system identifying a new auditory event. This could occur from an abrupt change in the

amplitude, phase or instantaneous frequency in an auditory channel. The central audi-

tory system will then process the change and identify if it is compatible with the existing

auditory stream or if it signifies an independent event (Bregman, 1990).

Other approaches could be adopted to relate existing perceptual models to the de-

tection of discontinuities. For example, auditory masking models have been found to be

highly successful in speech coding and could be developed to relate to the detection of dis-

continuities. In auditory masking a dominant signal component can mask another weaker

component if the components are close in either time or frequency. The auditory processes

that give rise to masking, and in particular temporal masking, may provide further under-

standing of discontinuity detection in the auditory system. No existing models of auditory

masking (Yost, 2007; Strope and Alwan, 1997; Jesteadt et al., 1982) where found to be
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Figure 2.8: Diagram illustrating the peripheral and central auditory system, the nature of
the processing and the role fulfilled by each.

readily applicable as a means to relate to the detection of discontinuities and it was decided

to pursue event detection as a model to guide the development of new measures.

The detection of an auditory event invoked by an abrupt change in spectra involves

high level neural processing. Processing at this level is not completely understood and is

considerably more involved than conventional speech feature extraction techniques. The

model adopted in this thesis is to interpret the peripheral auditory system as a feature ex-

traction phase and the central auditory system as an advanced pattern recognition system

for detecting abrupt spectral changes. This is illustrated in Fig. 2.8. This model provides a

systematic way to break down the task of developing a system to detect discontinuities into

two distinct phases, each of which has a parallel in the auditory system: a feature extraction

module that corresponds with the peripheral auditory system and a pattern recognition

module that corresponds with the central auditory system. Knowledge of the neural en-

coding process in the peripheral auditory system can serve as a guideline in deciding what

information should be retained by the feature extraction algorithm. The complexity of the

processes in the central auditory system suggests that a sophisticated algorithm is required

in order to successfully detect spectral discontinuities using the information provided by

the feature extraction component.
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2.4 Summary and conclusion

In this chapter the literature in three key areas is reviewed: speech synthesis technology,

perception of join costs and human auditory perception. A number of speech synthesis

technologies were reviewed, with a particular emphasis on unit selection concatenative

synthesis. The problem of defining a suitable join cost for unit selection was discussed.

Previous studies investigating perceptually salient join costs for unit selection synthesis

were reviewed. No obvious conclusion can be drawn from these studies as the results are

largely inconsistent. The only consistent aspect of these studies is that no join cost re-

ported has a satisfactory degree of correlation with human perception of discontinuity in

concatenated speech. An overview of the human auditory system was presented. Features

of the auditory system relevant to the detection of discontinuities were highlighted, includ-

ing; frequency decomposition, adaptation, lateral inhibition and other complex and less

well-understood processes in the central auditory system.

To develop a system that agrees with human perception of discontinuity will require

an approach that extracts the appropriate features from the speech signal and performs

pattern recognition at a sufficiently sophisticated level to detect discontinuities. Feature

extraction should mimic key aspects of the peripheral auditory system to ensure that

perceptually meaningful information is employed in the join cost. A framework for fur-

ther processing of the features to discriminate between continuous and discontinuous joins

should have sophistication and complexity similar to the processes that are activated in

the central auditory system for the detection of sudden spectral transitions, in order to

have scope to potentially model this behaviour.

Current join costs fail to produce a satisfactory level of correlation with human per-

ception, this is well documented in the studies to date. A mismatch exists between con-

ventional speech feature extraction algorithms and the processes in the auditory system to

process transients. Considering this a number of possibilities exist to explain why current

join costs under perform.

• The information extracted is insufficient to represent spectral continuity at the join.
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This would indicate that alternative features need to be extracted. Almost all features

tested to date are derived from the magnitude spectrum. Perceptual cues encoded in

the neural firings however also relate to spectral dynamics and the phase spectrum

(Patterson, 1987; Furui, 1986a; Yost, 2007).

• The computation of the Euclidean distance between features is inconsistent with the

processes that detect sudden spectral change in the auditory system. The Euclidean

distance or a similar metric is employed in most existing systems. Complex neu-

ral processes are used to identify new events in the central auditory system. The

Euclidean distance in no way models this behaviour and could not be expected to

produce similar results.

Considerable scope exists to improve join costs both in terms of feature extraction and pat-

tern recognition. The feature extraction should ideally represent the information encoded

by the peripheral auditory system that is passed on to the auditory nerve. The pattern

recognition component should ideally have sufficient scope to model the complex neural

circuitry involved in processing transients and detecting events in the central auditory

system.
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Chapter 3

Perceptual Experiment

In order to investigate human perception of discontinuity a database of concatenated speech

was created. A perceptual experiment was conducted using the database. The objective

was for human listeners to label each concatenation continuous or discontinuous. This

enabled the creation of a framework to correlate human perception of discontinuity with

objective measures and to thereby quantify the suitability of each candidate join cost. This

chapter contains an overview of the issues involved in designing a perceptual experiment to

evaluate join costs. The details regarding the construction of the test corpus and perceptual

listening test are detailed and the subsequent results are presented and analysed. The

analysis procedure to relate human perceptual results with the candidate join costs is

presented. This procedure is also employed in this chapter to analyse the test database for

known sources of discontinuity such as F0 and energy mismatch.

3.1 Overview and literature review

A number of issues arise in designing a perceptual experiment to evaluate spectral join

costs.

• How to construct a database of test stimuli that the subjects are to judge based on

the perceived level of discontinuity.

• The structure of the test utterances, e.g. words, phrases or sentences.
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• Isolating spectral mismatch as the only source of discontinuity.

• The challenge of obtaining consistent, reliable perceptual results.

• Relating human perceptual results with the proposed candidate join costs.

3.1.1 Stimuli construction

Two dominant approaches exist for constructing a database of test stimuli for evaluating

join costs. In the first approach a particular join cost is employed in a synthesis system

to generate a target test utterance. This test utterance is then evaluated in terms of

quality by human listeners and compared with a baseline system (Chen and Campbell,

1999). The primary limitation of this method is that separate perceptual listening tests

are required to evaluate the performance of each candidate join cost. Other factors that

influence this approach are the size of the database and the variability of both prosodic

and spectral parameters. For example, the spectral match may improve but it may result

in a degradation in the prosodic match and the perceptual results may not reflect the

improvement in the spectral match.

The second approach is to define a closed set of natural units and to construct the test

stimuli exclusively from these units (Klabbers and Veldhuis, 1998; Wouters and Macon,

1998; Stylianou and Syrdal, 2001; Bjørkan et al., 2005). Since the units for concatenation

are predetermined, the cost function is not required for unit selection. The perceptual

listening test needs to be completed only once and the results can be reused for testing

any number of potential join costs. A join cost can be computed between each pair of

concatenated units and in turn can be evaluated by correlating the join cost with the

perceptual results.

3.1.2 Utterance length

In creating the test stimuli there are a number of factors that need to be considered

regarding the structure of the utterance. For example test sentences were used by Vepa

et al. (2002) and Chen and Campbell (1999), while Founda et al. (2001) employed phrases,
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Stylianou and Syrdal (2001) and Wouters and Macon (1998) employed words and both

Klabbers and Veldhuis (2001) and Donovan (2001) employed even shorter duration stimuli

of 130 and 120 ms respectively. Employing longer utterances allows the impact of the

wider context to be accounted for but has the disadvantage that it becomes more difficult

for the listener to focus on the impact of an individual join. Choosing shorter utterances

reduces the impact of neighbouring contexts and makes it easier for the listener to zero in

on the join. It is unclear what role neighbouring contexts contribute to the perception of

discontinuities. Depending on how the utterance is created, a longer utterance may contain

many joins. Discontinuities from a number of joins in the same utterance make it difficult

for listeners to judge the continuity of an individual join.

3.1.3 Isolating the source of discontinuity

A major difficulty in testing the perception of discontinuity is isolating a single source of

discontinuity in the test database. Signal processing techniques have been employed in

some studies to remove other sources of discontinuity (Klabbers and Veldhuis, 1998; Belle-

garda, 2004), such as F0 and energy mismatch in order to isolate spectral mismatch as the

only potential source of discontinuity. However signal processing may degrade the quality

of the speech stimuli causing it to sound less natural and may introduce artefacts. This in

turn may influence the perceptual results of the human listener. An alternative approach

is to analyse the test database to identify discontinuous joins that have a high probability

of arising from a known alternative source of discontinuity. For example, in Bjørkan et al.

(2005) test stimuli with large F0 mismatch are removed from the database.

3.1.4 Perceptual results

In order to generate perceptual results, human listeners must provide a response to the

level of discontinuity they perceive for each test stimulus. Typically in the case where a

closed set of units were employed to construct the test stimuli each listener is asked to judge

a stimulus as continuous or discontinuous or alternatively to rate the perceived degree of

discontinuity on a scale. Gathering accurate results is a difficult and laborious task, as
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listeners may respond inconsistently particularly when rating degrees of discontinuity on a

scale. Donovan (2001) for example, reports a particularly low correlation (a mean listener

to listener correlation of 0.39) in a study where listeners rated the degree of discontinuity

on a scale. Providing suitable references for continuous and discontinuous speech at each

level of the scale may reduce this problem. Deciding if a join is continuous or discontinuous

is easier than rating the degree of discontinuity.

3.1.5 Relating perceptual results to join costs

Once perceptual results have been successfully collected a strategy is required to relate

the perceptual results with distance measures computed from the proposed join costs. For

the case of perceptual results that rate the degree of discontinuity on a scale a correlation

coefficient is computed to evaluate the correlation between the proposed join cost and the

perceptual results. When the perceptual results are a binary continuous/discontinuous

classification, receiver operator characteristic (ROC) curves are typically used to evaluate

the performance of the candidate join costs (Klabbers and Veldhuis, 2001; Stylianou and

Syrdal, 2001).

Klabbers et al. (2007) provides a number of guidelines to ensure more reliable perceptual

results drawing on experience from previous studies. These can be summarised as follows:

• Listeners should judge one join at a time. When presented with an utterance that

contains more than one concatenation, the perception of one discontinuity can have

an effect on judging adjacent joins.

• Providing a reference stimulus produces more reliable results. Without a reference

listeners may rely on preceding stimuli as a reference point for both continuous and

discontinuous speech.

• Try to isolate a single source of discontinuity. A number of known sources of dis-

continuities exist; focusing on one source of mismatch at a time will simplify the

experiment and analysis.

A summary of the approaches adopted in previous studies is presented in Table 3.1.
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Study Test stimuli Perceptual re-
sults

Evaluation

Klabbers and Veldhuis
(1998)

2248 vowels: /a:/,
/A/, /i/, /I/, /u/,
SAMPA notation

Continuous or
discontinuous
binary choice

ROC curves

Wouters and Macon
(1998)

166 English words
vowels: /aa/, /ae/,
/iy/, /uw/, OGI-bet
notation

Rate degree of
discontinuity
on 5 point
scale

Correlation
coefficient

Chen and Campbell
(1999)

6 Japanese sentences Rate degree of
discontinuity
on 5 point
scale

Correlation
coefficient

Stylianou and Syrdal
(2001)

2016 English words
MRT word list

Continuous or
discontinuous
binary choice

ROC curve,
Bhat-
tacharyya
distance

Donovan (2001) 112 English CV pairs
voiced speech phone
classes

Rate degree of
discontinuity
on 5 point
scale with
MOS

Correlation
coefficient

Founda et al. (2001) Greek phrases Choose prefer-
ence

Percentage
of prefer-
ences

Vepa et al. (2002) 5 English sentences
diphthongs: /ey/,
/ow/, /ay/, /aw/,
/oy/

Rate degree of
discontinuity
on 5 point
scale

Correlation
coefficient

Tsuzaki and Kawai
(2002)

438 Japanese stimuli Distinguish
natural and
synthetic
stimuli

Percentage
of prefer-
ences

Bellegarda (2004) Concatenated words;
vowels and conso-
nants

Compare two
utterances and
rank based on
discontinuity

Number of
preferences

Bjørkan et al. (2005) Norweigian long
vowels: /A:/ and
/e:/, SAMPA nota-
tion

Continuous or
discontinuous
binary choice

ROC curves

Table 3.1: Previous perceptual studies to evaluate join costs.
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3.2 Approach adopted

Based on the the points noted in section 3.1, the following approach was adopted in order

to construct a perceptual experiment with the aim of achieving consistent and reliable

results, enabling the establishment of a framework to correlate human perceptual results

with the proposed join costs.

• The database of test stimuli should be constructed from a closed set of natural speech

units such that any number of join costs can be tested with the same perceptual

results.

• The test database should exhibit a broad phonetic coverage containing joins in many

vowel types within varying contexts.

• Each test utterance should be a single word with a single join contained in the vowel

centre. This allows listeners to focus on one join at at time and reduces the distraction

due to the pitch contour and linguistic context associated with longer utterances.

• Listeners should be required to listen to each test word and judge it continuous or

discontinuous. Minimising the complexity of the task for the listener ensures more

consistent and reliable results between listeners. Listeners will be allowed to listen

to the test words as many times as they require.

• Reference words should be provided in order to promote consistency.

• Minimal signal processing should be applied in order to retain the natural quality of

the speech.

• Incidences of discontinuities that have a high probability of being due to F0 or energy

discontinuity should be identified and removed from the test database in order to

isolate a set of stimuli that contain spectral discontinuities.
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3.2.1 Test corpus

A database of test stimuli was constructed adopting the approach of Stylianou and Syrdal

(2001). The inventory of units consisted of 300 words recorded from an adult male. The

words recorded are presented in Table 3.2 and are taken from the Modified Rhyme Test

(MRT) (House et al., 1963). The inventory of words was recorded in a hemi-anechoic

recording studio at a sampling frequency of 16 kHz. The 300 word inventory consisted of

50 sets of 6 words. Almost all of the words have the structure of an initial consonant,

vowel and final consonant. Two sets are vowel final and a small number of words end in a

consonant cluster. Within each set the words share the same vowel nucleus and differ in

the initial or final consonant (the onset and coda). For example, set 1: ‘went, sent, bent,

dent, tent, rent’, varies in the initial consonant and set 3: ‘pat, pad, pan, path, pack, pass’,

varies in the final consonant.

The database of 300 words was used to construct a test database of concatenated words.

Each of the 300 words was divided into two half-words. For each of the 50 sets this results

in 12 half words, 6 left half words and 6 right half words, which made up the left and right

units respectively. Every possible combination within a set of left and right units were

concatenated, yielding 36 test words for each set and 1800 test words in total. Within

each set of 36 concatenated words, 30 result from left and right units not originating in the

same word. The remaining 6 concatenated words were created from units originating in

the same word and are resynthesised versions of the original recordings. Only test words

containing left and right units originating from different recorded words have the potential

to contain audible discontinuities, 1500 in total. The 300 resynthesised words were used

as control words to validate each listeners perceptual results. If a listener judged a control

word as discontinuous that listeners results for that set were rejected.

The test words were concatenated using pitch synchronous overlap and add that ex-

ploited pitch marking to maintain F0 continuity across the join. Pitch continuity must be

maintained across the join otherwise a discontinuity will occur that is the result of a bad

concatenation procedure as opposed to incompatible speech units. The pitch marks were

obtained using Praat software (Boersma and Weenink, 2005). This simple concatenation
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Set 1 went sent bent dent tent rent
Set 2 hold cold told fold sold gold
Set 3 pat pad pan path pack pass
Set 4 lane lay late lake lace lame
Set 5 kit bit fit hit wit sit
Set 6 must bust gust rust dust just
Set 7 teak team teal teach tear tease
Set 8 din dill dim dig dip did
Set 9 bed led fed red wed shed
Set 10 pin sin tin fin din win
Set 11 dug dung duck dud dub dun
Set 12 sum sun sung sup sub sud
Set 13 seep seen seethe seek seem seed
Set 14 not tot got pot hot lot
Set 15 vest test rest best west nest
Set 16 pig pill pin pip pit pick
Set 17 back bath bad bass bat ban
Set 18 way may say pay day gay
Set 19 pig big dig wig rig fig
Set 20 pale pace page pane pay pave
Set 21 cane case cape cake came cave
Set 22 shop mop cop top hop pop
Set 23 coil oil soil toil boil foil
Set 24 tan tang tap tack tam tab
Set 25 fit fib fizz fill fig fin
Set 26 same name game tame came fame
Set 27 peel reel feel eel keel heel
Set 28 hark dark mark bark park lark
Set 29 heave hear heat heal heap heath
Set 30 cup cut cud cuff cuss cub
Set 31 thaw law raw paw jaw saw
Set 32 pen hen men then den ten
Set 33 puff puck pub pus pup pun
Set 34 bean beach beat beak bead beam
Set 35 heat neat feat seat meat beat
Set 36 dip sip hip tip lip rip
Set 37 kill kin kit kick king kid
Set 38 hang sang bang rang fang gang
Set 39 took cook look hook shook book
Set 40 mass math map mat man mad
Set 41 ray raze rate rave rake race
Set 42 save same sale sane sake safe
Set 43 fill kill will hill till bill
Set 44 sill sick sip sing sit sin
Set 45 bale gale sale tale pale male
Set 46 wick sick kick lick pick tick
Set 47 peace peas peak peach peat peal
Set 48 bun bus but bug buck buff
Set 49 sag sat sass sack sad sap
Set 50 fun sun bun gun run nun

Table 3.2: MRT word list recorded for unit inventory.
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Figure 3.1: Bar chart indicating the number of occurrences of each phone type containing
a concatenation in the 1800 word database of test stimuli.

procedure was adopted to minimise the complexity of the signal processing such that any

acoustic artefacts that arose were due to the incompatibility of the units and not due to

signal processing artefacts or bad concatenation procedure. The overlap and add method

will smooth the spectrum between the units in the region of overlap. This may remove

some potential discontinuities from the test database.

3.2.2 Phonetic coverage

In the test database all the joins are contained in vowel centres. The number of incidences

of joins by each vowel type is indicated in Fig. 3.1. The vowels are labelled with ARPA-

BET notation (Huang et al., 2001). A phonetic description of each vowel type is given

in Table 3.3. A number of previous studies have reported the rate of occurrence of dis-

continuities based on the phone class or phonetic description. For example Klabbers and

Veldhuis (2001) found significantly more discontinuities occurred in /u/ (73%) than in /a:/

(17.1%). Syrdal (2001) found that discontinuities were more likely to occur in diphthongs,

an idea that was further explored in the work of Vepa et al., their study (Vepa and King,

2006) deals exclusively with joins contained in diphthongs.

The number of occurrences of each context, as defined by the the onset and coda, of
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ARPABET Vowel class Description No. words Example
/iy/ Long monophthong Front close 252 feel
/aa/ Back open 108 dark
/ao/ Open mid back round 36 law
/ae/ Front open 216 pat
/eh/ Short monophthong front open-mid 144 ten
/ih/ Front close 396 hit
/ah/ Open mid-back 252 cut
/uh/ Back close mid round 36 book
/oy/ Diphthong /ao/ to /ih/ 36 oil
/ow/ /eh/ to /ih/ 36 hold
/ey/ Front close-mid 288 day

Table 3.3: Phonetic description and the number of occurrences of each phone in the
database containing a join.

ARPABET Voicing Phone class No. in onset No. in coda
/m/ Voiced Nasal 36 36
/n/ 0 144
/ng/ 0 36
/l/ Voiced Liquid 36 144
/r/ 36 36
/ey/ Voiced Vowel 0 36
/ao/ 0 36
/d/ Voiced Plosive 72 72
/b/ 108 0
/g/ 0 36
/p/ Unvoiced Plosive 180 72
/t/ 72 108
/k/ 108 72
/s/ Unvoiced Fricative 180 72
/f/ 36 0
/hh/ Unvoiced Glottal fricative 36 0

Table 3.4: Description of each phonetic context in the database that surrounds the vowel
centre containing the join on the left, onset, and right hand side, coda.
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Figure 3.2: Formant chart computed from the unit inventory employing formant estimates
from the centre of the voiced region for each of the 300 recorded words.

each test word is presented in Table 3.4. The context surrounding the vowel containing

the join is important as co-articulation will influence the realisation of the vowel nucleus.

Syrdal (2001) reported that discontinuities were more likely to occur in joins surrounded

by the sonorants /l, r, m, n, ng/.

3.2.3 Speaker and speaker characteristics

The recorded speaker was an adult male with an Irish accent and was a non-professional

speaker. The speaker was requested to deliver the words for recording in a neutral voice.

No carrier sentence was employed for the recording. The speaker was also requested to,

within reason, maintain consistent pitch and loudness for each of the six words within any

given set. This was somewhat facilitated by the rhyming nature of the words within each

set.

