191 research outputs found

    Spatial Diffuseness Features for DNN-Based Speech Recognition in Noisy and Reverberant Environments

    Full text link
    We propose a spatial diffuseness feature for deep neural network (DNN)-based automatic speech recognition to improve recognition accuracy in reverberant and noisy environments. The feature is computed in real-time from multiple microphone signals without requiring knowledge or estimation of the direction of arrival, and represents the relative amount of diffuse noise in each time and frequency bin. It is shown that using the diffuseness feature as an additional input to a DNN-based acoustic model leads to a reduced word error rate for the REVERB challenge corpus, both compared to logmelspec features extracted from noisy signals, and features enhanced by spectral subtraction.Comment: accepted for ICASSP201

    Rank-1 Constrained Multichannel Wiener Filter for Speech Recognition in Noisy Environments

    Get PDF
    Multichannel linear filters, such as the Multichannel Wiener Filter (MWF) and the Generalized Eigenvalue (GEV) beamformer are popular signal processing techniques which can improve speech recognition performance. In this paper, we present an experimental study on these linear filters in a specific speech recognition task, namely the CHiME-4 challenge, which features real recordings in multiple noisy environments. Specifically, the rank-1 MWF is employed for noise reduction and a new constant residual noise power constraint is derived which enhances the recognition performance. To fulfill the underlying rank-1 assumption, the speech covariance matrix is reconstructed based on eigenvectors or generalized eigenvectors. Then the rank-1 constrained MWF is evaluated with alternative multichannel linear filters under the same framework, which involves a Bidirectional Long Short-Term Memory (BLSTM) network for mask estimation. The proposed filter outperforms alternative ones, leading to a 40% relative Word Error Rate (WER) reduction compared with the baseline Weighted Delay and Sum (WDAS) beamformer on the real test set, and a 15% relative WER reduction compared with the GEV-BAN method. The results also suggest that the speech recognition accuracy correlates more with the Mel-frequency cepstral coefficients (MFCC) feature variance than with the noise reduction or the speech distortion level.Comment: for Computer Speech and Languag

    Multichannel filters for speech recognition using a particle swarm optimization

    Get PDF
    Speech recognition has been used in various real-world applications such as automotive control, electronic toys, electronic appliances etc. In many applications involved speech control functions, a commercial speech recognizer is used to identify the speech commands voiced out by the users and the recognized command is used to perform appropriate operations. However, users’ commands are often corrupted by surrounding ambient noise. It decreases the effectiveness of speech recognition in order to implement the commands accurately. This paper proposes a multichannel filter to enhance noisy speech commands, in order to improve accuracy of commercial speech recognizers which work under noisy environment. An innovative particle swarm optimization (PSO) is proposed to optimize the parameters of the multichannel filter which intends to improve accuracy of the commercial speech recognizer working under noisy environment. The effectiveness of the multichannel filter was evaluated by interacting with a commercial speech recognizer, which was worked in a warehouse

    A hybrid noise suppression filter for accuracy enhancement of commercial speech recognizers in varying noisy conditions

    Get PDF
    Commercial speech recognizers have made possible many speech control applications such as wheelchair, tone-phone, multifunctional robotic arms and remote controls, for the disabled and paraplegic. However, they have a limitation in common in that recognition errors are likely to be produced when background noise surrounds the spoken command, thereby creating potential dangers for the disabled if recognition errors exist in the control systems. In this paper, a hybrid noise suppression filter is proposed to inter-face with the commercial speech recognizers in order to enhance the recognition accuracy under variant noisy conditions. It intends to decrease the recognition errors when the commercial speech recognizers are working under a noisy environment. It is based on a sigmoid function which can effectively enhance noisy speech using simple computational operations, while a robust estimator based on an adaptive-network-based fuzzy inference system is used to determine the appropriate operational parameters for the sigmoid function in order to produce effective speech enhancement under variant noisy conditions.The proposed hybrid noise suppression filter has the following advantages for commercial speech recognizers: (i) it is not possible to tune the inbuilt parameters on the commercial speech recognizers in order to obtain better accuracy; (ii) existing noise suppression filters are too complicated to be implemented for real-time speech recognition; and (iii) existing sigmoid function based filters can operate only in a single-noisy condition, but not under varying noisy conditions. The performance of the hybrid noise suppression filter was evaluated by interfacing it with a commercial speech recognizer, commonly used in electronic products. Experimental results show that improvement in terms of recognition accuracy and computational time can be achieved by the hybrid noise suppression filter when the commercial recognizer is working under various noisy environments in factories
    corecore