55,968 research outputs found

    Review of sensors for remote patient monitoring

    Get PDF
    Remote patient monitoring (RPM) of physiological measurements can provide an efficient method and high quality care to patients. The physiological signals measurement is the initial and the most important factor in RPM. This paper discusses the characteristics of the most popular sensors, which are used to obtain vital clinical signals in prevalent RPM systems. The sensors discussed in this paper are used to measure ECG, heart sound, pulse rate, oxygen saturation, blood pressure and respiration rate, which are treated as the most important vital data in patient monitoring and medical examination

    Fog Computing in Medical Internet-of-Things: Architecture, Implementation, and Applications

    Full text link
    In the era when the market segment of Internet of Things (IoT) tops the chart in various business reports, it is apparently envisioned that the field of medicine expects to gain a large benefit from the explosion of wearables and internet-connected sensors that surround us to acquire and communicate unprecedented data on symptoms, medication, food intake, and daily-life activities impacting one's health and wellness. However, IoT-driven healthcare would have to overcome many barriers, such as: 1) There is an increasing demand for data storage on cloud servers where the analysis of the medical big data becomes increasingly complex, 2) The data, when communicated, are vulnerable to security and privacy issues, 3) The communication of the continuously collected data is not only costly but also energy hungry, 4) Operating and maintaining the sensors directly from the cloud servers are non-trial tasks. This book chapter defined Fog Computing in the context of medical IoT. Conceptually, Fog Computing is a service-oriented intermediate layer in IoT, providing the interfaces between the sensors and cloud servers for facilitating connectivity, data transfer, and queryable local database. The centerpiece of Fog computing is a low-power, intelligent, wireless, embedded computing node that carries out signal conditioning and data analytics on raw data collected from wearables or other medical sensors and offers efficient means to serve telehealth interventions. We implemented and tested an fog computing system using the Intel Edison and Raspberry Pi that allows acquisition, computing, storage and communication of the various medical data such as pathological speech data of individuals with speech disorders, Phonocardiogram (PCG) signal for heart rate estimation, and Electrocardiogram (ECG)-based Q, R, S detection.Comment: 29 pages, 30 figures, 5 tables. Keywords: Big Data, Body Area Network, Body Sensor Network, Edge Computing, Fog Computing, Medical Cyberphysical Systems, Medical Internet-of-Things, Telecare, Tele-treatment, Wearable Devices, Chapter in Handbook of Large-Scale Distributed Computing in Smart Healthcare (2017), Springe

    Voice recognition system for Massey University Smarthouse : a thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering in Information Engineering at Massey University

    Get PDF
    The concept of a smarthouse aims to integrate technology into houses to a level where most daily tasks are automated and to provide comfort, safety and entertainment to the house residents. The concept is mainly aimed at the elderly population to improve their quality of life. In order to maintain a natural medium of communication, the house employs a speech recognition system capable of analysing spoken language, and extracting commands from it. This project focuses on the development and evaluation of a windows application developed with a high level programming language which incorporates speech recognition technology by utilising a commercial speech recognition engine. The speech recognition system acts as a hub within the Smarthouse to receive and delegate user commands to different switching and control systems. Initial trails were built using Dragon Naturally Speaking as the recognition engine. However that proved inappropriate for use in the Smarthouse project as it is speaker dependent and requires each user to train it with his/her own voice. The application now utilizes the Microsoft Speech Application Programming Interface (SAPI), a software layer which sits between applications and speech engines and the Microsoft Speech Recognition Engine, which is freely distributed with some Microsoft products. Although Dragon Naturally Speaking offers better recognition for dictation, MS engine can be optimized using Context Free Grammar (CFG) to give enhanced recognition in the intended application. The application is designed to be speaker independent and can handle continuous speech. It connects to a database oriented expert system to carry out full conversations with the users. Audible prompts and confirmations are achieved through speech synthesis using any SAPI compliant text to speech engine. Other developments focused on designing a telephony system using Microsoft Telephony Application Programming Interface (TAPI). This allows the house to be remotely controlled from anywhere in the world. House residents will be able to call their house from any part of the world and regardless of their location, the house will be able to respond to and fulfil their commands

    Future bathroom: A study of user-centred design principles affecting usability, safety and satisfaction in bathrooms for people living with disabilities

    Get PDF
    Research and development work relating to assistive technology 2010-11 (Department of Health) Presented to Parliament pursuant to Section 22 of the Chronically Sick and Disabled Persons Act 197

    Use of nonintrusive sensor-based information and communication technology for real-world evidence for clinical trials in dementia

    Get PDF
    Cognitive function is an important end point of treatments in dementia clinical trials. Measuring cognitive function by standardized tests, however, is biased toward highly constrained environments (such as hospitals) in selected samples. Patient-powered real-world evidence using information and communication technology devices, including environmental and wearable sensors, may help to overcome these limitations. This position paper describes current and novel information and communication technology devices and algorithms to monitor behavior and function in people with prodromal and manifest stages of dementia continuously, and discusses clinical, technological, ethical, regulatory, and user-centered requirements for collecting real-world evidence in future randomized controlled trials. Challenges of data safety, quality, and privacy and regulatory requirements need to be addressed by future smart sensor technologies. When these requirements are satisfied, these technologies will provide access to truly user relevant outcomes and broader cohorts of participants than currently sampled in clinical trials

    Technology applications

    Get PDF
    A summary of NASA Technology Utilization programs for the period of 1 December 1971 through 31 May 1972 is presented. An abbreviated description of the overall Technology Utilization Applications Program is provided as a background for the specific applications examples. Subjects discussed are in the broad headings of: (1) cancer, (2) cardiovascular disease, (2) medical instrumentation, (4) urinary system disorders, (5) rehabilitation medicine, (6) air and water pollution, (7) housing and urban construction, (8) fire safety, (9) law enforcement and criminalistics, (10) transportation, and (11) mine safety

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable
    • …
    corecore