Natural variations occur in speech during the production of a given phoneme and

the physiology of a given speaker will impose the characteristics of that speaker on the

utterance produced. For example formant values vary depending on the length and shape

of the vocal tract of the speaker. A formant chart computed from the the inventory of 300

words recorded is illustrated in Fig. 3.2. This illustrates the location of the formants for the
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Vowel σ(F1) σ(F2)
/iy/ 38.995 36.883
/aa/ 74.189 108.635
/ao/ 14.628 25.712
/ae/ 121.351 103.709
/eh/ 63.021 335.653
/ih/ 62.12 540.644
/ah/ 56.165 45.9817
/uh/ 29.383 227.404
/oy/ 57.705 79.876
/ow/ 28.577 56.822
/ey/ 41.385 102.617

Table 3.5: Indicating the standard deviation of F1 and F2 for each vowel type in the unit
inventory.

speaker with respect to vowel coverage in the database. Formants were computed at the

unit boundaries (the vowel centre of each recorded word) over a 40ms Hanning window.

The formant estimates were computed from the poles of a 16th order all-pole LPC model.

The LPC analysis was carried out using the covariance method (Hayes, 1996). The raw

speech was pre-emphasised with the filter H(z) = 1 − 0.95z−1. The formant values in

Fig. 3.2 represent the mean formant value computed for each vowel type in the database.

For a given speaker variations will also occur. The standard deviation, σ, computed for F1

and F2 for each vowel type is indicated in Table 3.5. Notable variance exists for a number

of vowels in both F1 and F2. If a speaker exhibits significant variance in the formant

structure of a given vowel, joins made within that vowel set have a greater potential to

exhibit spectral mismatch.

A pitch histogram for the speaker is given in Fig. 3.3. F0 analysis was performed using

the YIN algorithm (de Cheveigné and Kawahara, 2002) with a window length of 40 ms.

Pitch was estimated throughout the voiced region of each of the 300 word inventory. These

estimates were used to construct the pitch histogram in Fig. 3.3. The pitch of the speaker

is important from a perceptual point of view. Syrdal (2001) found the rate of occurrence

of discontinuities for male and female speakers to be significantly different, with a higher

occurrence for female speech. The spacing of harmonics in the frequency domain depends
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Figure 3.3: Pitch histogram computed from all pitch estimates throughout the voiced
region of the 300 recorded words.

directly on the pitch and dictates the number of harmonics within each auditory channel

of a human listener. Harmonic spacing has proven to be important in other perceptually

driven speech applications. For example in the speech coding literature the perceptual role

of the phase spectrum has been documented to be considerably different for both male

and female speech due to differences in pitch (Skoglund and Kleijn, 2000). Kim (2001)

proposes a model based on the number of harmonics in a specific critical band of the

auditory spectrum to explain the effect of pitch on phase perception between high and low

pitch speakers.

3.3 Subjective test

The perceptual test was divided into subtests, each containing 36 concatenated words. At

the start of a subtest the listener was presented with examples of audible discontinuities

for reference. The test required the listener to make a forced decision for each test word,

continuous or discontinuous. The listener was provided with the original recorded words

that were used to create each of the concatenated words for comparison, which served as

a reference for continuous natural speech. Each test word could be repeated as often as
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the listener requested. Each subtest contained six control words to validate each listener’s

results. Each listener undertook the test in a quiet environment using headphones. Twelve

listeners in total contributed perceptual results with coverage of three listeners per sub-

test. A majority scoring system was employed to decide if a test word was continuous or

discontinuous.

Listeners were asked not to perform more than two subtests in succession. Despite

this listeners still reported that detecting discontinuities in the test words provided was a

difficult and laborious task.

3.3.1 Results of the perceptual experiment

From the perceptual experiment a total of 434 discontinuities were detected by the human

listeners after employing the majority scoring system on the individual perceptual results.

Of the words judged to be discontinuous by the majority voting system, 66.13% of the words

were unanimously judged disontinuous and the remaining 33.87% were judged discontinous

on the basis of having a majority of listeners judging the word discontinuous. This leaves a

total of 1366 continuous words deemed to be continuous. Of the continuous words 82.87%

of them were unanimously judged continuous by the listeners. The remaining 17.13%

were deemed continuous on the basis of having a majority of listeners judging the word

continuous.

3.3.2 Phonetic analysis of results

The number of discontinuities detected by vowel type is listed in Table 3.6. Although no

distinct and obvious pattern emerges a number of points can be noted.

• The largest percentage of discontinuities across all vowel is for the diphthong /oy/.

Previous studies have reported that discontinuities are more likely to occur in diph-

thongs than in monophthongs due to the spectral dynamics in diphthongs.

• The diphthong /ow/ is the only vowel in the database to contain zero discontinuities.

• The two vowels, /ao, ow/, contain the lowest percentages of discontinuities. This
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ARPABET No. Discon % Discon No. of words
/iy/ 69 27.381 252
/aa/ 31 28.703 108
/ao/ 3 8.333 36
/ae/ 40 18.5185 216
/eh/ 31 21.5278 144
/ih/ 114 28.7879 396
/ah/ 63 25 252
/uh/ 7 19.444 36
/oy/ 13 36.111 36
/ow/ 0 0 36
/ey/ 63 21.875 288

Table 3.6: The number and percentage of discontinuities with respect to the vowel type
containing the join.

difference is significantly lower than for all other vowel types. These are the only two

incidences of vowels with lip rounding in the database.

• Vowels with large standard deviations in formant values across the database coincide

with vowels with higher rates of discontinuity. The three vowels with the highest

rates of discontinuity, /oy, ih, aa/ are a subset of the vowels with the four highest

standard deviations in F1, /aa, eh, ih, oy/.

• Vowels with low standard deviations in formant values across the database coincide

with fewer occurrences of discontinuities. The two vowels with the least number of

discontinuities, /ow, ao/ are a subset of the vowels with the three smallest variances

in F1, /ao, ah, ow/.

A number of vowels in the database only contain 36 test words. The number of dis-

continuities for these vowels in the database is low. This could be the reason why more

definitive patterns do not emerge in the results presented.

The number and percentage of discontinuities for each vowel category is illustrated in

Table 3.7. Counter to previous studies the lowest rate of discontinuity is found for the

diphthong /ow/. This may be explained by the low variance in F1 in /ow/. In contrast,

the highest rate of discontinuities was found in the diphthong /oy/. With the exception of
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Vowel type No. Discon % Discon No. of words
Long vowel 143 23.3 612
Short vowel 215 25.966 828
Diphthong 76 21.11 360

Table 3.7: The number and percentage of discontinuities with respect to each vowel cate-
gory in the database.

rounded vowels, /ao, ow/, and the diphthong /oy/ all vowels had relatively similar rates

of discontinuity. More insightful results were obtained by considering vowels individually

and noting the variance in formants than by categorising them into diphthongs and long

and short monophthongs.

A breakdown of the occurrence of discontinuities based on phonetic context for varying

onset and coda is illustrated in Table 3.8 and Table 3.9 respectively. The largest rate of

discontinuity was found for /m/ when it occurred in the coda, with 52.78% of test words

ending in /m/ containing a discontinuity. High rates of discontinuity were also obtained

for codas containing /t/ and /r/. The lowest rates of detection occured for test words with

vowel endings. The largest incidence of discontinuities for contexts with respect to the onset

ocurred for /d/, with 45.83% of test words begining in /d/ containing discontinuities. High

rates of discontinuity were also obtained for onsets containing /f/ and /t/. This suggests

that both the context and the vowel centre influence the likelihood of a discontinuity

ocurring.

3.4 Relating subjective and objective measures

In order to quantify the performance of each candidate measure it is necessary to use a

performance metric that measures the degree of correlation between the candidate measures

of spectral continuity and the human perceptual results. The area under the ROC curve

(AUC) is taken as the performance measure throughout the remainder of this thesis.
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ARPABET No. in onset No. Discon % Discon
/m/ 36 6 16.667
/n/ 0 0 0
/ng/ 0 0 0
/l/ 36 4 11.111
/r/ 36 10 27.778
/ey/ 0 0 0
/ao/ 0 0 0
/d/ 72 33 45.8333
/b/ 108 21 19.444
/g/ 0 0 0
/p/ 180 47 26.111
/t/ 72 28 38.889
/k/ 108 20 18.519
/s/ 180 48 26.667
/f/ 36 15 41.667
/hh/ 36 5 13.889

Table 3.8: The number and percentage of discontinuities in terms of the consonant context
in the onset.

ARPABET No. in coda No. Discon % Discon
/m/ 36 19 52.778
/n/ 144 23 15.972
/ng/ 36 10 27.778
/l/ 144 25 17.361
/r/ 36 10 33.333
/ey/ 36 2 5.556
/ao/ 36 3 8.333
/d/ 72 25 34.722
/b/ 0 0 0
/g/ 36 4 11.111
/p/ 72 17 23.611
/t/ 108 38 35.185
/k/ 72 15 20.833
/s/ 72 20 27.778
/f/ 0 0 0
/hh/ 0 0 0

Table 3.9: The number and percentage of discontinuities in terms of the consonant context
in the coda.
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3.4.1 Receiver operating characteristic curves

Each measure was evaluated by generating an ROC curve (Duda and Hart, 2001). Two

probability density functions, p(κ|0) and p(κ|1), were estimated for each distance measure

based on the perceptual results for continuous and discontinuous joins respectively. ROC

curves were calculated from the probability density functions and provided information

regarding the separability of p(κ|0) and p(κ|1), for each distance measure. The ROC

curves were computed by calculating the hit rate, PH (3.1), the probability of correctly

detecting a discontinuity and the false alarm rate, PFA (3.2), the probability of classifying

a continuous join as discontinuous, for varying distance thresholds κ.

PH(κ0) =
∫ ∞

κ0

p(κ|1)dκ (3.1)

PFA(κ0) =
∫ ∞

κ0

p(κ|0)dκ (3.2)

The ROC curve was constructed by plotting the pairs PH and PFA for each threshold

value, κ0, from 0 to ∞.

Area under the ROC curve

After computing the ROC curve the AUC (3.3) is calculated. The area calculation assumed

a piecewise linear approximation between consecutive points on the ROC curve. The area

under each piecewise linear segment was computed, and summed to give an estimate of

the AUC value.

AUC =
∫ 1

0
PHdPFA (3.3)

The AUC can be interpreted as the probability of correctly classifying a join. The AUC

value is bound between 0 and 1. An ideal measure that perfectly discriminates between

continuous and discontinuous joins would get an AUC value of 1 and an arbitrary or random

measure with no discriminating information would get an AUC value of approximately 0.5,

corresponding with the probability of pure chance in a binary classification task.
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Figure 3.4: Standard error versus the AUC value.

Standard error for ROC curves

The standard error, SE, of the AUC value computed from the ROC curve can be estimated

by equation 3.4 (Hanley and McNeil, 1982).

SE =

√
A(1−A) + (Nd − 1)(Q1 −A2) + (Nc − 1)(Q2 −A2)

NdNc
(3.4)

Q1 and Q2 are defined in equations 3.5 and 3.6 respectively.

Q1 =
A

2−A
(3.5)

Q2 =
2A2

1 +A
(3.6)

The AUC value is represented by A in equation 3.4. Nd and Nc represent the number of

discontinuous and continuous samples in the dataset respectively. Equation 3.4 depends

only on the the AUC value and the number of continuous and discontinuous samples. In

the database the number of continuous and discontinuous samples is constant. A number

of discontinuities may be omitted from the computation of certain results, causing Nd to

decrease. This occurs if they are identified as having a high probability of containing a

discontinuity that is due to either F0 or energy mismatch. The corresponding standard
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Figure 3.5: Standard error plotted against the number of discontinuities.

error for all possible AUC values from 0 to 1 is illustrated in Fig. 3.4 for 434 discontinuous

joins and 1366 continuous joins. The maximum SE estimated is just above 0.016. Note

that the curve is not symmetric as the number of continuous and discontinuous joins are

not equal. The standard error increases as the AUC value approaches approximately 0.5.

This reflects that a more significant error is likely to occur when the PDFs are significantly

overlapped. Fig. 3.4 indicates the degree of confidence with which we can interpret the

AUC values computed for each candidate measure of spectral continuity. A measure that

produces an AUC value that is within the standard error margins of another measure is

not statistically, significantly better or worse than that measure.

Fig. 3.5 illustrates the impact of the number of discontinuities, Nd, on the standard

error when the AUC value is held constant at 0.7. The standard error decreases monotoni-

cally as the number of discontinuities, Nd, increases. When the AUC value is increased the

curve is shifted downwards decreasing the standard error and vice-versa when the AUC

value decreases towards 0.5. This is important as the number of discontinuities may be

reduced for the computation of the AUC value if a number of test words are judged to

contain discontinuities that are due to F0 or energy mismatch. This curve gives an indi-

cation of the number of discontinuities required for a statistically valid evaluation of the

proposed join costs.
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3.5 Analysis of results

Test words judged to contain an audible discontinuity in the perceptual test may have

contained a discontinuity that was not due to spectral mismatch. Based on the perceptual

results the test database was analysed with respect to known sources of discontinuity. The

objective was to identify words from the test stimuli that were judged as discontinuous

due to a discontinuity from a known source of discontinuity. This enables the performance

metrics to be computed with and without the inclusion of such words. In this study we

were primarily concerned with spectral mismatch so audible discontinuities due to other

sources could skew results.

3.5.1 Known sources of discontinuity

Other, known sources, of discontinuity are due to F0 mismatch and energy mismatch across

a join. To address this issue the database of test words was analysed to identify test words

containing an audible discontinuity that was potentially due to F0 or energy mismatch.

Fundamental frequency - F0

F0 trajectories were computed from the original 300 words and F0 values were extracted

at the unit boundaries to represent each of the units in the inventory. F0 analysis was

performed using the YIN algorithm (de Cheveigné and Kawahara, 2002) with a window

length of 40ms. The F0 distance measure, DF0, was taken as the absolute difference

between F0 values from the left and right units, equation 3.7. Probability density functions

were estimated from the set of F0 distance measures for both continuous and discontinuous

joins and are illustrated in Fig. 3.6. The PDFs were estimated by constructing a histogram

of 40 bins in the range from 0 to the maximum F0 distance and normalising (the sum of all

probabilities equals one) the histograms to behave like a PDF. Fig. 3.6 indicates the degree

of overlap between the distributions of continuous and discontinuous joins with respect to

the DF0. The distribution for continuous joins with respect to DF0 reduces monotonically

from a maximum value corresponding to a distance of zero. The probability decreases

approximately exponentially as DF0 increases. The distribution for discontinuous joins
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Figure 3.6: Estimated PDFs for continuous and discontinuous joins based on the absolute
F0 distance.
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Figure 3.7: ROC curve based on the absolute F0 distance (AUC = 0.6784).
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was found to be more evenly spread than the distribution for continuous joins and the

probability of a join being discontinuous remains higher than the probability of join being

continuous above a threshold of approximately 4Hz.

DF0 = |F0left − F0right| (3.7)

The ROC curve relating the human perceptual results and F0 distance measure is

illustrated in Fig. 3.7. The AUC value computed from the ROC curve is 0.6784, indicating

that F0 correlates with the human perceptual results of discontinuity for the test database.

This suggests that a number of discontinuities are due to F0 mismatch. In order to identify

joins that may contain a discontinuity due to F0 mismatch, all discontinuous joins were

ranked with respect to DF0. The joins with largest DF0 were iteratively removed until an

AUC value of below 0.55 was achieved. The AUC value of 0.55 was selected as a having a

sufficiently low correlation with the perceptual results to ensure that the joins remaining

had a significantly low probability of containing a discontinuity due to F0. The threshold

at which this was achieved corresponded with an absolute F0 distance of 7.2Hz. From

the original 434 discontinuities 290 are below the threshold and the remaining 144 are

above the threshold. The 144 joins above the threshold have a significant probability of

containing a discontinuity due to F0 mismatch.

Energy

Energy coefficients were extracted at the unit boundaries for each left and right unit in

the inventory. A window length of 10ms was employed to compute the energy coefficient.

The energy distance measure, DE , was taken as the absolute difference between energy

values from the left and right units, equation 3.8. Probability density functions were es-

timated from the set of energy distances for both continuous and discontinuous joins and

are illustrated in Fig. 3.8. The PDFs were estimated as with the F0 based analysis. The

distribution for continuous joins with respect to energy reduces monotonically similar to

the case for DF0. The probability decreases approximately exponentially as the degree of
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Figure 3.9: ROC curve based on the absolute energy distance (AUC = 0.678).
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energy mismatch increases. The distribution for discontinuous joins also decreases consis-

tently as the DE increases. The probability of a join being discontinuous remains higher

after a specific threshold is reached as illustrated in Fig.3.8 for DF0.

DE = |Eleft − Eright| (3.8)

The choice of window length was found to have a significant impact on the AUC value.

The AUC value corresponding with Fig. 3.9 is 0.678. A threshold was computed as in the

F0 analysis to remove joins with large energy mismatch, such that the resulting AUC value

is reduced to below 0.55. The number of joins containing discontinuities below the threshold

was 288, these joins have a significantly low probability of containing a discontinuity due

to energy mismatch across the point of concatenation. The remaining 146 joins have a

significant probability of containing discontinuities due to energy mismatch.

After removing stimuli with large F0 and energy mismatch the database contains 231

discontinuous samples and 1366 continuous samples. This corresponds to a standard error

of approximately 0.02 for an AUC value of 0.7. The maximum standard error for this

number of discontinuities is 0.021 and occurs for an AUC value of 0.59.

3.6 Summary and conclusion

In this chapter the issues involved in designing a perceptual experiment were considered. A

perceptual experiment was described in which human perceptual results were obtained for

the perception of discontinuity in concatenated speech. From the experiment a total of 434

discontinuities were detected by the human listeners from a database of 1800 test stimuli.

A detailed description of the phonetic coverage of the unit inventory was presented along

with an analysis of the rate of occurrence of discontinuity. It was found that the standard

deviation of formant estimates for a given vowel could provide a general indication if that

vowel was likely to exhibit significant rates of discontinuity or not. Vowels that involve lip

rounding were found to contain particularly low incidences of discontinuities. Consonant

contexts about a join were also found to influence the occurrence of discontinuities in the
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test stimuli. The evaluation procedure to relate perceptual results with distance measures

computed from proposed join costs was presented. The same evaluation procedure was

employed to identify discontinuities in the database that had a high probability of being

due to F0 or energy mismatch. For some results it was difficult to draw a definitive

conclusion even when certain trends could be observed. This may be due to the limited

size of the test database. This is a particularly limiting factor when the test database is

considered on a phone by phone basis as certain phones only contain 36 test words and

only a small percentage of those words contain a discontinuity.

As well as containing results in its own right this chapter has established a framework

to evaluate candidate join costs based on relating the perceptual results by employing the

AUC as a performance metric. This framework is used extensively in subsequent chapters

to correlate candidate measures of spectral continuity with perceptual results.
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Chapter 4

Investigation of Standard Spectral

Measures

In speech processing applications, the raw speech signal is typically transformed into a

representation that is more suitable for the task at hand. Important signal characteristics

should be easily accessible in the transformed domain in order to extract the salient fea-

tures of the speech signal. Many spectral representations are used in speech processing:

the Fourier transform is ubiquitous, MFCCs have become dominant in ASR while LPC

representations have become prevalent in speech coding and speech modification. It is

not clear what spectral representation is most suitable to represent human perception of

spectral continuity in a join cost for unit selection synthesis.

A number of standard spectral representations of speech have been tested as features

for spectral join costs for unit selection synthesis. The results of these studies are largely

inconclusive and often the results for a specific measure varies considerably between studies,

with the most consistent outcome being that no measure correlates satisfactorily with

human perception of discontinuity. In speech synthesis systems, MFCCs in conjunction

with the Euclidean distance measure are typically used as the spectral join cost. This is

largely due to the popularity of MFCCs in other speech applications such as ASR. It is not

yet clear however if such parametrisations make for suitable spectral join costs and what

limitations they might have for this task. In this chapter a number of standard spectral
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representations common in speech processing applications are investigated for the task of

detecting discontinuities in the test database described in Chapter 3.

4.0.1 Chapter objectives and overview

The objectives of this chapter are as follows;

• To systematically compare the performance of conventional speech parametrisations

as measures of spectral continuity.

• To identify feature extraction subtleties that cause variations in the results.

• To determine what characteristics of each feature set gives rise to an increase or

decrease in performance.

• To investigate the limitations of standard spectral representations as measures of

spectral continuity.

• To compare the results obtained against previous studies.

This chapter goes beyond a basic comparison of feature sets and seeks to provide

the foundation necessary to develop measures, specifically designed to represent human

perception of spectral continuity, presented in subsequent chapters. To achieve this requires

a deeper understanding of the limitations of conventional feature sets and an appreciation

of why these measures do not sufficiently represent human perception of discontinuity.

This knowledge can be applied to guide the development of new feature sets to represent

spectral continuity.

In this chapter a set of standard speech representations are tested for the task of

detecting discontinuities in concatenated speech and their limitations are investigated. The

candidate distance measures and feature sets are presented. A detailed presentation of the

techniques required for computing each of the candidate feature sets is contained in this

chapter. The results for the task of detecting discontinuities in the test database with each

of the candidate measures is presented. An analysis of the results is performed to explore
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possible sources of variation and the limitations of the candidate features. Conclusions are

presented, providing a link between the results, analysis and the objectives of the chapter.

4.1 Join costs

The computation of a join cost to represent a measure of spectral continuity between two

units of speech has two distinct stages. The first stage involves the extraction of features

from the speech signal for each unit and the second stage requires quantifying the degree

of mismatch between the features representing each unit. This section outlines the features

and distance measures tested in this chapter as spectral join costs.

4.1.1 Spectral features

The following feature sets are considered in this chapter:

• DFT power spectra (PS(DFT )) and log power spectra (LogPS(DFT )).

• Harmonic power spectra (PSh) and log harmonic power spectra (LogPSh).

• LPC power spectra (PS(LPC)), cepstral coefficients (LPCC) and LSF’s (LSF ) on

both Mel and linear frequency scales.

• MFCCs computed from both DFT (MFCC(DFT ))and LPC (MFCC(LPC)) mag-

nitude spectra.

• PLP power spectra (PLPPS), LSFs (PLPLSF ) and cepstral coefficients (PLPCC).

These feature sets can be broadly categorised into three groupings. Firstly those based

on Fourier-like expansions: DFT and Harmonic representations. Secondly, those based on

LPC models that relate to physical models of speech production and lastly those based on

perceptual modelling: MFCCs and PLP.

4.1.2 Distance measures

In order to quantify the degree of similarity between two feature vectors the distance

between the vectors is calculated. A number of distance measures are considered: the
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absolute distance (l1), the Euclidean distance (l2) the Cos distance and the symmetric

Kullback-Leibler distance (Dskl) (Klabbers and Veldhuis, 2001).

The lp distances, equation 4.1, represent a measure of length between the feature vectors

x and y. The choice of p establishes the geometric properties of the distance, in this study

p = {1, 2}, corresponding to absolute and Euclidean distance respectively.

lp(x,y) =

(
N∑

i=1

|x(i)− y(i)|p
)1/p

(4.1)

The Cos distance, equation 4.2, measures the cosine of the angle θ between the two feature

vectors x and y.

Cos(θ) =
xTy
|x| . |y|

(4.2)

This measure is bound between 1 and −1. A value of 1 indicates that the vectors correlate

and are linearly dependent although they may have different scale. A value of 0 indicates

that the vectors are orthogonal.

The Kullback-Leibler divergence was proposed in Kullback and Leibler (1951) and

is a measure of the separability of distributions. It is a non-symmetric measure and in

many applications a symmetric version of the measure has become popular, referred to as

the symmetric Kullback-Leibler. The symmetric Kullback-Leibler distance measures the

distance between two probability distributions, x(ω) and y(ω).

Dskl(x(ω), y(ω)) =
1
4π

∫ 2π

0
(x(ω)− y(ω))log

x(ω)
y(ω)

dω (4.3)

Power spectra and LSFs can be treated as probability distributions, as they are always

positive and can be normalised to behave like probability distributions and as such the

symmetric Kullback-Leibler distance can be applied to these feature sets. The Kullback-

Leibler distance for power spectra is given in equation 4.3. Power spectra as opposed to

log power spectra are used in conjunction with the Kullback-Leibler distance as log power

spectra will give negative values for power spectra values less than one. This measure is

not appropriate for cepstral representations. The discrete sum approximation was used
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to implement the symmetric Kullback-Leibler distance using discrete features (Vepa and

King, 2004b).

Dskl(x,y) =
N∑

i=1

(x(i)− y(i))log
x(i)
y(i)

(4.4)

In-depth discussion on approximate and exact computation ofDskl is presented in Klabbers

and Veldhuis (2003).

4.2 Feature extraction

In this section the details of computing each of the standard feature sets is presented.

Feature extraction was found to be important and is presented in detail. This section con-

tains information on preprocessing of the speech signal followed by the key characteristics

and implementation details for each of the candidate feature sets. The features sets are

categorised as Fourier-like methods, LPC based features and perceptual features.

4.2.1 Preprocessing

Feature extraction was performed over the last window of speech in each left hand unit

and over the first window of speech in the right hand unit. A number of common steps

precede the computation of each of these feature sets. All features were extracted using

a pitch synchronous window one pitch period in duration. This was found to be the

optimum windowing strategy and is discussed further in section 4.4.3. The raw speech was

pre-emphasised with the filter H(z) = 1− 0.95z−1 and Hanning windowed.

4.2.2 Fourier methods

The Fourier transform is central to many signal processing applications and in speech

processing signals are often represented in the Fourier domain. In this section details of

computing the Fourier transform spectrum and the harmonic spectrum are presented.

68



Fourier power spectra

The Fourier transform is an operation that transforms a time domain signal into the

frequency domain as a weighted sum of complex exponentials (Oppenheim and Schafer,

1975; Quatieri, 2002). The discrete time Fourier transform as defined for discrete time

signals, x[n], is given in equation 4.5 and its inverse is defined in equation 4.6. This

definition results in a representation, X(ω), that is a continuous function of frequency, ω.

X(ω) =
∞∑
−∞

x [n] e−jωn (4.5)

x [n] =
1
2π

∫ π

−π
X(ω)ejwndω (4.6)

In order to exploit the frequency domain representation in practical applications it

is necessary to sample the frequency domain signal, equation 4.7, and further to consider

finite durations of the signal as defined in the discrete short-time Fourier transform (STFT),

equation 4.8, where w[n] is the window function (Allen and Rabiner, 1977; Quatieri, 2002).

The choice of window length and the subsequent spacing of samples on the frequency axis is

critical to ensure neighbouring harmonics are effectively represented in the Fourier domain.

X(n, k) = X(n, ω)|ω= 2π
N

k (4.7)

X(n, k) =
∞∑
−∞

x [m]w [n−m] e−j 2π
N

km (4.8)

Uniform sampling in the frequency domain constrains the computation of the Fourier

transform to a specified set of frequency sample points. The length N of the finite duration

window function, w[n], determines the time-frequency resolution of the spectral estimate.

In speech applications N is typically selected to give a window of about 20-30 ms. The

frequency sampling interval is 2π
N . For voiced speech this means that the shortest possible

window length that can resolve individual harmonics is a window length equal to one pitch

period. The spacing between individual harmonics in the Fourier domain becomes shorter

than the frequency sampling interval for window lengths shorter than a pitch period and
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as such individual harmonics can not be effectively represented with a window length of

less then one pitch period.

With time-varying signals, longer windows can cause spectral smearing effects on the

spectral estimate at a given frequency as the corresponding signal component may not be

stationary throughout the duration of the window. This limits the size of the window.

Larger windows yield better frequency resolution and shorter windows yield better time

resolution. When employing a short-time window for spectral estimation it inherently as-

sumes that the windowed signal is stationary. This is generally a reasonable approximation

for voiced speech provided an appropriate window length is chosen. This is typically the

case for vowel centres where the spectrum is relatively stationary from one pitch period

to the next provided the window of speech contains a small number of pitch periods with

relatively constant spectra.

The information contained within each Fourier coefficient, equation 4.9, becomes useful

when it is separated into magnitude, |Xω)|, and phase, 6 X(ω), components as represented

in equations 4.10, 4.11 and 4.12.

X(ω) = Xr(ω) + jXi(ω) (4.9)

X(ω) = |Xω)| ej 6 X(ω) (4.10)

|Xω)| = (Xr(ω)2 +Xi(ω)2)1/2 (4.11)

6 X(ω) = tan−1

(
Xr

Xi

)
(4.12)

Traditionally it has been the magnitude spectrum that has been employed in speech ap-

plications due to its perceptual significance, although recent studies have demonstrated

the perceptual importance of the phase spectrum (Alsteris and Paliwal, 2006; Paliwal and

Alsteris, 2005).

The Fourier power spectrum and log power spectrum were tested for their ability to

detect discontinuities in the test database. A 512 point fast Fourier transform (FFT)

was employed to compute the magnitude spectrum and squared to compute the power
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spectrum. In this study the FFT magnitude spectrum and log power spectrum are tested

for the task of detecting discontinuities in the test database.

Harmonic power spectra

Speech can be viewed as having a harmonic component and an aperiodic or noise com-

ponent. The harmonic component is of particular interest in processing voiced speech.

Discontinuities have been found to be particularly problematic (Klabbers and Veldhuis,

2001; Syrdal, 2001) in voiced speech. Such findings motivate investigating the harmonic

component as a candidate distance measure to represent spectral continuity. Removing

potentially redundant information from the signal, in this case the unvoiced or aperiodic

speech component, could improve the performance of the distance measure. A number of

techniques exist for separating the harmonic and aperiodic components of speech (Yegna-

narayana et al., 1998; Bailly, 1999; Stylianou, 2001). The approach adopted here is that

of Stylianou (2001) and is outlined below.

The harmonic estimate, xh, is computed that optimally fits the original time domain

signal in a mean squared error sense. This procedure can be interpreted as a sub-sampled

Fourier transform such that only the complex exponentials that coincide with harmonic

components are retained in the expansion. Unlike the Fourier transform the frequency of

the harmonics are not restricted to the sample points of the frequency grid. The computa-

tion of the harmonic components depends on a pitch estimate to determine the frequencies

at which the harmonic components occur. Inaccurate pitch estimates lead to inaccurate

estimates of the harmonic components.

In this study the harmonic power spectrum and log harmonic power spectrum are

tested for the task of detecting discontinuities in the test database. Pitch estimation was

carried out with the YIN algorithm (de Cheveigné and Kawahara, 2002). The harmonics

were estimated up to 6000 Hz, spectral content above this frequency was assumed to be

unvoiced.
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4.2.3 Linear predictive techniques

The speech production apparatus is often modelled by the source-filter model (Markel and

Gray, 1976). The filter component of the model represents the vocal tract and the source

represents the airflow entering the vocal system from the lungs. In the source-filter model

of speech the filter is typically modelled as an all-pole filter, H(z) equation 4.13, as the

vocal tract only gives rise to spectral resonances which can be effectively modelled by poles.

Nasal sounds which give rise to anti-resonances can be modelled by zeros. In this thesis

only all-pole modelling is considered. The characteristic polynomial, A(z) in equation 4.14,

contains information about the vocal tract configuration and can be represented in many

different parametric forms.

H(z) =
B

A(z)
(4.13)

A(z) = 1 +
p∑

k=1

akz
−k (4.14)

A number of algorithms exist to compute the all-pole model (Hayes, 1996); the autocor-

relation, covariance and Burg methods. Each of these methods has its specific advantages

and disadvantages. A preliminary investigation indicated that each of the algorithms were

found to yield similar results with no distinct preference emerging. The autocorrelation

method was employed to compute a 16th order all-pole model. The autocorrelation-based

LPC coefficients can be calculated from equation 4.15.

a = R−1r (4.15)

In equation 4.15 a is the vector of LPC coefficients from the characteristic polynomial, r

is the truncated autocorrelation vector and R is the autocorrelation matrix.

A number of LPC-based feature sets exist with different features preferred for different

applications. LSFs are often preferred for signal modification algorithms due to their good

interpolation properties and the guarantee of a stable filter subsequent to modification.

Cepstral-based parameters are often preferred for pattern recognition tasks. The LPC-

based representations considered include: LPC power spectra, LPC cepstra and LSFs,
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each of which is discussed below.

LPC power spectrum

The power spectrum, P (ejw), can be computed from the all-pole model by equation 4.16.

This represents an estimate of the spectral envelope of the vocal tract.

P (ejw) =
|B|2∣∣1 +

∑p
k=1 ake−jkw

∣∣2 (4.16)

The spectral envelope was computed at 512 sample points along the frequency axis. The

sampling was chosen to be consistent with the FFT length for FFT-based power spectrum.

LPC cepstrum

A relationship exists that relates the LPC coefficients, ak, to cepstrum coeffi-

cients (Schroeder, 1981), cn. The recursive relation (4.17) was used to compute the LPC

cepstrum.

cn = −an −
1
n

n−1∑
k=1

kckan−k (4.17)

The first 20 cepstral coefficients were computed and the first was discarded yielding 19

coefficients as the LPC cepstral feature vector.

Line spectral frequencies

The roots of the characteristic polynomial contain information regarding the resonant peaks

in the spectrum of the all-pole model. The frequency of the peaks can be computed as the

phase angle of the complex roots.

The LSF representation (Itakura, 1975) of LPC models has become popular in speech

processing due to the their useful properties (Soong and Juang, 1984). LSFs are computed

by constructing two new polynomials, P (z)and Q(z) equations 4.18 and 4.19 respectively,

from the characteristic polynomial A(z). The characteristic polynomial contains all the

information in the LPC model relating to the shape of the spectral envelope. The LSFs are

computed as the phase angles of the roots of P (z) and Q(z). The roots of the polynomials
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P (z) and Q(z) always lie on the unit circle and as such are fully described by the phase

angle of their respective roots.

P (z) = A(z) + z−(p+1)A(z−1) (4.18)

Q(z) = A(z)− z−(p+1)A(z−1) (4.19)

4.2.4 Perceptual representations

Perceptually-based features have become popular in many speech applications. Humans

can generally outperform human-engineered solutions for most speech applications, for

example sound source separation and ASR. This has resulted in the development of feature

sets that try to mimic certain processes within the human auditory system. The most

popular perceptually-based features are MFCCs and PLP.

Mel-frequency cepstral coefficients

MFCCs attempt to model a number of known characteristics of the human auditory system.

Simplified models of auditory processes are employed to produce spectral estimates more

consistent with the auditory response. MFCCs have proven to be highly beneficial in ASR

(Davis and Mermelstein, 1980).

The following auditory processes are modelled in the computation of MFCCs;

• Mel-frequency scale, modelling the non-linear frequency scale of the auditory system.

• Critical band frequency resolution mimicking that of the basilar membrane.

• Instantaneous amplitude compression.

In the computation of MFCCs the power spectrum is estimated, this is often imple-

mented using either LPC or DFT power spectrum. Subsequent to this the Mel-scale

filterbank is applied to the spectrum by applying a set of triangular filters designed to
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Figure 4.1: MFCC filters, indicating both relative weighting and frequency resolution.

mimic the critical bandwidths of the peripheral auditory system on the non-linear Mel-

frequency scale, equation 4.21. The centre frequencies and band edges of the filters are

linear below 1000Hz and increase logarithmically with frequency above this point. The

filters are normalised with respect to their bandwidths.

The Mel-scale filterbank employed in the MFCC implementation used in this thesis is

illustrated in Fig. 4.1 and employs 20 filters spanning the frequency range from 0 Hz up

to 4000 Hz. Frequencies above 4000Hz were discarded. The log operation is performed on

the filterbank outputs and the DCT is applied yielding the MFCCs. The implementation

employed resulted in 20 MFCC coefficients. The first coefficient was discarded resulting

in feature vectors with 19 coefficients. Although the filterbank attempts to model the

frequency resolution of the auditory system it is ultimately limited by the time frequency

resolution of the spectral estimation stage. In this thesis MFCCs were computed using

power spectra computed from both the DFT and LPC analysis.

Perceptual linear prediction

The approach to auditory modelling in PLP (Hermansky, 1990) is quite similar in principle

to that employed in the calculation of MFCCs. The human auditory system is modelled

by a non-linear frequency scale, the application of a filterbank and an amplitude compres-

sion stage. The models used to implement the non-linear frequency scale, filterbank and

amplitude compression differ in implementation to MFCCs, but aim to model the same
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Figure 4.2: PLP filters, indicating both relative weighting and frequency resolution.

phenomena. The critical difference with PLP over MFCCs is that the final approximation

of the auditory spectrum is used to produce an LPC model yielding a significantly different

parametric form. In the computation of the PLP model the power spectrum is estimated

and input to the filterbank. The filterbank implementation is illustrated in Figure 4.2.

The Bark scale, equation 4.20, is employed as the non-linear frequency scale (Gold and

Morgan, 2000).

fBark = 6 log

(
ω

1200π
+
(( ω

1200π

)2
+ 1
)1/2

)
(4.20)

The filters are one Bark apart and are approximately rectangular. An equal-loudness

transformation is also included to model the unequal sensitivity of human hearing at dif-

ferent frequencies. The amplitude compression stage is implemented by computing the

cubic root of the filterbank outputs. The resulting approximation of the auditory power

spectrum is transformed into an autocorrelation sequence by taking its inverse Fourier

transform. The autocorrelation sequence is used to apply the standard autocorrelation

technique to compute the coefficients of an all-pole model.

As with standard LPC models a number of parametric forms exist to transform the

all-pole model parameters. In this thesis the PLP parameters were transformed into power

spectra, LSFs and cepstral coefficients. The PLP implementation used a 5th order PLP

model.
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Mel LSF

Perceptual based frequency warping is often used on LSFs. In this thesis Mel LSFs are

considered. Warping the LSFs onto a Mel-scale has the overall effect that a mismatch

between two LSFs in a higher frequency region contributes relatively less to the overall

distance than a similar mismatch in low frequency regions. The Mel-scale approximates

the frequency scale of the human auditory system (Flanagan, 1972).

fMel = (1127) log
(

1 +
fHz

700

)
(4.21)

4.3 Results

The results for each of the candidate feature sets and distance measures are presented in

this section. Each measure is tested for its ability to detect discontinuities in the test

database. The human perceptual results are related to the distance measure by ROC

curves. The AUC value is used to quantify the effectiveness of each candidate measure. A

number of feature sets have results omitted for Dskl as this measure is not applicable to

those feature sets. The results are presented in three subsections: Fourier-based measures,

LPC measures, perceptual features.

4.3.1 Fourier-based measures

The results for detecting discontinuities with the power spectra and log power spectra from

both the Fourier spectra and harmonic spectra are presented in Table 4.1. Most of the

DFT-based measures have similar AUC values regardless of the choice of distance measure.

Log spectra were found to outperform standard power spectra and the best measure from

this section is the absolute distance between DFT log power spectra. The harmonic-based

measures did not score as well as the DFT-based measures. The same trend emerges for

the harmonic measures regarding an improvement in performance with log power spectra

compared to standard power spectra.
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Features l1 l2 Cos Dskl

LogPS(DFT ) 0.758 0.754 0.756 -
PS(DFT ) 0.752 0.71 0.732 0.751
LogPSh 0.699 0.697 0.674 -
PSh 0.642 0.643 0.678 0.665

Table 4.1: Results for each of the spectral transformation feature sets and distance measure
combination, the table entries indicate the AUC.

4.3.2 Linear predictive features

The results for detecting discontinuities with LPC-based distance measures are presented

in Table 4.2. LSF-based measures are found to be the most successful form of LPC features

and scored the highest AUC values. The choice of distance was found to have little impact

on the results. Similar to Fourier-based measures, log spectra were found to outperform

standard power spectra.

Features l1 l2 Cos Dskl

LSF Linear 0.751 0.742 0.74 0.767
LPCC 0.753 0.75 0.74 -
LogPS(LPC) 0.745 0.745 0.752 -
PS(LPC) 0.748 0.683 0.722 0.744

Table 4.2: Results for each of the LPC-based feature sets and distance measure combina-
tion, the table entries indicate the AUC.

4.3.3 Perceptual features

The results for the MFCC and PLP measures are presented in Table 4.3. Results for

MFCCs outperform the measures for PLP. MFCCs computed from DFT power spectra

were found to outperform LPC-based MFCCs. Similar to LPC, LSF measures were found

to produce the best results of all possible parametric forms of the PLP model. Mel-

scale warping was found to improve the performance of LSF measures when compared

to standard linear LSFs. MFCCs scored an AUC value of 0.776 when used with the l2

distance. This is the highest AUC value for perceptual features in this section and is the

highest AUC value for all candidate measures tested in this chapter.
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Features l1 l2 Cos Dskl

MFCC(DFT ) 0.77 0.776 0.742 -
LSF Mel 0.767 0.769 0.766 0.773
MFCC(LPC) 0.757 0.766 0.734 -
PLPLSF 0.745 0.749 0.745 0.766
PLPCC 0.738 0.743 0.722 -
PLPPS 0.713 0.695 0.694 0.719

Table 4.3: Results for each of the perceptually-based feature sets and distance measure
combination, the table entries indicate the AUC.

4.4 Results analysis

In this section the results are analysed to gain a deeper insight into the advantages and

disadvantages of each measure, to identify sources of variation in the results and the lim-

itations of each measure. This section is organised into three subsections covering: com-

parison of spectral measures, phonetic breakdown of results and time-frequency resolution

limitations of the spectral measures.

4.4.1 Comparison of spectral measures

A summary of all standard spectral measures tested in this chapter are contained in Ta-

ble 4.4. The measures are arranged according to the highest AUC value recorded for each

measure. The highest AUC value was found to be 0.776 for MFCCs computed from DFT

spectra and the second highest was LPC-based LSFs on a Mel-scale that scored an AUC

value of 0.773. The lowest AUC value was computed for the harmonic power spectrum

and had an AUC value of 0.642. A plot indicating the standard error for the range of AUC

values in Table 4.4 is given in Fig 4.3. The standard error for the best performing measure

is 0.0188. Many of the measures tested are statistically equivalent in that they have AUC

values that differ by less then the standard error. For example, a typical measure from

the results presented with an AUC value of 0.75 has a standard error of 0.0195. Adding

and subtracting the standard error from 0.75 gives an AUC range of 0.7305 to 0.7695.

Measures within this range do not offer any significant difference in performance. Almost

all measures tested occupy this band of AUC values with the exception of some of the
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best and worst measures. Many of the measures presented are statistically equivalent. A

comparison of the ROC curves for MFCCs, LSFs on a Mel-scale, DFT log power spectra

and the LPC cepstrum are illustrated in Fig. 4.4, the Euclidean distance was the measure

used to produce these ROC curves.

Features l1 l2 Cos Dskl

MFCC(DFT ) 0.77 0.776 0.742 -
LSF Mel 0.767 0.769 0.766 0.773
LSF Linear 0.751 0.742 0.74 0.767
MFCC(LPC) 0.757 0.766 0.734 -
PLPLSF 0.745 0.749 0.745 0.766
LogPS(DFT ) 0.758 0.754 0.756 -
LPCC 0.753 0.75 0.74 -
PS(DFT ) 0.752 0.71 0.732 0.751
LPCPS 0.748 0.683 0.722 0.744
LogPS(LPC) 0.745 0.745 0.752 -
PLPCC 0.738 0.743 0.722 -
PLPPS 0.713 0.695 0.694 0.719
PSh 0.642 0.643 0.678 0.665
LogPSh 0.699 0.697 0.674 -

Table 4.4: Summary of results for all spectral distance measures tested, the table entries
indicate the AUC.

The ROC curves are all quite similar; they score perfectly in the upper right corner

which corresponds with short distances with the performance dropping off as the spectral

distance increases. High detection rates at short distances result in the plateau that can

be observed in the upper right hand corner of each of the ROC curves. This is due to

the successful detection of natural speech in the database. of MFCCs outperform the

other feature sets in the region approximately halfway through the curve, from false alarm

rates of 0.2 to 0.5, which corresponds with the location of the optimum threshold for

separating continuous and discontinuous joins. Although MFCCs are the best performing

measure with the highest AUC value they do not significantly outperform many of the

other measures. Measures based on DFT, LPC and MFCCs all perform similarly. PLP

measures and the harmonic spectrum are less successful.

Despite the fact that no feature set emerges as an obvious and outright measure to
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Figure 4.3: Plot indicating the standard error for the range of AUC values computed for
standard spectral measures.
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Figure 4.4: Comparing the ROC curves for selected feature sets employing the l2 distance.
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detect spectral discontinuities a number of useful observations can be made based on the

results presented.

• Perceptual modelling improves performance through the application of amplitude

compression and non-linear frequency scales. For example, DFT power spectra scores

an AUC of 0.71 (with Euclidean distance) and after applying perceptual modelling to

get MFCCs from the DFT spectra the AUC value increases to 0.776 (with Euclidean

distance). The subsequent perceptual modelling significantly improves performance

with respect to the standard error value. Mel-scale LSFs also outperform LSFs on a

linear frequency scale.

• Certain parametric forms are more suitable then others. Regardless of the informa-

tion contained within a feature set it needs to be represented in a form suitable for

pattern recognition tasks. For example, LSFs outperform all other parametric forms

for linear predictive based models. This is the case for LPC and PLP representa-

tions. MFCCs are specifically designed to be suitable for pattern recognition tasks

as the final features output are decorrelated by the DCT which is an advantage of

this representation.

• The choice of distance measure does not significantly influence the AUC value for a

particular feature set.

Perceptual modelling has proved useful on two fronts: non-linear amplitude compres-

sion of the spectral estimates and frequency scale warping. Log amplitude power spectra

outperform basic power spectra for both DFT and LPC computed power spectra and Mel-

scale LSFs outperform linear frequency-scale LSFs. A comparison of DFT power spectra

and log power spectra extracted from two concatenated units judged to contain a discon-

tinuity is presented in Fig. 4.5. The degree of mismatch is illustrated by the error vectors

produced by subtracting the right unit feature vector from the left unit feature vector. It

can be observed that mismatch for power spectra is concentrated in the spectral peaks,

this is not the case for log power spectra in which the mismatch can be seen across the

entire frequency range. This suggests that the perceived degree of mismatch is relative
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Figure 4.5: Comparing the difference between log DFT power spectra and DFT power
spectra as a measure of spectral difference.

to the strength of the underlying component. The log amplitude operation mimics the

instantaneous amplitude compression of the human auditory system which is a key stage

in human auditory perception that facilitates the human ear in covering a large dynamic

range. This may suggest that the non-linear dynamic range compression process in the

auditory system is important for detecting spectral discontinuities.

LSFs are found to increase in performance when the Mel-scale is employed. The impact

of an LSF mismatch of 500 Hz at a low frequency and for a high frequency is illustrated

in Fig. 4.6. The LSF mismatch in the high frequency range will contribute relatively less

than the equivalent mismatch in a lower frequency range due to the compression effect of

the transformation. These points suggest that a feature set for detecting discontinuities
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Figure 4.6: Illustrating the effect of using the Mel-scale for an equivalent frequency mis-
match for both high and low frequency ranges.

should apply perceptual modelling in the spectral estimation stage and contain further

processing to render the parameters into a suitable form.

4.4.2 Phonetic breakdown of results

The AUC values for each of the vowels containing joins in the test database are illustrated

in Figures 4.7, 4.8 and 4.9. Fig 4.7 corresponds with the AUC values for MFCCs for each

vowel, Fig 4.8 corresponds with the AUC values for LSFs on a Mel-scale for each vowel and

Fig 4.9 corresponds with the AUC values for LPC cepstrum for each vowel. The l2 distance

was used to compute the AUC values for all figures. From these three figures it is quite

clear that the results follow similar trends for each feature set. The trends exhibited for all

the feature sets tested are found to be relatively similar to those illustrated in Figures 4.7,

4.8 and 4.9. Similarly, the bar charts illustrating the AUC values for each vowel showed

no significant change when a different distance was employed, e.g. Euclidean or Cos for a

given set.

The vowel with the highest AUC value for all of the feature sets tested was consistently

found to be /ao/, this is the vowel with the smallest variance in F1 and F2. With MFCCs

the AUC value for /ao/ was 0.95. The second highest AUC value for most feature sets
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Figure 4.8: The AUC value for each vowel with LSFs on a Mel-scale.
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Figure 4.9: The AUC value for each vowel with LPC cepstrum.
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was found to be /uh/. The vowel /uh/ was found to have the third lowest variance in F1,

although the variance in F2 was found to be relatively high. The lowest AUC value for all

feature sets was consistently found to be in the diphthong /oy/ and is significantly below

the overall AUC value for the whole database. For example the AUC value for MFCCs

across all vowels is 0.776. But for the vowel /oy/ the AUC value is 0.64. Diphthongs have

been reported to be problematic in previous studies (Syrdal, 2001). No distinct pattern

emerges for the other vowels, they score AUC values similar to the overall AUC value

across all vowels for the given feature set.

These results indicate that each distance measure fails most significantly for the same

vowel, the diphthong /oy/ and performs best for the same vowel /ao/. The success of

the measures appears to be related to the amount of spectral variation in the vowel.

Stationary vowels that exhibit little variation between utterances result in high detection

rates, for example /ao/ has an AUC of 0.95 and vowels with significant spectral variation

and dynamics result in low detection rates, for example /oy/ has a AUC value of 0.64.

This breakdown of results, on a vowel by vowel basis, suggests that no advantage would be

gained by combining feature sets as they fail and succeed for the same cases. Other studies

have suggested that different measures are suitable for different vowels and have combined

measures to increase the overall performance. The results also suggest that perhaps an

alternative approach should be adopted to detect discontinuities in diphthongs or indeed

any vowel that exhibits significant spectral change.

4.4.3 Time-frequency resolution

Window length was found to have a significant impact on the results. The size of the

window chosen for feature extraction was found to be the largest source of variation in the

results. The AUC is plotted against window length for the l2 distance between selected

feature sets in Fig. 4.10. This indicates the importance of selecting the appropriate window

length. It can be observed that shorter window lengths are preferred, this demonstrates

that temporal resolution is significantly important. For non-pitch synchronous windows

the maximum AUC is achieved with a window length of 10ms across all feature sets,
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distance.

this corresponds approximately with the average pitch period for the database. The AUC

value decreases rapidly when the window length is smaller than a pitch period in length.

This is the window length at which the DFT can no longer resolve individual harmonic

components and appears to be the lower threshold for frequency resolution at which point

the AUC value decreases significantly. The optimum windowing strategy for all feature sets

was found to be pitch synchronous windowing with a window length of one pitch period.

The choice of window length relates to the fundamental trade-off between time and

frequency resolution. All of the feature sets considered are limited by this constraint in

the same way, in that they are extracted from a fixed window length of data. In the

previous section it was identified that diphthongs are most problematic as they contain

significant spectral dynamics compared with monophthongs. If the spectral values change

significantly within the time-span of the analysis window then the accuracy of the spectral

estimate will be degraded. This is the case for diphthongs and as such the time resolution

of the spectral estimation is particularly important.
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4.5 Conclusion

In this chapter a number of standard spectral feature sets were tested for the task of

detecting spectral discontinuities in the test database. The results were analysed in order

to determine sources of variation in the results, the advantages and disadvantages of each

feature extraction technique, to identify limitations of the features and to identify instances

in which the measures perform particularly badly. A number of useful findings were noted.

• Perceptual modelling tends to improve the performance of a feature set. This is

evident for amplitude compression and non-linear frequency scales.

• Feature sets such as MFCCs and LSFs with good properties for pattern recognition

tasks produce better results.

• The choice of window length was found to be the most significant source of variation

in the results. The change in performance that resulted from changing the window

length was more significant than the difference in performance between feature sets.

• The candidate measures of spectral continuity performed best for the vowel with the

least spectral variation across the database. Similarly, the lowest scores were for the

diphthong /oy/ and vowels that exhibited the most spectral variation.

• The time frequency resolution trade-off for spectral estimation appears to be a limit-

ing factor for all of the measures tested. The performance of the measures degrades

significantly for vowels that exhibit spectral dynamics. These vowels require short

windows to achieve a good time resolution of the time varying spectrum. Selecting

a window shorter then a pitch period degrades the estimate as individual harmonics

cannot be resolved.

The feature sets tested were found to have similar performance, with many of the

measures statistically equivalent to an AUC measure of 0.75 when the standard error is

considered. Perceptual modelling and feature sets suitable to pattern recognition were

found to consistently, albeit marginally, perform better at the task of detecting disconti-
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nuities. The results are largely in agreement with those reported in Stylianou and Syrdal

(2001) and Wouters and Macon (1998).

It was found that the details of feature extraction, specifically the window size em-

ployed, had a significant impact on the results. Notably the choice of window size was

found to have a more significant impact on the results than the choice of feature set or

distance measure employed. The optimum choice of window was found to be a single pitch

period window extracted pitch synchronously. This suggests a trade-off in the impor-

tance between time and frequency resolution when extracting features to predict spectral

discontinuities.

A phonetic breakdown of the results revealed that most features scored similar AUC

values when the results where computed on a vowel-by-vowel basis. For example, all

features sets had the highest AUC value for the joins contained in the vowel /ao/ and

the lowest AUC value for joins contained in the diphthong /oy/. This suggests that no

particular advantage can be gained by combining feature sets to detect discontinuities. The

results also suggest that feature sets that are suitable for monophthongs may not be as

suitable for diphthongs. Diphthongs contain structured spectral dynamics with potentially

significant variations in formant values, ideally this should be accounted for in the feature

extraction. Time-frequency resolution is a particularly important factor to consider in a

signal with a rapidly varying spectrum. The importance of window length and the low

AUC values obtained for diphthongs strongly suggests that spectral dynamics and time-

frequency resolution for spectral estimates are issues that need to be accounted for in the

task of detecting discontinuities. Time-frequency resolution and spectral dynamic features

are explored in future chapters.
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Chapter 5

Alternative Spectral Features

Studies to date investigating spectral join costs have largely focused on the use of standard

spectral representations which have found success in other areas of speech processing. Most

of these measures are derived from the magnitude spectrum of a fixed length window of

speech. This chapter, building on the results of previous chapters, aims to go beyond

the standard spectral representations and address some of their fundamental limitations.

This is approached in two ways: firstly by investigating the phase spectrum as a source of

discontinuity and secondly through an investigation of wavelet-based spectral measures. No

previous study has examined the relevance of phase spectra or the potential of wavelets in

capturing spectral continuity in concatenative synthesis. Standard spectral representations

of speech are computed from the magnitude spectrum. The investigation of the phase

spectrum aims to explore the role of phase as a measure of spectral continuity. The

investigation of wavelets as a spectral measure builds directly on results from Chapter 4

in which it was identified that time-frequency resolution limited the performance of the

measures and that the time varying spectrum in diphthongs had a negative impact on the

performance of the standard measures. Wavelet analysis enables a framework for spectral

estimation in which the time-frequency resolution of the spectral estimates varies with

frequency.

This chapter has two distinct components. The first component contains the details

of the investigation of phase based measures of spectral continuity and the second compo-
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nent contains the details of the study of the wavelet transform as a measure of spectral

continuity.

5.1 Phase spectra

In this section phase-based distance measures are investigated as measures of spectral

continuity. The Fourier spectrum, X(ω) (equation 5.1), can be expressed in terms of its

magnitude, |Xω)| (equation 5.2), and phase spectrum, 6 X(ω) (equation 5.3). Traditionally

in speech processing tasks the phase component of the spectrum is discarded and the

magnitude component of the spectrum is retained and employed for further processing.

X(ω) = |Xω)| ej 6 X(ω) (5.1)

|Xω)| = (Xr(ω)2 +Xi(ω)2)1/2 (5.2)

6 X(ω) = tan−1

(
Xr

Xi

)
(5.3)

Most distance measures reported to date are computed from the magnitude spectrum

and discard the phase spectrum during feature extraction, furthermore no other studies

have been reported that specifically incorporate the phase spectrum in a join cost. For

example many spectral representations explicitly extract the magnitude spectrum, such

as MFCCs. More indirectly, LPC representations remove the phase spectrum as they are

computed from the auto-correlation or covariance sequence, the computation of which is

a lossy process and removes phase information of the original speech signal. Although the

LPC model derived does contain a phase spectrum it is not the phase spectrum of the

original speech signal.

Many problems exist with respect to reliably extracting the phase spectrum in a manner

that is robust to noise and suitable for pattern recognition. In this dissertation the phase

spectrum was investigated in the form of the group delay function, τ(ω), which is defined

as the negative of the derivative of the phase spectrum with respect to frequency, given
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by equation 5.4.

τ(ω) = − d

dω
{6 X(ω)} (5.4)

The raw phase spectrum is unsuitable to use as a distance measure or indeed for pattern

recognition tasks in general due to the modular nature of phase, equation 5.5. As a result

the phase spectrum for a given signal is not uniquely defined.

6 X(ω)|ω=α = θα + n 2π (5.5)

θα represents the phase angle limited between 0 and 2π and n is any integer value. The

problem of multiple phase values is side-stepped by adopting the group delay function which

can be unambiguously defined and is directly dependent on the phase spectrum (Yegna-

narayana and Murthy, 1992).

5.1.1 Perception of phase

Historically the magnitude spectrum has been considered to be the most perceptually

important component of the spectrum and as such most feature sets used in practice are

derived from the magnitude spectrum. Phase up until recently has been largely ignored.

A number of reasons contribute to the dominance of magnitude-based features over phase-

based features; perceptually the phase spectrum is not fully understood and is difficult to

process in comparison with the magnitude spectrum. Historically, phase was believed to

play little or no role in speech perception. In Ohm (1843) it is reported that the human

auditory system is essentially phase-deaf and only requires the magnitude spectrum to

successfully process and interpret speech. A similar result was found by von Helmholtz

(1875) who experimented with changing the phase spectrum for stimuli whilst holding the

magnitude spectra constant and found that the stimuli contained no audible difference

when the phase spectra changed.

Many subsequent studies have found that the phase spectrum is perceptually important

in the human auditory system (Patterson, 1987) and in particular makes a significant

contribution to the naturalness and quality of speech. The neural encoding stage within the
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auditory system is reported to encode speech information directly from timing information

in a way that reflects formant structure (Young and Sachs, 1979). The temporal envelope

of the signal within an auditory channel determines when an auditory nerve fires and is

dependent on the phase of the individual signal components within that auditory channel

(Lindemann and Kates, 1999). Although these studies report useful models and offer results

that promote a deeper understanding of phase perception they do not offer a practical

model of phase perception that is readily usable in the context of speech processing.

Applications that require high quality speech to be synthesised have consistently iden-

tified the phase spectrum as a key limitation in achieving high quality natural sounding

speech. Many phase models have been proposed in the speech coding literature. This has

been particularly prevalent in sinusoidal transform coding (McAulay and Quatieri, 1992)

which employs the sinusoidal model (McAulay and Quatieri, 1986) to compress the speech

waveform. Varying degrees of speech quality can be achieved depending on the complexity

of the phase model employed (McAulay and Quatieri, 1995; Almeida and Tribolet, 1983).

Although previous studies in the speech coding literature have indicated the importance

of phase for speech quality and naturalness more recent studies have explicitly demon-

strated the perceptual importance of phase, (Paliwal and Alsteris, 2005; Alsteris and Pali-

wal, 2006; Shi et al., 2005). The experiments conducted in these studies demonstrate that

speech can be successfully interpreted by humans with only the phase spectrum used to

reconstruct the speech signal, with all magnitude information discarded. This clearly in-

dicates that the phase spectrum plays a significant role in speech perception and can be

used in the identification of phonemes.

5.1.2 Objectives of the phase investigation

In this study the objective is to identify the role of the phase spectrum in concatenative

speech synthesis, to identify if phase difference is a source of discontinuity and to determine

a suitable feature set to measure the degree of phase mismatch. The objectives are:

• To explore spectral features derived from the phase spectrum in spectral join costs.
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• To develop a feature extraction procedure suitable for phase-derived measures.

• To quantify and compare the performance of a selection of phase-derived measures

for the task of detecting discontinuities in the test database.

• To identify the contribution of phase-based measures when used in conjunction with

magnitude measures.

5.2 The group delay function and feature extraction

As stated earlier, the raw phase spectrum is unsuitable as a feature set and in this thesis

the group delay function, equation 5.6, is used to represent the phase spectrum.

τ(ω) = − d

dω
{6 X(ω)} (5.6)

One of the key properties of the group delay function in comparison with the magnitude-

based measures is that spectral peaks are considerably narrower when compared with

magnitude spectra, enabling closely spaced formants to be resolved. Figure 5.1 compares

a spectrogram computed from the DFT magnitude spectrum with one computed from the

group delay function for a segment of speech. The same formant tracks are clearly evident

in both spectrograms although they each have distinct characteristics.

Accurately estimating the group delay function is sensitive to noise, window shape

and window length (Bozkurt et al., 2004). These parameters can be related to the zeros

of the z-transform of the signal (Yegnanarayana and Murthy, 1992; Bozkurt et al., 2004).

Periodicity in the signal corresponds with zeros located close to the unit circle, as a zero on

the unit circle corresponds with a pure oscillation at the corresponding angular frequency.

The proximity of zeros to the unit circle significantly increases the sensitivity of the group

delay function to noise (Yegnanarayana and Murthy, 1992; Bozkurt et al., 2004). Thus the

reliability of an estimate is significantly lowered when it is in the proximity of a zero and

is undefined when the sampled frequency coincides exactly with a zero on the unit circle

(Yegnanarayana and Murthy, 1992; Bozkurt et al., 2004). Bozkurt et al. have also reported
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Figure 5.1: Comparison of group delay function (middle) and magnitude-based spectro-
grams (bottom) for a segment of speech (top).

that short window lengths and certain window shapes are also found to be more successful

in moving zeros away from the unit circle which results in more reliable estimates of the

group delay function.

For the task of detecting discontinuities in the test database Hamming windows were

found to produce the best overall results. Pitch synchronous windowing with an analysis

window of one pitch period in length was found to be the optimum windowing strategy,

as with the standard spectral measures in the previous chapter. No pre-emphasis filter

was employed for estimating the group delay function as its purpose is to pre-emphasise

the peaks of the magnitude spectrum and this is not appropriate for estimating the group

delay function. A number of methods for computing the τ(ω) were investigated:

• Group delay function computed from DFT spectra (GDF DFT).

• Group delay function computed from LPC spectra (GDF LPC).

• Computation using the group delay function formula (GDF) (Oppenheim and

Schafer, 1975; Yegnanarayana and Murthy, 1992).
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• The modified group delay function (MODGDF) (Murthy and Gadde, 2003).

5.2.1 DFT group delay function

The DFT based computation of the group delay function employed a 512-point FFT. The

phase spectrum was computed from the FFT coefficients and subsequently unwrapped.

The unwrapped phase spectrum was numerically differentiated by computing the difference

between successive phase values.

5.2.2 LPC group delay function

The GDF LPC was computed employing an LPC analysis using the autocorrelation tech-

nique. The LPC model was of order 16. The phase spectrum of the LPC model was

computed, unwrapped and differentiated to produce the estimate of the group delay func-

tion. Phase unwrapping refers to the process of producing a continuous function from a

set of phase values in a closed interval, such as from −π to π.

5.2.3 Direct group delay function formula

The GDF was implemented as in Yegnanarayana and Murthy (1992) using the formula,

equation 5.7.

τ(ω) =
Xr(ω)Yr(ω) +Xi(ω)Yi(ω)

|X(ω)|2
(5.7)

X(ω) and Y (ω) denote the Fourier transform of x(n) and nx(n) respectively and the

subscripts r and i denote real and imaginary components of the Fourier coefficients. This

formula allows the group delay function to be computed without requiring phase unwrap-

ping. The values of the group delay function are uniquely defined for a given signal, and

as such, problems associated with phase ambiguity are removed.

5.2.4 Modified group delay function

The modified group delay function estimate (MODGDF) was implemented as in Murthy

and Gadde (2003). The computation of the MODGDF is based on the formula for the
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GDF 5.7, although a number of modifications are employed with the objective of moving

the zeros of the z-transform further from the unit circle and in turn improving the spectral

estimate (Murthy and Gadde, 2003). The equations to implement the MODGDF are as

follows:

τ̃γ(ω) =
Xr(ω)Yr(ω) +Xi(ω)Yi(ω)

S(ω)2γ
(5.8)

τ̃α,γ(ω) =
τ̃γ(ω)
| τ̃γ(ω)|

|τ̃γ(ω)|α (5.9)

In equation 5.8 S(ω) is a cepstrally smoothed version of |X (ω)|. The initial group

delay estimate, τ̃γ(ω), depends on the parameter γ that is used to smooth the estimate.

This initial estimate,τ̃γ(ω) is used in equation 5.9 to compute the MODGDF. Another

parameter, α is introduced in equation 5.9 to further reduce the spikey nature of the group

delay function estimate. In this thesis the values for α and γ were set as 0.4 and 0.9

respectively. These parameters were selected based on values reported to produce reliable

estimates of the modified group delay function in Murthy and Gadde (2003).

5.3 Results - group delay function

This section contains the discontinuity detection results with the proposed group delay

function estimates. The results represent the AUC value computed from the ROC curves

and are presented for each phase-based feature set and distance measure combination in

Table 5.1. The LPC-based GDF was found to have the highest AUC value when used

in conjunction with the absolute distance as indicated in Table 5.1, with an AUC value

of 0.7612. Both the MODGDF and GDF DFT were also found to perform well when

used in conjunction with the l1 and l2 distances, with AUC values in the 0.73 to 0.75

range. This indicates that phase-based measures do correlate with human perception of

discontinuity, although the level of correlation is less then that of many of the standard

measures tested in Chapter 4. A comparison of the ROC curves generated for the phase-

based measures alongside the MFCC-based measure is illustrated in Fig. 5.2. All of the
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Figure 5.2: Comparion of the ROC curves for each of the phase based measures and the
standard MFCC measure.

ROC curves generated from phase based measures employ the l1 distance, the MFCC ROC

curve was generated using the l2 distance. The LPC-based GDF with the l1 distance is

the only phase based measure to lie within the standard error bands of the MFCC AUC

value of 0.776.

Features l1 l2 Cos

GDF LPC 0.7612 0.7305 0.732
GDF DFT 0.75 0.7474 0.6651
MODGDF 0.734 0.7334 0.7169
GDF 0.5902 0.6074 0.584

Table 5.1: Results for GDF-based measures computed from the phase spectrum, the table
entries indicate the AUC.

5.3.1 Analysis of results

The results for the phase-based feature sets were analysed with respect to significant sources

of variation. Window length and the type of window are known to have a significant

influence on group delay estimation. The results indicating the AUC value for each different
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Figure 5.3: The AUC value for each vowel with the DFT-based GDF.
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Figure 5.4: The AUC value for each vowel with the LPC-based GDF.
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Figure 5.5: The AUC value for each vowel with MODGDF.
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Features Hanning Hamming Blackman Rectangle
GDF LPC 0.7242 0.7612 0.7266 0.7415
MODGDF 0.732 0.734 0.7134 0.714
GDF DFT 0.672 0.75 0.6808 0.7414
GDF 0.6392 0.5902 0.6513 0.6427

Table 5.2: Results for GDF based measures computed using different window functions,
the table entries indicate the AUC computed using the absolute distance.

window type considered are given in Table 5.2. The choice of window shape can change the

performance of a measure such that it is statistically a better measure with respect to the

standard error for AUC values. The highest AUC value obtained was with the Hamming

window. The Hamming window scored the highest AUC value for all of the feature sets

considered with the exception of the GDF computed from equation 5.7. The variation in

the AUC value for varying window length was found to be similar to the results found for

the standard spectral measures, with a peak at approximately 10 ms. Pitch synchronous

analysis with a window length of one pitch period was found to yield the highest AUC

values.

The AUC values for each vowel are illustrated in Fig. 5.3, Fig. 5.4 and Fig. 5.5 for DFT

GDF, LPC GDF and the MODGDF respectively. The most notable observation when

comparing the AUC values for each individual phone with the standard spectral measures

is that the relative performance of the group delay measures with the phone /oy/ is higher

then for the standard measures. The standard measures all scored the lowest detection

rates for /oy/. For the both the GDF and the GDF DFT, the AUC value for /oy/ is higher

then for all other phones tested. The group delay features, with the exception of the LPC

GDF, outperform standard measures for the diphthong /oy/ with AUC values of over 0.72.

The GDF DFT scored a particularly high AUC value of 0.8746 for the phone /oy/. The

LPC GDF scored an AUC value of 0.6087 which is more consistent with the AUC values

computed for /oy/ with the standard magnitude based representations. The group delay

function of the LPC GDF represents the group delay function of the LPC model as opposed

to the signal components and is different to the other group delay measures. The LPC

GDF offers no advantage when considered as a join cost that may be used in conjunction
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with standard spectral measures as it exhibits similar detection rates across all phones in

the database. Of the remaining group delay function measures the GDF DFT measure has

the highest AUC value and has a higher detection rate for diphthongs in the test database

compared with standard spectral measures.

A study was conducted to test a combined measures of phase and standard spectral

features. Combining the measures was found to produce no notable gain in performance.

The method of combining measures by simply concatenating feature vectors and computing

the Euclidean distance between the combined feature vectors limits the extent to which

complementary discriminating information is usefully exploited in the combined measure.

The idea of combining measures with a more sophisticated framework is discussed further

in Chapter 7.

5.4 Wavelets

In order to overcome the limitations of the standard measures which adopt an analysis

procedure with a fixed window length the wavelet transform was adopted. Wavelet analysis

allows the time-frequency resolution to vary with respect to frequency. This allows spectral

estimation to vary with a time-frequency resolution adapted to each frequency band.

For a given wavelet mother function, ψ, the wavelet transform at scale a and position

u, equation 5.10, is defined in equation 5.11 (Mallat, 1998), were ψ∗ denotes the complex

conjugate of ψ.

ψu,a(t) =
1√
a
ψ

(
t− u

a

)
(5.10)

Wx(u, a) =
∫ +∞

−∞
x(t)ψ∗u,a(t)dt (5.11)

Many possible wavelet functions, ψ, exist (Daubechies, 1992). A number of wavelet func-

tions were tested as potential spectral join costs using the test database. In this thesis a

number of wavelets are considered: the Daubechies family of wavelets, the Symlet family

of wavelets and the Coiflet family. Also considered were a number of individual wavelet

types; Gaussian, Mexican-hat, Morlet and Meyer wavelets.

101



The wavelet transform has been suggested as a means to model the frequency selectiv-

ity of the auditory system (Yang et al., 1992; Quatieri, 2002). Wavelets can be constructed

that vary in bandwidth with respect to frequency to mimic the frequency response charac-

teristics of the auditory system (Salimpour and Abolhassani, 2006). In this section wavelets

are investigated as a measure of spectral continuity and evaluated for their ability to de-

tect discontinuities in the test database. The objectives of the investigation of the wavelet

transform are as follows:

• To quantify the performance of a selection of wavelet based spectral representations

in spectral join costs.

• To investigate the performance of different families of wavelets in join costs and

identify which wavelets provide the best measures of spectral continuity.

• To compare the performance of wavelet-based measures with standard spectral mea-

sures.

• To identify the potential for combining of wavelet-based measures of spectral conti-

nuity in conjunction with standard spectral measures.

5.4.1 Wavelet feature extraction

A feature vector of 50 wavelet coefficients was used to represent each unit, these coefficients

correspond with an analysis centred on the pitch pulse. Fig. 5.6 illustrates a wavelet

based scalogram and a conventional spectrogram across a join within a concatenated test

word judged as discontinuous in the perceptual experiment. The periodic nature of the

scalogram illustrates the importance of employing feature vectors from the same relative

position within a pitch period as the features vary significantly within a pitch period.

5.5 Results - wavelets

The results for the detection of discontinuities with a number of wavelet-based spectral

estimates are presented in Tables 5.3, 5.4 , 5.5, and 5.6. The results show the AUC
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Figure 5.6: Time domain signal, spectrogram and scalogram across a join respectively from
top to bottom. With a frame size of 10 ms for the spectrogram and a frame shift of one
sample for both spectrogram and scalogram.

values computed for the specific wavelet type in conjunction with both the l2 distance

and the Cos distance. The l1 distance was omitted from the presentation of results as it

varies little from the results of the l2 measure for all wavelets tested. The AUC values

for the Daubechies, Symlets and Coiflet families are contained in Tables 5.3, 5.4 and 5.5

respectively. The results for the Mexican-hat, Meyer, Gaussian and Morlet wavelet are

contained in Table 5.6.

A number of patterns emerge from the results.

• The Cos distance consistently outperforms the l2 distance when used in conjunction

with a wavelet-based spectral estimate.
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Daubechies Wavelets l2 Cos

db1 0.7394 0.7576
db2 0.7719 0.8037
db3 0.77643 0.8069
db4 0.7628 0.7842
db8 0.7841 0.8046

Table 5.3: Results for measures employing Daubechies wavelets, the table entries indicate
the AUC.

Symlet Wavelets l2 Cos

sym1 0.7394 0.7576
sym2 0.7719 0.8037
sym3 0.77643 0.8069
sym4 0.7537 0.7879
sym8 0.7608 0.8015

Table 5.4: Results for measures employing Symlet wavelets, the table entries indicate the
AUC.

Coiflet Wavelets l2 Cos

coif1 0.7513 0.7987
coif2 0.7584 0.8022
coif3 0.7602 0.8017
coif4 0.7615 0.8024
coif5 0.7625 0.8063

Table 5.5: Results for measures employing Coiflet wavelets, the table entries indicate the
AUC.

Wavelet l2 Cos

Meyer 0.7513 0.7987
Morlet 0.7678 0.8065
Gaussian 0.7548 0.7314
Mexican hat 0.7506 0.7455

Table 5.6: Results for spectral measures employing a selection of common wavelet functions,
the table entries indicate the AUC.
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• Many of the candidate wavelet measures outperform all standard measures tested in

Chapter 4.

• The results obtained across all tested wavelets are similar and occupy a narrow

numerical range.

• The first member of each wavelet family does not perform as well as the wavelets of

order 2 or higher.

Many of the wavelet based measures tested outperform the best ranking standard

spectral measures. The highest AUC value obtained employing standard spectral measures

was 0.776 using MFCCs and the Euclidean distance. The highest AUC value for wavelets

was 0.8069 (standard error = 0.0181) using the Daubechies 3 (db3) wavelet in conjunction

with the Cos distance. The Daubechies 3 measure is statistically significantly better then

the MFCC measure. Many of the other wavelets scored similar AUC values when used in

conjunction with the Cos distance and lie within the standard error bands, making them

statistically equivalent. The AUC values for most of the wavelets tested occupy a relatively

narrow numerical range when used with the Cos distance, indicating that the success of

the method is relatively independent of the choice of wavelet function. The majority of

wavelets tested score AUC values of approximately 0.8, although this is not the case for

certain wavelets. For example Daubechies 1 (db1), symlet 1 (sym1) the Gaussian and

Mexican hat wavelets.

Fig. 5.7 compares ROC curves for standard MFCC, wavelet-based measures and a

measure based on MFCCs extracted with a 40 ms analysis window. The MFCC measures

were both computed with the l2 distance, the wavelet measure was computed with the Cos

distance.

5.5.1 Analysis of results

The results obtained for wavelet-based measures indicated that a number of these measures

outperformed the standard spectral representations at detecting discontinuities in the test
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Figure 5.7: Comparison of the ROC curves from wavelet based measures and the standard
MFCC based measures, with optimum windowing and with a 40 ms window.
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Figure 5.8: The AUC value for each individual phone class with the db8 wavelet with the
Cos distance.

database. In this section the objective is to gain a deeper understanding of why the wavelet

based measures outperform standard spectral measures.

Figures 5.8 and 5.9 illustrates a breakdown of the AUC values computed on a phone-by-

phone basis for the test database for the db8 and Meyer wavelets respectively. When this

set of AUC values is compared to those generated from the standard measures a key trend

emerges: the standard measures consistently have the lowest AUC value for the diphthong

/oy/, whereas with the wavelet based measures this is consistently the highest AUC value
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Figure 5.9: The AUC value for each individual phone class with the Meyer wavelet with
the Cos distance.

obtained. The AUC value for the phone /oy/ with MFCCs is 0.6405, for wavelets based

measures the AUC value is consistently over 0.9 and is always the phone with the highest

AUC value. For other phones wavelets do not necessarily outperform the standard measures

and the difference between the respective AUC values between wavelets and the standard

measures is often quite small and not indicative of any particular pattern. All wavelets

have the lowest AUC value for the phone /uh/. It is not clear why /uh/ consistently

produces a low AUC value for wavelet-based measures.

Diphthongs can contain components that vary rapidly with time. When a signal is

time-varying the time-frequency resolution can be a limiting factor in making a reliable

spectral estimate of the signal. The results in Chapter 4 found that standard spectral

measures performed significantly worse in vowels with non-stationary spectra. Wavelets are

designed to overcome this limitation to some extent by allowing a multi-resolution analysis

and are better equipped to estimate the spectral components of time varying signals, such

as those found in diphthongs. The results presented in this chapter are consistent with

this argument and many of the wavelet-based measures are found to outperform standard

measure for diphthongs, but not necessarily for other phones with relatively stationary

spectra.
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5.6 Summary and conclusions

In this chapter phase and wavelet-based spectral measures were tested as measure of spec-

tral continuity. Both were found to correlate with perceptual results. Furthermore many

of the wavelet-based measures were found to outperform all standard spectral measures.

A number of phase-based spectral measures, in the form of the group delay function,

were tested. The feature extraction parameters were investigated to determine the most

suitable method to extract the group delay function for use in a spectral join cost. A

pitch synchronous Hamming window was found to produce the best results using an LPC-

derived group delay function. Analysis of the results indicated that the phase measures

outperformed standard spectral measures for the diphthong /oy/ with the exception of the

LPC GDF. It was not unexpected that the LPC GDF performed differently than the other

group delay function measures tested as it represents the group delay function of the LPC

spectrum as distinct from the original speech. Furthermore, phase information is lost in

the computation of the LPC model. As a result, of the measures tested the LPC GDF

is unlikely to offer any advantage when combined with standard spectral measures as it

has similar detection rates in all phones to the standard spectral measures. The remaining

group delay measures could offer an advantage as they have an increased performance over

standard measures for diphthongs in the test database.

Motivated by the results for standard spectral measures that suggested the trade-off

between time and frequency resolution was limiting performance, wavelet based spectral

measures were investigated. Wavelet-based measures were found to correlate with human

perceptual results and were found to outperform all of the standard spectral measures

in many cases. The Cos distance was found to produce the best results with wavelet-

based spectral measures. Wavelets were found to significantly outperform standard spectral

measures for the diphthong /oy/. For most other phones the performance of wavelet

measures and standard spectral measures were similar. Wavelets consistently scored low

AUC values for the phone /uh/, it is unclear why they should consistently score low AUC

values for this phone.

From the results presented in this chapter it can be concluded that both phase and
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wavelet derived measures correlate with human perception of discontinuity. The results

suggest that both measures can outperform standard measures in the case of predicting

discontinuities in diphthongs.
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Chapter 6

Spectral Dynamics as a Source of

Discontinuity

In this chapter spectral dynamic behaviour is investigated as a potential source of discon-

tinuity in concatenated speech. Spectral dynamics refers to changes in the spectrum of

the signal with time. Spectral dynamic behaviour plays an important role in the human

auditory system and its role in speech perception has been extensively studied. Many

psychoacoustic and neuro-physiological phenomena have been identified from perceptual

experiments relating to spectral dynamics in speech. Spectral dynamic behaviour is also

important in relation to speech production as it relates to the underlying co-articulation

between successive phonemes in an utterance and contains information about the neigh-

bouring spectra adjacent to the unit boundary. Despite the known physical and perceptual

importance of spectral dynamics, no dedicated study has been reported that investigates

the role of spectral dynamics in concatenative speech synthesis. The objective of this

chapter is thus to further understand the role of spectral dynamics in concatenative speech

synthesis.

In this chapter spectral dynamic measures are investigated as candidate join costs to

measure spectral continuity. A flexible and robust strategy to extract spectral dynamic

features is presented. Each spectral dynamic measure is investigated to determine the

optimum parameters for feature extraction, with respect to detecting discontinuities. The
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Figure 6.1: Spectrogram of the diphthong contained in the word ‘soil’. Note the formant
movements in the centre of the voiced region.

results for detecting discontinuities for each of the proposed spectral dynamic measures is

presented. The results are analysed to determine the contribution of spectral dynamics as

an independent source of discontinuity.

6.0.1 Spectral dynamics - overview and literature review

When two speech units are concatenated the resulting speech may contain an audible

discontinuity. It has been identified that units exhibiting spectral dynamics near the join

are more likely to contain discontinuities. Joins contained in diphthongs, which contain

significantly higher levels of spectral dynamics than monophthongs, have been identified as

having an increased likelihood of containing discontinuities (Syrdal, 2001). In Chapter 3 the

diphthong /oy/ was found to contain the highest number of discontinuities in comparison

to all other vowels in the test database. Fig. 6.1 illustrates the spectral dynamics in the

diphthong /oy/ contained in the word ‘soil’. Including spectral dynamic information in

the join cost accounts for spectral movement on either side of the join. Such behaviour

may result from co-articulation with neighbouring phones and is beyond the scope of local

static spectral costs at unit boundaries. Static refers to features extracted from a single

block of windowed speech.
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It is understood that a number of different sources give rise to discontinuities in con-

catenated speech as reflected in the subcomponents of join costs used in unit selection.

Which includes spectral, energy and F0 sub-costs and in some cases delta features. From

the studies reported to date it is unclear if spectral dynamic mismatch plays a significant

role in the perception of discontinuities. Furthermore it is unclear how to effectively incor-

porate spectral dynamic measures into join costs for unit selection. In Wouters and Macon

(1998) and Vepa and King (2006) static spectral measures were combined with correspond-

ing delta coefficients to represent spectral change in the overall measure. The addition of

delta coefficients was found to contribute minor improvements, of the order of 1-2% for

the study of Wouters and Macon, depending on the feature set. Vepa and King found

that adding delta features sometimes decreased performance. The performance achieved

by including delta features was inconsistent and relatively small when an improvement was

achieved. This is in contrast to the successful use of delta features in other applications

such as ASR (Rabiner and Juang, 1993) and HMM-based speech synthesis (Tokuda et al.,

1995).

The objective in this chapter is to identify the role of spectral dynamic behaviour in

the perception of discontinuities and to investigate spectral dynamic measures for use in

defining perceptually salient join costs. A breakdown of specific objectives for this chapter

follows:

• To quantify the correlation between spectral dynamic measures and human percep-

tion of discontinuity.

• To develop a technique for spectral dynamic feature extraction tailored specifically

to represent spectral join costs.

• To analyse the role of spectral dynamic measures in conjunction with standard spec-

tral measures.
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6.0.2 Perception of spectral dynamics

The importance of spectral dynamics in speech perception has been well documented in the

literature (Kluender et al., 2003; Moore, 2004; Bregman, 1990). The area has been stud-

ied in the context of psychoacoustic experiments (Furui, 1986a; Lindblom and Studdert-

Kennedy, 1967), physiological models of the auditory system (Meddis et al., 1990) and has

been successfully applied in many speech processing applications. The auditory system

amplifies spectral bands that exhibit significant spectral change; a number of models have

been proposed to mimic this behaviour both from physiological (Meddis et al., 1990) and

psychoacoustic perspectives (Dau and Puschel, 1996). Many stages in the auditory system,

from the hair cells upwards, respond to spectral dynamics. It is estimated that one third

of cortical neurons can only be stimulated by time varying tones or complex transients

(Yost, 2007).

Spectral dynamics are important for many auditory tasks. For example in sound sep-

aration, when the components of a sound are varied coherently it has the effect of accen-

tuating the sound relative to other sounds present (Moore, 2004; Bregman, 1990). Sounds

with incoherent changes are typically perceived as separate sounds. In Furui (1986a) it

was reported that ‘perceptual critical points’ exist in a vowel coinciding with the points

of maximal spectral transition. The concept of ‘perceptual critical points’ is particularly

relevant in considering where a unit boundary should be located in concatenative synthe-

sis as it identifies points at which the auditory system can predict future sounds based

on spectral dynamics in the preceding sound. In concatenative speech synthesis, units of

speech are joined together in the hope that they will be perceived as a single stream of

continuous speech. If the spectral dynamic behaviour on either side of a join does not

match then this may cause the auditory system to identify the join as an acoustic cue to

a new auditory event. Similarly, spectral dynamics on the left hand side of a join might

cause the auditory system to anticipate a sound that is inconsistent with the actual sound

on the right hand side of the join.

Spectral dynamic information has been incorporated successfully into many ap-

plications in speech processing including ASR (Furui, 1990, 1986b), speech enhance-
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ment (Quatieri and Dunn, 2002), speaker recognition (Soong and Rosenberg, 1988) and

speech coding (Knagenheim and Kleijn, 1995). Understanding the role of spectral dynam-

ics in speech perception provides a meaningful path to successfully integrating spectral

dynamic information for a given application.

6.0.3 Approach

In order to investigate the role of spectral dynamics in concatenative speech synthesis and

to meet the objectives of the chapter the following approach was adopted.

• To determine a suitable strategy for extracting spectral dynamic features - a new

approach tailored to the problem of detecting discontinuities should be developed.

• To explore if the spectral dynamic measures correlate with human perception of

discontinuity - each candidate measure should be tested for its ability to detect

discontinuities in the test database.

• To identify the relative contribution of spectral dynamics when combined with stan-

dard spectral measures - a correlation analysis should be carried out to determine

the degree of correlation between static and dynamic measures.

6.1 Spectral dynamic feature extraction

The temporal variations of both resonant frequencies across the frequency axis and ampli-

tudes within a particular spectral band were both investigated. A three dimensional plot

depicting the spectrogram of a diphthong is given in Fig. 6.2, in which the variations along

the frequency and amplitude axes can be observed with respect to time. To fully describe

the spectral dynamics requires estimates of the partial derivatives of this surface along

each axis with respect to time. To determine the spectral dynamic measures an estimate

of spectral dynamics is computed at the edge of each unit and the Euclidean distance is

computed between the spectral dynamic features representing each unit.
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Figure 6.2: Three dimensional spectrogram of a diphthong illustrating the variation in
frequency and amplitude of the spectrum components with respect to time.

6.1.1 Feature sets and feature extraction parameters

The amplitude-based features were MFCCs and the frequency-based features were LSFs.

MFCCs were chosen to represent amplitude changes over time and LSFs to represent

frequency changes. Other standard feature sets were tested with similar results and are

not presented.

• LSFs were computed using the Burg algorithm to compute a 16th order LPC model.

• MFCCs were computed as in Rabiner and Juang (1993) using a total of 19 coefficients;

the first cepstral coefficient was discarded.

For both feature sets the raw speech was pre-emphasised with the filter

H(z) = 1 − 0.95z−1 and the parameters were computed with a 50ms Hanning window

centered on a pitch mark. The features were computed on each pitch pulse throughout the

voiced region for each of the words in the inventory, of which there is a total of 300. This
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results in parameter trajectories through the vowel centre. The spectral dynamic features

were obtained by calculating the derivatives of the trajectories at the unit boundaries.

6.1.2 Trajectory modelling

Each parameter trajectory, computed through the voiced region in the vowel centre of the

natural speech recordings, was modelled using a polynomial. The polynomial coefficients

were computed that best fit the parameter trajectories with respect to the mean squared

error. The order of the polynomial to model the trajectory was found to be important.

As illustrated in Fig. 6.3, a low order polynomial will not sufficiently capture the variation

in the data and over-modelling with an excessively high order polynomial will introduce

variations in the trajectory that do not relate to the underlying data. Polynomials of order

4 were found to produce consistently good trajectory models. The number of data points

included in the model was also found to be important. Empirically it was found that 9

data points gave an effective polynomial approximation. This corresponds with employing

9 pitch periods in the trajectory model. Fitting too many data points, covering a longer

time span, was found to have a negative impact on results due to over modelling in regions

distant from the join. Fitting too few points did not effectively represent the spectral

changes about the join. The polynomial models computed for data points over 5, 9 and

15 pitch periods are illustrated in Fig. 6.4, each of which produce a different model and

as such a different estimate of the spectral dynamic behaviour at the unit boundary. In

particular note the slope difference at the centre data point where the derivatives are to

be computed.

The first and second derivatives with respect to time were computed at the unit bound-

aries from the estimated polynomials and were employed to represent the spectral dynamics

of the corresponding units. As a baseline for comparison, delta coefficients were also com-

puted. The delta coefficients were computed using pitch synchronous analysis. A window

length of one pitch period was employed to extract the features in the two pitch periods

preceding the unit edge. The delta coefficients were generated by computing the difference

between the feature vectors. Pitch synchronous feature extraction with a window length
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Figure 6.3: Plot of spectral feature (LSF) varying with respect to time, with the estimated
polynomial models to fit the data. This illustrates the impact of the polynomial order in
fitting a polynomial model to the data points.
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Figure 6.5: Illustrating the LSF trajectories in the vowel centre of the word ‘went’; the
speech waveform, the computed LSF parameters, the polynomial fit and the spectrogram
are shown.

of one pitch period was found to be the optimum strategy for the task of detecting dis-

continuities with static spectral measures on the test database. Note that no attempt was

made to select parameters to improve the performance of the delta coefficients.

6.2 Results

Each of the spectral dynamic measures were tested for the task of detecting discontinuities

in the test database. In this section the results are presented for each candidate measure

of spectral dynamics. The results are represented by the AUC value computed for each

measure. The results for the spectral dynamic measures are presented in Table 6.1. The

dynamic measures evaluated from the polynomial based derivatives are denoted by dx/dt

and d2x/dt2, the static measures by x and the delta features by ∆x. The Euclidean

distance was used to quantify the degree of mismatch between feature vectors. The choice
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of metric did not significantly influence the results.
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Figure 6.6: Comparing the ROC curves for MFCC measures from standard features, delta
features and from the 1st and 2nd derivative trajectory based measures .

Features x ∆x dx/dt d2x/dt2

MFCC 0.77458 0.52688 0.70860 0.65568
LSF 0.74238 0.50997 0.70801 0.67225

Table 6.1: Comparison of results for each candidate measure of spectral dynamics, the
table entries indicate the AUC value for each of the measures.

The highest AUC value for spectral dynamic measures was obtained from the first

derivative of the MFCC trajectories with an AUC value of 0.70860. The AUC values ob-

tained for the delta coefficients was just above the value of pure chance, which corresponds

with an AUC value of 0.5. The low detection rates for delta coefficients may be due to sen-

sitivity to noise in numerical differentiation or perhaps that the measure reflects spectral

change on a shorter time scale, due to shorter window lengths, which may not be relevant

for the detection of discontinuities. The spectral dynamic measures based on the second

derivatives were found to correlate with human perception, the results of which are also

contained in Table 6.1. The results suggest that dynamic measures correlate with human

perceptual results provided the features are appropriately extracted. The difference in us-

ing either LSFs or MFCCs for the dynamic measures had little impact on the results and
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they are statistically equivalent for each type of dynamic measure with respect to the stan-

dard error for the AUC values presented. The same patterns emerge for both parameter

sets. LSFs performed better than MFCCs for the measures based on the second derivative

although they are still statistically equivalent. ROC curves comparing the performance of

the dynamic measures and standard MFCCs are illustrated in Fig. 6.6.

It was found that adopting a longer window yielded better results with the proposed

spectral dynamic measures, this is counter to static measures for which a single pitch period

was found to yield the best results. Longer window lengths gave rise to less variation

between successive spectral estimates and in turn gave rise to smoother trajectories, which

were found to yield spectral dynamic measures with higher AUC values. It is significant

to note that different feature extraction parameters are required for static and dynamic

measures.

6.2.1 Combining static and dynamic features

In this section the results are presented for combined measures of continuity, consisting of

both static and dynamic spectral features. The static and dynamic features are combined

by concatenating the static and dynamic feature vectors. The distance of the combined

feature vectors was computed as the Euclidean distance between the concatenated feature

vectors. The results of the combined measures are presented in Table 6.2.

x =
[
xT

static, xT
dynamic

]T
(6.1)

The results of the combined measures are approximately equal to the results produced

for the standard spectral measures for both MFCCs and LSFs. Combining the spectral

dynamic measure computed from the second derivative was found to result in a decrease

in performance when compared with the AUC value of static spectral measures, although

it is a small decrease only evident in the third decimal place. This suggests that no

advantage is gained by combining static and dynamic measures in this manner for the test

database. The combined measures are statistically equivalent to the static measure and

are well within the standard error bands of the original static measures. The reason that
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no significant gain in performance is observed could be due to the manner in which the

measures are combined or because each of the measures do not contain complementary

discriminating information. This is discussed further in section 6.2.2. These results are

similar to those reported in Wouters and Macon (1998) and Vepa and King (2006)

Features MFCC LSF
[x, dx/dt] 0.77540 0.74046[
x, d2x/dt2

]
0.77399 0.73964[

x, dx/dt, d2x/dt2
]

0.77409 0.73858

Table 6.2: Comparison of results for combining static and dynamic spectral measures, the
table entries indicate the AUC values for each of the measures.

6.2.2 Analysis of results

In this section the results are analysed to gain further understanding of the advantages and

limits of the proposed spectral dynamic measures as potential join costs. Window length

and feature extraction parameters have already been identified as sources of variation in

the results and in this section a phonetic breakdown of the results and a correlation analysis

of spectral dynamic and static measures is presented.

Phonetic breakdown of results

The AUC values of the spectral dynamic measures computed from the first derivative

of the features trajectories are illustrated in Fig. 6.7 and Fig. 6.8 for LSFs and MFCCs

respectively for each phone in the test database. The results for each phone are similar

for both MFCCs and LSFs, although LSFs significantly outperfrom MFCCs for the phone

/ao/. From these plots it can be noted that the dynamic measures, similar to standard

spectral measures, score relatively low AUC values for the diphthong /oy/. Apart from

this it is difficult to extract any significant pattern from the data. The overall profile of

the AUC values on a phone by phone basis is relatively similar to that found for standard

spectral measures and does not contain any distinctive anomalies. The results suggest that

phones containing spectral dynamics are not necessarily better served by a measure based
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Figure 6.7: Bar chart indicating the AUC value computed for dynamic LSF (first deriva-
tive) for each phone containing joins in the test database.
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Figure 6.8: Bar chart indicating the AUC value computed for dynamic MFCC (first deriva-
tive) for each phone containing joins in the test database.

on spectral dynamics over a standard static spectral measure. In particular the results

indicate that spectral dynamic measures do not offer any advantage over standard static

spectral measures for diphthongs.

Correlation analysis

Motivated by the disappointing increase in results from combining spectral dynamic with

standard measures, an analysis was conducted to investigate if a correlation exists between

static and dynamic spectral mismatch in the test database. If static and dynamic mis-

matches are correlated then they are likely to occur simultaneously. It is unlikely that a

significant increase in performance will result from combining these measures in such a

scenario.

The degree of correlation between static and dynamic measures was quantified using
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Figure 6.9: Scatter plot of the distance computed for MFCCs versus the spectral dynamic
distance (first derivative) computed from MFCCs for each test word in the database.

the correlation coefficient, equation 6.2.

rxy =
∑N

n=1(x−mx)(y −my)
(N − 1)σxσy

(6.2)

The dynamic and corresponding static distances are represented by the vectors x and y,

where mx, my, σx and σy represent the mean and standard deviations of the distance

vectors.

The correlation coefficients computed between static and dynamic spectral measures

are presented in Table 6.3. The table entries indicate the correlation coefficients computed

between the static and dynamic measures for both MFCCs and LSFs using measures

of dynamics computed from both the first and second derivatives. The results indicate

that there is significant correlation between static and dynamic spectral mismatch for the

Features MFCC LSF
dx/dt 0.7748 0.7345
d2x/dt2 0.7522 0.7272

Table 6.3: Correlation coefficients between static and dynamic spectral measures for both
LSFs and MFCCs.
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test database, with correlation coefficients in the range of 0.72 to 0.77. A scatter plot

of static spectral distance versus dynamic spectral distance is illustrated in Fig. 6.9 for

MFCCs. An approximate linear relationship can be observed from the plot. The correlation

between the measures in the test database indicates that they are unlikely to produce

significantly improved results when combined. This may explain why the improvement in

results obtained from combining static and dynamic spectral measures is small relative to

their individual performance.

6.3 Conclusion

In this chapter the role of spectral dynamics in concatenative synthesis was investigated.

A procedure to compute spectral dynamic features was presented. The technique involved

fitting polynomial models to feature trajectories. The details of feature extraction were

found to significantly influence the results. In particular, the order of the polynomial

model, the number of points in the trajectory to be modelled and the size of the analysis

window used to extract the initial features to compute the trajectory model were all found

to play a role. Using the polynomial model of the trajectories the derivatives could be

estimated at the unit boundaries for each trajectory for a given feature set.

The first and second derivatives were tested as measures of spectral continuity for both

LSFs and MFCCs. Dynamic measures computed from the first derivative showed a more

significant correlation with the perceptual results than measures from the second derivative.

To demonstrate the significance of carefully selecting the feature extraction technique and

parameters, a dynamic measure was also tested based on a simple computation of delta

features. The detection rate of the delta features for both MFCCs and LSFs was at

the level of pure chance with AUC values of approximately 0.5, indicating that they do

not correlate with human perceptual results of continuity. The degree of correlation with

human perception was found to be sensitive to basic parameters used in feature extraction,

the results indicated that smooth trajectories that do not contain the fine detail of temporal

variations are more suitable for the task at hand. This is in contrast to results for static
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spectral measures for which temporal resolution was found to have a significant impact for

the detection of discontinuities.

Combining spectral dynamic measures with standard static spectral measures was

not found to produce a significant gain in performance, similar to the results reported

in Wouters and Macon (1998) and Vepa and King (2006). An analysis of the results was

carried out in order to further understand the relationship between static and dynamic mea-

sures. Spectral dynamic distance measures were found to correlate with standard distance

measures for the test database. This indicates that a large spectral dynamic mismatch is

likely to occur simultaneously with a mismatch in the static spectrum. If this was to occur

both measures would be likely to detect the same discontinuities in the test database. A

breakdown of the detection rates for spectral dynamic measures indicated that the profile of

the AUC values across all phones in the database was similar to that for standard spectral

measures. Most notably the AUC value for spectral dynamic measures was consistently

low for the diphthong /oy/ compared to AUC result for other phones. This was also the

case for standard spectral measures. This indicates that spectral dynamic measures are

not necessarily advantageous in joins contained in diphthongs.

Spectral dynamic measures were found to correlate with human perception of disconti-

nuity although they did not provide a gain in performance when combined with standard

static spectral measures. The details of feature extraction were found to significantly im-

pact on the ability of the measures to predict discontinuities in the test database.
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Chapter 7

Feature Transformations

In unit selection systems the spectral join cost is computed by extracting spectral fea-

tures from speech frames adjacent to the unit boundaries and calculating the Euclidean

distance between the features. In this computation the level of spectral mismatch between

corresponding features is treated equally for all features. Perceptually it is unlikely that

all features are equally significant. Mismatch below a certain threshold is likely to be

perceptually irrelevant and should be discarded with no contribution to the overall dis-

tance measure. Certain spectral bands may be of more significance, for example mismatch

coinciding with the location of a formant would be expected to be of more perceptual

importance than mismatch in other regions of the spectrum. It has been reported that an

abrupt increase in an acoustic component is more perceptually significant than a sudden

drop in amplitude (Summerfield et al., 1986). This indicates that mismatch due to the

introduction of a new component should be weighted more heavily than mismatch due to

a drop in component energy. The central auditory system contains many complex com-

ponents to process transients and detect changes in signal components that are likely to

be active in the detection of discontinuities. A system that can detect discontinuities in

concatenated speech from the extracted spectral features should have sufficient complexity

to model this behaviour.

The objectives of this chapter are to investigate feature transformation algorithms to

improve the performance of join costs in detecting discontinuities in concatenated speech.
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This general objective can be broken down further into the following objectives for the

chapter:

• To develop a framework that facilitates the use of feature transformation algorithms

tailored for join costs.

• To investigate the use of linear feature transformations.

• To investigate the use of complex non-linear neural network based transformations

on the features in join costs.

• To investigate the use of feature transformations to automatically combine features

from different sub-costs into a single measure of continuity.

In this chapter a framework to represent a join cost as a feature vector that facilitates

feature transformations is presented. Linear and non-linear feature transformations are ap-

plied to the task of improving the rate of detection of discontinuities, specifically principal

component analysis (PCA) and neural networks. The results for applying the transforma-

tions to a set of spectral features to predict discontinuities in the test database is presented.

PCA is investigated as a dimensionality reduction technique to be used as a preprocessing

stage prior to applying the neural network. Neural networks are investigated as a means

to automatically combine different feature sets into a single measure. The detection rates

of the raw features and the transformed features are presented to illustrate the impact of

the transform on the the detection of discontinuities.

7.1 Feature space framework

In order to apply feature transformations that fully exploit the discriminating information

within each feature, it is necessary to define a suitable vector to represent a join between

two concatenated units. Existing methods employ a distance to represent the continuity

of a join and feature vectors to represent individual units of speech. In this thesis the error

vector is used to represent a join, hereby referred to as the join vector, which is computed

by subtracting the left and right unit feature vectors, xleft and xright. The left unit refers
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to the unit on the left hand side of a join and the right unit refers to the unit on the right

hand side of a join. Each feature in the join vector represents the degree of mismatch

between the corresponding features in the left and right units.

xjoin = xleft − xright (7.1)

Different strategies to construct join vectors were initially investigated. The strategies

were motivated by the standard, lp norms and the symmetric Kullback-Leibler. Strategies

to develop the join vectors were motivated by generalising the standard distance measure

approaches reported in the literature on join costs (Klabbers and Veldhuis, 1998; Stylianou

and Syrdal, 2001; Vepa et al., 2002; Wouters and Macon, 1998). The approach based on

the lp norm proved to be the most suitable as it produced better results in preliminary

investigations (Kirkpatrick et al., 2006). This join vector generalises the standard distance

measure approach for the lp norms. Classification of the join vectors at this stage without

applying a feature transformation, for join vectors constructed using equation 7.1, corre-

sponds exactly with calculating the lp distance between the original left and right feature

vectors, for a given p, equation 7.2.

lp(x,y) =

(
N∑

i=1

|x(i)− y(i)|p
)1/p

(7.2)

The ideal join corresponds with the origin in the feature space and the quality of the join

can be quantified as the distance of the join vector from the origin. Thus joins can be

classified as continuous or discontinuous with respect to distance from the origin. When

classification is based on a distance from the origin, the subsequent choice of norm for the

feature space establishes the geometry of the classifier. The classifiers corresponding to the

l1, l2, l4 and l∞ norms are illustrated in Fig. 7.1. This illustrates how the standard distance

measures can be interpreted in the feature space. At this stage computing the l2 distance is

equivalent to computing the Euclidean distance between the original feature vectors. The

advantage of this framework is that it enables the application of feature transformations

with the potential to improve performance in detecting discontinuities.
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Figure 7.1: Classifier shape in 2 dimensions employing l1, l2, l4 and l∞ norms.

With the join vector representation it is possible to apply a transformation, A, on the

join vector before computing the final measure of mismatch, equation 7.4.

X = A(xjoin) (7.3)

With this approach standard techniques can be applied to increase the separability of join

vectors representing continuous and discontinuous joins. The application of a linear feature

transformation is equivalent to stretching or contracting along individual axes and rotating

the classifiers from Fig. 7.1, with a possible reduction in dimensionality. The final measure

of mismatch, D, can be computed from the transformed vector, X.

D = |X| (7.4)

Two techniques were investigated: PCA and a neural network-based approach. For the

neural network-based approach PCA was used as a preprocessing stage for dimensional-

ity reduction of the input data. Ideally a feature transformation will remove redundant

information and weight perceptually important information resulting in improved discrim-

ination between continuous and discontinuous joins.
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7.2 Feature transforms

Many studies have been conducted in the automatic speech recognition literature inves-

tigating the use of feature transformations to improve the discriminating qualities of the

features (Somervuo et al., 2003; Somervuo, 2003). In this study PCA (Jolliffe, 1986) and

neural networks (Bishop, 1995; Haykin, 1994) are applied to transform features represent-

ing the spectral join vectors. Supervised learning techniques require data to train the

transform. This requires splitting the database into a training set and a testing set. Neu-

ral networks are supervised and must be trained on suitable data. PCA is an unsupervised

transform and does not require training data. The objective is to investigate the ability of

these techniques to enhance existing measures for objective detection of discontinuities.

7.2.1 Principal component analysis

Principal component analysis is an unsupervised learning technique and does not require

splitting the database into separate training and testing datasets. In this thesis PCA is

investigated in two roles: firstly for its ability as a linear unsupervised learning technique

to improve the detection of discontinuities and secondly as a dimensionality reduction tech-

nique to remove redundant information preceding the application of neural networks. The

removal of redundant information with PCA often leads to an improvement in performance

in many pattern recognition tasks (Jolliffe, 1986).

In the implementation of PCA the data is centered in the feature space about the

origin by subtracting the mean vector computed over the complete database. The data

is also normalised with respect to variance such that the standard deviations are equal

to one. The normalised data is transformed using PCA, this produces transformed join

vectors whose components are uncorrelated and ordered according to the magnitude of

their variance.

7.2.2 Neural networks

With the application of neural networks a mapping can be learned from data provided from

subjective listening tests relating continuous and discontinuous joins with input feature
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vectors representing a join. The appropriate relationship between the features and the

detection of a discontinuity is data-driven and does not require advanced knowledge of

auditory processing.

For each of the feature sets considered and for a number of possible combinations

of feature sets a neural network was trained from the training set of the database and

subsequently tested on the testing set. PCA is applied as a preprocessing step to reduce

the dimensionality of the input vectors before training the networks. PCA is applied to

retain components that contribute more than 0.1% to the variance in the data set. When

the join vector is passed through the neural network the final distance measure is output.

To train the neural networks join vectors corresponding with discontinuities are assigned

an output value of 1 and continuous joins are assigned an output value of 0. The training

set consisted of 50% of the database and the testing set consisted of the other 50%. Joins

containing high F0 and energy differentials were retained in the database. A preliminary

investigation found that results obtained were similar with or without joins exhibiting large

F0 and energy differentials. F0 and energy can be easily appended to the feature vectors

and is discussed in 7.3.3. The testing and training subsets were divided such that an equal

number of discontiuities occurred in each subset. Similarly each subset had equal coverage

across all phones represented in the databse.

A number of classes of neural networks were initially investigated as candidate feature

transformations including;

• General regression neural networks (GRNN) (Specht, 1991; Wasserman, 1993).

• Probabilistic neural networks (PNN) (Specht, 1990; Bishop, 1995).

• Feedforward neural networks (FFNN) (Haykin, 1994; Bishop, 1995).

• Radial basis neural networks (RBN) (Haykin, 1994; Bishop, 1995).

• Exact radial basis neural networks (ERBN) (Haykin, 1994).

Initial test results indicated that FFNNs, PNNs, RBNs and ERBNs were found to be

less consistent than GRNNs. GRNNs were found to be the most suitable for the task as
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they consistently produced high AUC values. Gains in AUC values were robust to param-

eter variations and changing feature sets with GRNNs unlike the other neural networks

considered. Radial basis and exact radial basis networks were found to produce relatively

high AUC values in some cases although the results were sensitive to parameter changes

and feature sets. The results produced by feedforward networks were significantly lower

then for GRNNs and were inconsistent. The algorithm employed to train feedforward net-

works contains parameters that are randomly initialised. The selection of these parameters

was found to influence the resulting performance with different AUC values produced each

time a feedforward networks was trained. The choice of the initial parameters can result

in problems with the network parameters getting trapped in local minima (Haykin, 1994),

which is a general problem with iteratively trained neural networks. GRNNs do not suffer

from the same problem. The results presented in this chapter are for GRNN networks.

GRNNs are often used in applications for function approximation when the form of the

underlying relationship is unknown. They are similar to radial basis networks and contain

an input layer, a radial basis layer and a linear output layer. In training a GRNN a value

must be selected for the spread parameter for the neurons in the radial basis layer. The

spread parameter determines the width of the distribution of the (Gaussian) activation

functions within each neuron in the second layer (Patterson, 1996). The spread parameter

can be employed to fine tune the performance of a network.

7.2.3 Combining feature sets

To combine feature sets, each corresponding join vector is concatenated and subsequently

the transformation is applied.

x =
[
xT

features1, xT
features2

]T
(7.5)

When combining feature sets it is important to effectively utilise the discriminating in-

formation contributed by each feature vector. The individual feature vectors may be on

considerably different scales and there may be significant correlation between the measures
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introducing redundancy. The transformations are tested for the ability to automatically

combine the information represented in the individual feature vectors. This can be applied

to combine different spectral measures, for example MFCCs with LSFs or alternatively to

combine different sub-costs such as energy, F0 and spectral measures into a single mea-

sure. An ideal transform will remove redundant information and retain information to

facilitate discriminating between continuous and discontinuous joins. To successfully com-

bine measures the transformations must retain the discriminating information unique to

each constituent component. In this chapter results are presented based on combining

standard spectral measures with dynamic spectral measures, combining standard spec-

tral measures with non-spectral measures such as energy and F0. In addition all possible

combinations are considered to determine the overall best performing measure.

7.3 Results

In this section the results are presented for both PCA and neural network transformations

for a number of feature sets. The results represent the AUC value which indicates the

rate of detection of discontinuities in the test database. Results are presented for both

PCA and neural networks for the following features sets: MFCC, LSF, Log PS, Morlet

wavelet and GDF LPC. Results are presented for spectral dynamic measures (LSF and

MFCC) and various combinations of feature sets with the neural network transformation.

Note that the testing set for neural networks is a subset of the database. This should be

considered when making comparisons with AUC values reported earlier in the thesis. To

create a reference point for comparison, the AUC value of the standard Euclidean distance

for a given feature set is computed and presented alongside the results employing the

transformation approach. As the number of discontinuities in the testing set is now half

the number compared to AUC values computed in previous chapters the standard error

values are different for the AUC values presented in this chapter. The standard error versus

AUC value corresponding with the results presented in this chapter is given in Fig. 7.2.
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Figure 7.2: Plot of the AUC versus standard error for the testing protion of the database
employed with feature transformation based measures.

Features x PCA[x] Dimension
Morlet 0.8059 0.8123 3 (50)
Log PS 0.7673 0.7892 32 (256)
MFCC 0.7565 0.7714 3 (19)
LSF 0.7468 0.7113 16 (16)
GDF LPC 0.7521 0.7097 8 (256)

Table 7.1: Comparison of results with and without the application of PCA for each feature
set, the table entries indicate the AUC value and the dimension of the feature vector after
PCA is applied.

7.3.1 PCA

The results comparing the AUC values computed before and after the application of PCA

are presented in Table 7.1. The results include the AUC value from the Euclidean distance

and after the application of PCA to the join vectors. The final column indicates the

dimension of the join vector after PCA with the original dimension in brackets. These

results were computed across the test subset of the database. Similar results were computed

for the complete database. For consistency in the presentation of results in the section on

neural networks the results are presented for the test subset only.

For MFCCs, Log PS and Morlet wavelets, the application of PCA was found to improve
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Figure 7.3: Plot of the AUC versus output dimension when applying PCA to the Log PS
join vectors.
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Figure 7.4: Plot of the AUC versus output dimension when applying PCA to the LSF join
vectors.
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Figure 7.5: Plot of the AUC versus output dimension when applying PCA to the Morlet
wavelet join vectors.
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the rate of detection of discontinuities. The improvement is of the order of 1-2%. This is

not a statistically significant improvement with respect to the standard error. For LSFs

and the GDF LPC, PCA was found to result in a decrease in the AUC value. This

decrease in performance is due to the preprocessing stage in which the mean is subtracted.

The decrease is not observed when the preprocessing stage is omitted. The dimension of

the transformed vectors was chosen to maximise the AUC value for each of the feature

sets. Figures 7.3, 7.4, 7.5 illustrates the resulting AUC values as the dimension of the

PCA transformed vector is varied for join vectors constructed from Log PS, LSFs and

the Morlet wavelet. Each figure has a similar characteristic, with a rapid rise in the

AUC values as the dimension increses followed by a plateau. Fig. 7.4 is different to the

other plots as the plateau is not as distinct and the maximum value corresponds with the

maximum dimension. This was found to be due to the preprocessing stage in which the

mean is subtracted. When this preprocessing is omitted the plot for LSFs exhibits the

same characteristics as the other feature sets considered with a peak at a low dimension

and a more distinct plateau. This suggests that much of the discriminating information

can be compressed into a small number of coefficients. In particular the wavelet and MFCC

measures have a maximum AUC value at a dimension of 3.

The results indicate that PCA is limited as a method to improve the detection of

discontinuities but is effective at compressing the discriminating information in the join

vectors into a low dimensional representation. This suggests that PCA is suitable as a

preprocessing stage for neural networks.

7.3.2 Neural networks

The results for each of the candidate feature sets before and after the application of the

proposed neural network-based transformation are presented in Table 7.2. The results

presented are for GRNN type networks with the spread parameter equal to 1. The neural

network is trained on the training set and tested on a separate testing set. PCA is employed

as a preprocessing stage to reduce the dimensionality of the input vectors. The first column

of results, x, represents the AUC value for the corresponding feature set computed using
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the Euclidean distance. The second column, NN [x], represents the AUC value for the

corresponding feature set computed from the measure output by the neural network.

Features x NN [x]
Log PS 0.7673 0.8744
MFCC 0.7565 0.8413
Morlet 0.8059 0.8307
LSF 0.7468 0.7955
GDF LPC 0.7521 0.7135

Table 7.2: Comparison of results before and after the application of the neural network for
each feature set, the table entries indicate the AUC value.

The results contained in Table 7.2 indicate that the neural network-based approach

enhances the performance considerably in most cases. The gains in performance achieved

by the neural network are statistically significant, with respect to the standard error, in

all cases except for the Morlet wavelet. This is most notable for Log PS in which the AUC

value increases from 0.7673 with the standard distance measure approach to a value of

0.8744 with the proposed approach. Gains are also achieved for MFCCs, Morlet wavelets

and LSFs. The only measure not to improve is the GDF LPC. The ROC curves comparing

before and after the application of the neural networks are illustrated in Fig. 7.6 for MFCCs

and Fig. 7.7 for Log PS.

Further improvements on these results can be achieved by tailoring the spread param-

eter for each individual neural network. The spread parameter was varied in steps of 0.25

and the maximum AUC value was recorded. The results are presented in Table 7.3 includ-

ing the maximum AUC value and the corresponding spread parameter. Fine tuning the

spread parameter results in an increase in performance for all feature sets, including the

GDF LPC that showed a decrease in performance in Table 7.2 when the spread value was

set to the default value of 1.

The results presented in Table 7.4 represent the performance of dynamic measures,

as computed in Chapter 6, before and after the application of the neural network trans-

formation. The results indicate that the neural network can enhance the performance of

the spectral dynamic measures. The spectral dynamic measures computed from the first
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Figure 7.6: ROC curves for MFCCs before and after the feature transformation with the
neural network.
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Figure 7.7: ROC curves for Log PS before and after the feature transformation with the
neural network.

138



Features Spread NN [x]
Log PS 4.5 0.8944
MFCC 1.5 0.8572
Wavelet Morlet 1.5 0.8521
LSF 1.25 0.7969
GDF LPC 5.25 0.773

Table 7.3: Results of the neural network transformation for each feature set with the spread
parameter tuned for each individual feature set.

derivative of the LSF trajectories scored an AUC value of 0.8201 after the neural network

transformation. This score is higher then any of the AUC values computed with static

spectral measures in conjunction with the Euclidean distance (of which the best reported

for the testing set is 0.8059 with the Morlet wavelet). Measures based on the second

derivative also show an improvement in the AUC value with the application of the neural

network. These results further validate the results of Chapter 7 indicating that spectral

dynamic measures correlate with human perception of discontinuity.

Features dx/dt NN[dx/dt] d2x/dt2 NN[d2x/dt2]
MFCC 0.7369 0.8017 0.6643 0.7274
LSF 0.7065 0.8201 0.6625 0.7518

Table 7.4: Comparison of results before and after the application of the neural network for
each feature set, the table entries indicate the AUC value.

7.3.3 Combined measures

To combine the measures, each join vector is concatenated and subsequently PCA is applied

to decorrelate the combined join vector and reduce the dimensionality. The output from

PCA is used to train the neural network using the training subset of the database. The

results here are for a GRNN neural network with the spread parameter set to 1. Results are

presented for combining different standard spectral representations, combining standard

spectral representations with dynamic measures and combining F0 and energy measures

with standard representations.

The results computed from the standard distance measures with no transformation
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based on the concatenated join vectors and those computed from the neural network-based

measures are presented in Table 7.5. The neural network-based measure derived from the

combination of MFCC and Log PS features has the highest AUC value of the combined

measures at 0.8859. For each of the combined measures the neural network-based measure

outperforms the corresponding standard measure. The results indicate that combining

standard spectral measures can increase performance when using neural networks.

Features x NN [x]
MFCC 0.7565 0.8413
MFCC + LSF 0.7468 0.8581
MFCC + Log PS 0.7673 0.8859
MFCC + Morlet 0.8121 0.8735
MFCC + GDF LPC 0.7525 0.7135

Table 7.5: Comparison of results with and without the application of the neural network
for possible combinations of spectral feature sets, the table entries indicate the AUC value.

The results for combining static and dynamic measures in conjunction with the neural

network transformation are illustrated in Table 7.6. Combining the standard spectral mea-

sures with the dynamic measure computed from the first derivative, [x, dx/dt], increases

the AUC value for both feature sets. The addition of the spectral dynamic measure com-

puted from the second derivative, [x, d2x/dt2], also results in an increase in the AUC.

The increase of performance from combining the dynamic measure from the first deriva-

tive greater. Combining all three of these measures,[x, dx/dt, d2x/dt2], also provided an

increase. For MFCCs the combination of the second derivative measure, d2x/dt2, with the

static and first derivative measure reduced the AUC value.

Features NN[x, dx/dt] NN[x, d2x/dt2] NN[x, dx/dt, d2x/dt2]
MFCC 0.8880 0.8563 0.8673
LSF 0.8307 0.8142 0.8346

Table 7.6: Results after the application of the neural network for combined static and
dynamic features, the table entries indicate the AUC value.

The results for combining standard spectral measures with F0 and energy measures

are presented in Table 7.7. The results indicate that a marginal increase in the AUC value
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can be achieved with the inclusion of these parameters.

Features x NN [x]
MFCC + F0 0.7142 0.8455
MFCC + E 0.7567 0.8468
MFCC + E + F0 0.7124 0.8562
LSF + F0 0.7491 0.8330
LSF + E 0.7470 0.8197
LSF + E + F0 0.7491 0.8408
Log PS + F0 0.7867 0.8774
Log PS + E 0.7673 0.8756
Log PS + E + F0 0.7807 0.8770

Table 7.7: Comparison of results with and without the application of the neural network
for feature sets with and without F0 and energy, the table entries indicate the AUC value.

A large number of possibilities exist to combine measures, most of which produce very

similar results. The highest AUC value achieved was for a combined measure consisting

of:

• Morlet wavelet.

• MFCC.

• MFCC based dynamic measure computed from the first derivative.

• F0.

• Energy.

• The neural network had a spread parameter of 2.5.

The AUC value achieved for this measure was 0.9218. The ROC curve for this measure is

illustrated in Fig. 7.8 alongside the benchmark MFCC measure (MFCC AUC = 0.7565).

7.3.4 Summary of results

From the results presented a number of key points can be noted:

• Neural networks produced a statistically significant improvement in the performance

of standard features in detecting discontinuities. Log PS increased its performance
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Figure 7.8: ROC curves comparing the performance of the best neural network based
measure and the baseline MFCC measure.

from 0.7673 with Euclidean distance to 0.8944 with a neural network transformation

in which the spread parameter was tuned to optimise performance.

• Not all neural networks provided useful results. GRNNs were found to be the most

suitable of the candidate networks considered in this study.

• PCA is an effective means to compress data contained in join vectors. For example

wavelet coefficients could be compressed from 50 to 3 and achieve a small increase in

the AUC value (from 0.8059 to 0.8123).

• Neural networks can be used to produce a single combined measure from a number

of distinct feature sets. The best performing measure was a combined measure with

an AUC value of 0.9218.

7.4 Conclusion

A feature space framework was successfully developed that generalises the standard dis-

tance measure computation used on join costs to date. This framework is significantly more

flexible and enables the application of complex feature transformation algorithms. Feature
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transformations were investigated as a means of improving the detection of discontinuities

in the test database. A linear transformation, PCA, and a neural network based technique

were applied and tested. PCA was not significantly advantageous as a means to improve

detection although it proved to be suitable as a preprocessing stage to compress join vectors

prior to the application of neural networks. A neural network based approach using GRNN

type neural networks was found to considerably improve the detection of discontinuities.

A combined measure, employing many features, using the feature space framework and

a neural network transformation produced the highest AUC value of all measures tested

in this thesis. The results in this chapter support the theory, presented in Chapter 2,

that discontinuity detection is related to neural processing in the auditory system. The

neural network based approach does not require detailed knowledge of the underlying au-

ditory processes as it is data-driven. The results suggest that this technique has sufficient

complexity to model the auditory processes involved in the detection of discontinuities.
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Chapter 8

Conclusions

The objective of this thesis was to develop a deeper understanding of human perception of

discontinuity in concatenated speech and to use that knowledge to develop new measures of

spectral continuity that correlate with human perception. The approach adopted to solve

the problem was to identify the limits of existing measures and investigate new strategies

guided by knowledge of the human auditory system.

The perceptual experiment

A perceptual experiment was conducted on a test database of concatenated words. The

database contained a set of concatenated synthetic words each of which was judged to

be continuous or discontinuous by human listeners in a formal perceptual experiment.

Analysis of the database revealed that discontinuities were more likely to occur in vowels

with relatively more formant variation and, as with previous studies, diphthongs were

identified as having a high probability of containing a discontinuity. This database was used

to correlate perceptual data with candidate measures of continuity and was used extensively

throughout the thesis to correlate candidate measures of continuity with perceptual results.

Comparison of standard spectral measures

An investigation was conducted to quantify the degree of correlation between standard

spectral representations used in speech processing and the perceptual results. The results

144



of this study revealed that although the measures correlated with human perception, none

of the standard measures tested had a satisfactory correlation, and that significant scope for

improvement existed. Analysis of feature extraction parameters revealed that the results

for the standard measures were dependent on the window length used for feature extraction.

The choice of window length was found to have a more significant impact on the results then

the choice of feature set. The tests indicated that a pitch synchronous feature extraction

procedure provided the best results. The results obtained for varying the window size

indicated that a trade-off in the time-frequency resolution of the spectral estimates may

be limiting the performance of the spectral measures. The limitations of standard spectral

measures, with respect to time-frequency resolution, was further reflected in the results

produced for individual vowels. Vowels with relatively stationary spectra produced the

best results and diphthongs containing spectral dynamics consistently produced the lowest

results.

Wavelets

To provide a solution to the limitation imposed by the time-frequency resolution of standard

spectral features a measure based on the wavelet transform was proposed and evaluated.

Wavelet transform measures were found to outperform standard spectral measures and

demonstrated a higher degree of correlation with human perceptual results. The improve-

ment in the results was found to be consistent for a number of different wavelet functions,

with only a few exceptions, and is thought to be due to the time-frequency characteristics

of the wavelet transform. Analysis of the results indicated that the increase in performance

for wavelet based measures was particularly significant for diphthongs. Diphthongs contain

more spectral dynamics than monophthong vowels and were found to produce the lowest

results for standard measures compared with results for other vowels in the database. The

trade-off between time and frequency resolution to produce a reliable spectral estimate

is more challenging in diphthongs compared with monophthong vowels due to the non-

stationary spectra. Wavelets did not always outperform standard spectral measures, such

as MFCCs, for vowels with relatively stationary spectra. The results suggest that the
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wavelet transform can outperform standard measures in the case of joins contained in non-

stationary vowels but does not necessarily offer an advantage for vowels with stationary

spectra at the unit boundary.

Phase-based spectral measures

Standard spectral features employed in speech processing are predominantly computed

from the magnitude spectrum. It is known that information relating to the magnitude

spectrum, phase spectrum and spectral dynamics are utilised in the auditory system in

speech perception. Most previous studies have tested magnitude-based features only as

measures of spectral continuity. In this thesis measures based on the phase spectrum and

spectral dynamics were explored.

A measure of spectral continuity derived from the phase spectrum, in the form of the

group delay function was proposed as a measure of spectral continuity and evaluated on the

test database. The group delay function is the derivative of phase with respect to frequency

and was chosen as a representation of phase as it does not suffer from the ambiguities of

the raw phase spectrum. A number of methods to estimate the group delay function were

investigated. Each of the measures tested were found to correlate with human perceptual

results, although the level of correlation was less then that for standard spectral measures.

A number of the group delay measures outperformed magnitude measures for diphthongs

in the test database. The choice of parameters for feature extraction, such as window

shape and length, was found to have a significant effect on the results. The group delay

measures of continuity did not outperform the magnitude measures in general, although

they did produce better results for diphthongs.

Spectral dynamics

Spectral dynamics were investigated as a new candidate measure of continuity. Spectral

dynamics have been demonstrated as an important perceptual cue in speech and play an

important role in the auditory system. A measure of spectral dynamics was developed by

modelling the trajectories of standard spectral features with a polynomial and computing
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the first and second derivatives of the polynomial at the join. The proposed measures

were demonstrated to correlate with human perceptual results in the test database. The

parameters for feature extraction were found to be important. In particular the window

length and the parameters required to construct the polynomial model were found to

significantly influence the results. Features extracted with unsuitable parameters were

found to show no correlation with human perceptual results. For example MFCC delta

coefficients computed using an analysis window of one pitch period were found to contain

almost no discriminating information to indicate if a join is continuous or discontinuous.

Combining spectral dynamic measures with standard magnitude measures did not produce

any significant increase in performance. An analysis of the database revealed that spectral

dynamic and magnitude measures are correlated in the test database. This explains to

some extent why combining spectral dynamic and magnitude measures does not produce

a significant increase in performance.

Feature transformations

The standard approach to quantify the degree of discontinuity between two speech units is

to compute the Euclidean distance between the feature vectors representing each unit. The

processing of transient sounds and the detection of events in the human auditory system is

complex and involves many locations in the central auditory system. It is likely that similar

processes are involved in the detection of discontinuities. The Euclidean distance does not

have sufficient complexity to model such behaviour. As a solution, a novel feature space

framework was proposed that uses a vector to represent a join. This framework enables the

application of feature transformations that have been successful in other areas of speech

processing. This approach allows research to focus on investigating how the mismatch at

a join should be processed to correspond with human perception as opposed to feature

extraction.

The application of PCA and neural networks were investigated as feature transforms

and were tested for their ability to produce measures that correlated with the perceptual

results. PCA was found to be an effective tool for reducing the dimensionality of vectors
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whilst retaining discriminating information. PCA was not found to significantly improve

the correlation with human perceptual results, although small gains were found in some

cases. A neural network transform using GRNN type neural networks was found to signif-

icantly improve the correlation of standard feature sets with perceptual results. Measures

using this technique consistently correlated with human perceptual results and produced

correlations of over 90%. Standard measures (without transformation) were found to corre-

late at approximately 75% and wavelet measures at approximately 80%. Neural networks

are a supervised learning technique and require training data. This is a disadvantage for

the application of this approach in practice.

Summary

The key findings of the thesis are as follows;

• Time-frequency resolution is a limiting factor for standard spectral measures.

Wavelet-based measures have superior time frequency resolution and were found to

improve the correlation with perceptual results; the most notable increase in perfor-

mance was for diphthongs.

• Measures derived from the phase spectrum, specifically the group delay function,

were found to correlate with human perception of discontinuity in the test database.

These measures did not perform as well as magnitude measures in general but were

found to produce better results for diphthongs.

• Spectral dynamics measures were found to correlate with human perception of dis-

continuity. The details of feature extraction were found to significantly influence the

degree of correlation. Combining spectral dynamic measures with standard measures

provided no significant improvement in performance.

• A new feature space framework was proposed to allow feature transformations on

vectors used to represent joins. This approach combined with a neural network

based transformation produced a significant increase in the correlation with human

perceptual results and provided the highest correlations reported in this thesis.
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The findings in this thesis advance the understanding required to relate human per-

ception of spectral discontinuity with objective measures of continuity computed directly

from the speech signal.

8.1 Future work

Many of the results presented in this thesis would benefit from further study. A number of

areas that could expand on the research presented in this thesis are outlined in this section.

8.1.1 Test database and perceptual experiment

One of the limitations of the results presented in this thesis relates to the amount and

nature of the test data from the perceptual experiment. The test database is of a single

male speaker and only considers joins in vowels. To support the conclusions presented it

would be beneficial to further investigate the key findings with a larger and more varied test

database. An ideal test database would have a number of both male and female speakers,

each with varied vocal characteristics and speaking styles. This would create a framework

to test and develop measures of spectral continuity that are more likely to generalise to

unknown speakers. For example, to an arbitrary speaker in a unit selection database. This

would also establish a framework to analyse the impact of speaker specific characteristics

on each candidate measures of spectral continuity, for example F0, and thus providing a

strategy to develop a measure that is speaker independent. Generalising the results to

multiple speakers is particularly important considering the number of conflicting results

reported in previous studies in the literature. Further research results could be generated

by considering a larger variety of phones. This study only considers joins contained in

vowels and does not consider joins in consonants. A larger quantity of each individual

phone type may also make it easier to identify consistent patterns in the data.
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8.1.2 Wavelets and feature extraction

A further investigation to clarify when it is advantageous to use wavelets over standard

spectral measures would be beneficial in terms of further understanding perception of

discontinuity and as a guide to develop more advance join costs for unit selection. Results

in this study indicate that wavelets are advantageous when spectral dynamics are present,

for example in diphthongs, although there is not sufficient evidence to say that this is

generally the case. Such a study could investigate measurable signal characteristics, for

instance spectral dynamics, to determine if a wavelet based measure or a standard spectral

measure would be more suitable in a particular instance. Such a study would benefit from

a larger more varied test database.

8.1.3 Neural networks

There are many open questions regarding the application of neural networks as a measure of

spectral continuity. The results suggest that this approach can offer significant advantages

over existing measures and a number of challenges exist to determine the limits and the

applicability of this technique in general. A study with multiple speakers and a large and

more varied dataset would be highly beneficial and could provide answers to some of the

following questions with respect to neural networks.

• Can the neural network based approach provide similar gains in performance for

different speakers?

• Will the neural network based approach provide similar gains for joins in consonants?

• How will the neural network extrapolate when used on sounds not represented in the

training set?

• What is the appropriate and simplest strategy to train a neural network that is to

be used in a unit selection synthesiser?

• What is the minimum amount of training data required to train a neural to reliably

detect discontinuities?
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• Is it possible to train a neural network from multiple speakers that will generalise to

all speakers and not require training for individual speakers?

Successfully incorporating this approach into a unit selection system also presents a

number of challenges and would benefit from further research. Specifically, demonstrating

the effect of using the neural network based approach on the quality of speech generated by

a unit selection synthesiser. Similar studies could be conducted to determine the potential

of the neural network based measures to improve database pruning and enrichment, unit

boundary training and optimal coupling of units.
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de Cheveigné, A. and Kawahara, H. (2002). YIN, a fundamental frequency estimator for

speech and music. J. Acoust. Soc. Am., 111:1917–1930.

Delgutte, B. (2002). The Handbook of Phonetic Sciences, chapter Auditory Neural Pro-

cessing, pages 507–538. Oxford.

Donovan, R. E. (2001). A new distance measure for costing spectral discontinuities in

concatenative speech synthesisers. In Proc. of the 4th ISCA workshop on speech synthesis,

Pitlochry, UK.

Donovan, R. E. and Eide, E. (1998). The IBM trainable speech synthesis system. In Proc.

ICSLP, Sydney, Australia.

Duda, R. and Hart, R. E. (2001). Pattern Classification. John Wiley and Sons, 2 edition.

Dutoit, T. (2001). An introduction to text-to-speech synthesis. Kluwer acacdemic publish-

ers.

Flanagan, J. L. (1960). Models for approximating basilar membrane displacement. Bell

systems technology journal, 39:1163–1191.

Flanagan, J. L. (1972). Speech analysis, synthesis and perception. Springer-Verlag.

Forney, G. D. (1973). The Viterbi algorithm. Proc. of the IEEE, 61:268–278.

Founda, M., Tambouratzis, G., Chalamandaris, A., and Carayannis, G. (2001). Reducing

spectral mismatches in concatenative speech synthesisvia systematic database enrich-

ment. In Proc. Eurospeech, Aalborg, Denmark.

Furui, S. (1986a). On the role of spectral transitions for speech perception. J. Acoust. Soc.

Am., 80:1016–1025.

Furui, S. (1986b). Speaker independent isolated word recognition using dynamic features

of speech spectrum. IEEE Trans. on acoust, speech and signal processing, 34:52–59.

Furui, S. (1990). On the use of hierarchical spectral dynamics in speech recognition. In

Proc. ICASSP, Albuquerque, New Mexico , USA.

155



Gobl, C. and Nı́Chasaide, A. (2003). The role of voice quality in communicating emotion,

mood and attitude. Speech Communication, 40:189–212.

Gold, B. and Morgan, N. (2000). Speech and audio signal processing: processing and

perception of speech and music. John Wiley and Sons.

Golub, G. H. and Van Loan, C. F. (1996). Matrix Computations (Third Edition). The

John Hopkins University Press.

Hanley, J. A. and McNeil, B. J. (1982). The meaning and use of the area under the receiver

operating characteristic (ROC) curve. Radiology, 143:29–36.

Hayes, M. H. (1996). Statistical digital signal signal processing and modelling. John Wiley

and Sons, Inc.

Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. Macmillan.

Hermansky, H. (1990). Perceptual Linear Prediction (PLP) analysis of speech. J. Acoust.

Soc. Am., 87:1738–1752.

House, A. S., Williams, C., Hecker, M. H. L., and Kryter, K. D. (1963). Psychoacoustic

speech tests: A modified rhyme test (A). J. Acoust. Soc. Am., 35:1899–1899.

Huang, X., Acero, A., and Hon, H. W. (2001). Spoken language processing. A guide to

theory, algorithm and system developement. Prentice Hall.

Hunt, A. and Black, A. (1996). Unit selection in a concatenative speech synthesis system

using a large speech database. In Proc. ICASSP, Atlanta, Georgia, USA.

Itakura, F. (1975). Line spectrum representation of linear predictive coefficients of speech

signals. J. Acoust. Soc. Am., 57.

Jesteadt, W., Bacon, S., and Lehman, J. (1982). Forward masking as a function of fre-

quency, masker level, and signal delay. J. Acoust. Soc. Amer., 71:950962.

Jolliffe, I. (1986). Principal Component Analysis. Springer-Verlag.

156



Karaiskos, V., King, S., Clark, R. A. J., and Mayo, C. (2008). The blizzard challenge 2008.

In Proc. of the Blizzard Challenge 2008, Brisbane, Australia.

Kim, D.-S. (2001). On the perceptually irrelevant phase information in sinusoidal repre-

sentation of speech. IEEE Trans. on speech and audio processing, 9(8):900–905.

King, S. and Karaiskos, V. (2009). The blizzard challenge 2009. In Proc. of the Blizzard

Challenge 2009, University of Edinburgh, Scotland.

Kirkpatrick, B., O’Brien, D., and Scaife, R. (2006). A comparison of spectral continuity

measures as a join cost in concatenative speech synthesis. In Proc. of the IET Irish

Signals and Systems Conference (ISSC), Dublin, Ireland.

Klabbers, E., van Santen, J. P. H., and Kain, A. (2007). The contribution of various sources

of spectral mismatch to audible discontinuities in a diphone database. IEEE Trans. on

audio speech and language processing, 15:949 – 956.

Klabbers, E. and Veldhuis, R. (1998). On the reduction of concatenation artefacts in

diphone synthesis. In Proc. ICSLP, volume 6, Sydney, Australia.

Klabbers, E. and Veldhuis, R. (2001). Reducing audible spectral discontinuities. IEEE

Trans. on speech and audio processing, 9:39 – 51.

Klabbers, E. and Veldhuis, R. (2003). On the computation of the Kullback-Leibler distance

measure for spectral distances. IEEE Trans. on speech and audio processing, 11:100 –

103.

Kluender, K. R., Coady, J. A., and Kiefte, M. (2003). Sensitivity to change in the percep-

tion of speech. Speech Communication, 41:59–69.

Knagenheim, H. P. and Kleijn, W. B. (1995). Spectral dynamics are more important than

spectral distortion. In Proc. ICASSP, Detroit, Michigan, USA.

Kraus, N., McGee, T., Sharma, A., Carrell, T., and Nicol, T. (1992). Mismatch negativity

event-related potential elicited by speech stimuli. Ear and Hearing, 13:158–64.

157



Kullback, S. and Leibler, R. (1951). On information and sufficiency. Ann. Math. Statist.,

6:79–86.

Lindblom, B. E. F. and Studdert-Kennedy, M. (1967). On the role of formant transitions

in vowel recognition. J. Acoust. Soc. Am., 42:830–843.

Lindemann, E. and Kates, J. (1999). Phase relationships and amplitude envelopes in

auditory perception. In Proc. of the IEEE workshop on applications of signal processing

to audio and acoustics, New Paltz, New York.

Ling, Z. H., Lu, H., Hu, G. P., and Wang, L. R. D. R. H. (2008). The USTC sytem for

Blizzard challenge 2008. In Proc. of the Blizzard Challenge 2008, Brisbane, Australia.

Ling, Z.-H., Richmond, K., Yamagishi, J., and Wang, R.-H. (2009). Integrating articulatory

features into HMM-based parametric speech synthesis. IEEE Trans. on Audio, Speech

and Language Processing, 17:1171–1185.

Lu, H., Ling, Z.-H., Lei, M., Wang, C.-C., Zhao, H.-H., Chen, L.-H., Hu, Y., Dai, L.-R.,

and Wang, R.-H. (2009). The ustc system for blizzard challenge 2009. In Proc. of the

Blizzard Challenge 2009, University of Edinburgh, Scotland.

Lyon, R. F. and Mead, C. (1988). An analog electronic cochlea. IEEE Trans. on Acous-

tics,Speech and Signal Processing, 36:1119–1134.

Mallat, S. (1998). A Wavelet Tour of Signal Processing. Academic Press.

Markel, J. D. and Gray, A. H. (1976). Linear Prediction of Speech. Springer-Verlag, Berlin.

May, P., Tiitinen, H., Illmoniemi, R. J., Nyman, G., Taylor, J. G., and Naatanen, R. (1999).

Frequency change detection in the human auditory cortex. Journal of computational

neuroscience, 6:99–120.

McAulay, R. J. and Quatieri, T. F. (1986). Speech analysis/synthesis based on a sinusoidal

represenation. IEEE Trans. on speech and audio processing, 34:744–754.

158



McAulay, R. J. and Quatieri, T. F. (1992). Advances in speech processing, chapter 6. Low

rate speech coding based on the sinusoidal model. NewYork: Marcel Dekker.

McAulay, R. J. and Quatieri, T. F. (1995). ‘Sinusoidal Coding’, Speech Coding and Syn-

thesis, chapter 4. Elsevier.

Meddis, R. (1999). Computer models of the auditory periphery. J. Acoust. Soc. Am.,

105:963.

Meddis, R., Hewitt, M., and Shackleton, T. (1990). Implementation details of a compu-

tational model of the inner hair-cell/auditory-auditory nerve synapse. J. Acoust. Soc.

Am., 87:1813 – 1816.

Mendel, J. M. (1991). Tutorial on higher-order statistics (spectra) in signal processing and

system theory: theoretical results and some applications. Proc. IEEE, 79:278–305.

Moon, T. K. and Stirling, W. K. (2000). Mathematical Methods and Algorithms for Signal

Processing. Prentice Hall.

Moore, B. C. J. (2004). An introduction to the psychology of hearing. Elsevier, 5 edition.

Moulines, E. and Charpentier, F. (1990). Pitch-synchronous waveform processing tech-

niques for text-to-speech synthesis using diphones. Speech Communication, 9:453467.

Murthy, H. A. and Gadde, V. R. R. (2003). The modified group delay function and its

application to phoneme recognition. In Proc. ICASSP, Hong Kong.

Naatanen, R. (1995). The mismatch negativity: a powerful tool for cognitive neuroscience.

Ear Hear, 16:6–18.

Ohm, G. S. (1843). Uber die definition des tones, nebst daran geknupfter theorie der sirene

und ahnlicher tonbildender vorrichtungen. Ann. Phys. Chem., 59:513–565.

Oppenheim, A. V. and Schafer, R. W. (1975). Digital Siganl Processing. Prentice Hall,

Englewood Cliffs, NJ.

159



Page, J. H. and Breen, A. P. (1998). The Laureate text to speech system architecture and

applications. Speech Technology for Telecommunications.

Paliwal, K. and Alsteris, L. (2005). On the usefulness of STFT phase spectrum in human

listening tests. Speech Communication, 45:153170.

Pantazis, Y. and Stylianou, Y. (2007). On the detection of discontinuities in concatenative

speech synthesis. SpringerLecture Notes on Computer Science, pages 89–100.

Pantazis, Y., Stylianou, Y., and Klabbers, E. (2005). Discontinuity detection in concate-

nated speech synthesis based on nonlinear speech analysis. In Proc. Interspeech, Lisbon,

Portugal.

Patterson, D. (1996). Artificial Neural Networks. Prentice Hall.

Patterson, R. D. (1987). A pulse ribbon model of monaural phase sensitivity. J. Acoust.

Soc. Am., 82:1560–1586.

Patterson, R. D., Allerhand, M., and Giguere, C. (1995). Time-domain modelling of

peripheral auditory processing: A modular architecture and a software platform. J.

Acoust. Soc. Am., 98:1890–1894.

Pickles, A. (1988). An introduction to auditory physiology. Academic Press, 2nd edition.

Purwins, H., Blankertz, B., and Obermayer, K. (2000). Computing auditory perception.

Organised Sound, 5(3):159–71.

Quatieri, T. F. (2002). Discrete-time speech signal processing - principles and practice.

Prentice Hall.

Quatieri, T. F. and Dunn, R. B. (2002). Speech enhancement based on auditory spectral

change. In Proc. ICASSP, Orlando, Florida, USA.

Rabiner, L. and Juang, B.-H. (1993). Fundamentals of speech recognition. PTR Prentice

Hall.

160



Sagisaka, Y., Kaiki, N., and Iwahashi, N. (1992). ATR - v-talk speech synthesis system.

In Proc. ICSLP, Alberta, Canada.

Salimpour, Y. and Abolhassani, M. D. (2006). Auditory wavelet transform based on

auditory wavelet families. In Proc. 28th IEEE EMBS International Conference, New

York, USA.

Schroeder, M. (1981). Direct (nonrecursive) relations between cepstrum and predictor

coefficients. IEEE Trans. on Acoustics, Speech and Signal Processing, 2:297–301.

Shi, G., Shannechi, M. M., and Aarabi, P. (2005). On the importance of phase in human

speech recognition. IEEE Trans. on audio, speech and language processing.

Skoglund, J. and Kleijn, B. (2000). On time-frequency masking in voiced speech. IEEE

Trans. on speech and audio processing, 8(4).

Smith, R. L. (1977). Short-term adaptation in single auditory nerve fibers. J. Neurophys.,

40:1098–1111.

Somervuo, P. (2003). Experiments with linear and nonlinear feature transformtions in

hmm based phone recognition. In Proc. ICASSP, Hong Kong.

Somervuo, P., Chen, B., and Zhu, Q. (2003). Feature transformations and combinations

for improving ASR performance. In Proc. EUROSPEECH, Geneva, Switzerland.

Soong, F. and Juang, B.-H. (1984). Line spectrum pair (LSP) and speech data compression.

In Proc. IEEE ICASSP, San Diego, USA.

Soong, F. and Rosenberg, A. (1988). On the use of instantaneous and transitional spec-

tral information in specaker recognition. IEEE Trans. on Audio, Speech and Signal

Processing, 36:871–879.

Specht, D. F. (1990). Probabilistic neural networks and the polynomial adaline as comple-

mentary techniques for classification. IEEE Trans. Neural Networks, 1:111–121.

161



Specht, D. F. (1991). A general regression neural network. IEEE Trans. on Neural Net-

works, 2.

Strope, B. and Alwan, A. (1997). A model of dynamic auditory perception and its appli-

cation to robust word recognition. IEEE Trans. Speech Audio Processing, 5:451–464.

Stylianou, Y. (1999). Assessment and correction of voice quality variabilities in large speech

databases for concatenative speech synthesis. In Proc. ICASSP, Phoenix, Arizona, USA.

Stylianou, Y. (2001). Applying the harmonic plus noise model in concatenative speech

synthesis. IEEE Trans. on Speech and Audio Processing, 9:21 – 29.

Stylianou, Y. and Syrdal, A. K. (2001). Perceptual and objective detection of discontinu-

ities in concatenative speech synthesis. In Proc. ICASSP, Salt Lake City, USA.

Summerfield, Q., Sidwell, A., and Nelson, T. (1986). Auditory enhancement of changes in

spectral amplitude. J. Acoust. Soc. Am., 81:700 – 708.

Syrdal, A. K. (2001). Phonetic effects on listener detection of vowel concatenation. In

Proc. EUROSPEECH, Aalborg, Denmark.

Toda, T., Black, A., and Tokuda, K. (2005). Spectral conversion based on maximum like-

lihood estimation considering global variance of converted parameter. In Proc. ICASSP,

Philadelphia, USA.

Tokuda, K., Kobayashi, T., and Imai, S. (1995). Speech parameter generation from HMM

using dynamic features. In Proc. ICASSP, Detriot, USA.

Tsuzaki, M. and Kawai, H. (2002). Feature extraction for unit selection in concatenative

speech synthesis: Comparison between AIM, LPC and MFCC. In Proc. ICSLP, Denver,

USA.

Vepa, J. and King, S. (2003). Kalman-filter based join cost for unit-selection speech syn-

thesis. In Proc. EUROSPEECH, Geneva, Switzerland.

162



Vepa, J. and King, S. (2004a). Subjective evaluation of join cost functions used in unit

selection speech synthesis. In Proc. ICSLP, Jeju, Korea.

Vepa, J. and King, S. (2004b). Text to Speech Synthesis: New Paradigms and Advances,

chapter 3 - Join cost for unit selection speech synthesis. Prentice Hall.

Vepa, J. and King, S. (2006). Subjective evaluation of join cost and smoothing methods for

unit selection speech synthesis. IEEE Trans. on Audio, Speech and Language Processing,

14:1763 – 1771.

Vepa, J., King, S., and Taylor, P. (2002). Objective distance measures for spectral discon-

tinuities in concatenative speech synthesis. In Proc. ICSLP, Denver, USA.

von Helmholtz, H. L. F. (1875). On the sensations of tone. (English Translation by A. J.

Ellis, Longmans Green and Co. London, 1912).
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