12,470 research outputs found

    Semi-Supervised Speech Emotion Recognition with Ladder Networks

    Full text link
    Speech emotion recognition (SER) systems find applications in various fields such as healthcare, education, and security and defense. A major drawback of these systems is their lack of generalization across different conditions. This problem can be solved by training models on large amounts of labeled data from the target domain, which is expensive and time-consuming. Another approach is to increase the generalization of the models. An effective way to achieve this goal is by regularizing the models through multitask learning (MTL), where auxiliary tasks are learned along with the primary task. These methods often require the use of labeled data which is computationally expensive to collect for emotion recognition (gender, speaker identity, age or other emotional descriptors). This study proposes the use of ladder networks for emotion recognition, which utilizes an unsupervised auxiliary task. The primary task is a regression problem to predict emotional attributes. The auxiliary task is the reconstruction of intermediate feature representations using a denoising autoencoder. This auxiliary task does not require labels so it is possible to train the framework in a semi-supervised fashion with abundant unlabeled data from the target domain. This study shows that the proposed approach creates a powerful framework for SER, achieving superior performance than fully supervised single-task learning (STL) and MTL baselines. The approach is implemented with several acoustic features, showing that ladder networks generalize significantly better in cross-corpus settings. Compared to the STL baselines, the proposed approach achieves relative gains in concordance correlation coefficient (CCC) between 3.0% and 3.5% for within corpus evaluations, and between 16.1% and 74.1% for cross corpus evaluations, highlighting the power of the architecture

    Continuous Estimation of Emotions in Speech by Dynamic Cooperative Speaker Models

    Get PDF
    Automatic emotion recognition from speech has been recently focused on the prediction of time-continuous dimensions (e.g., arousal and valence) of spontaneous and realistic expressions of emotion, as found in real-life interactions. However, the automatic prediction of such emotions poses several challenges, such as the subjectivity found in the definition of a gold standard from a pool of raters and the issue of data scarcity in training models. In this work, we introduce a novel emotion recognition system, based on ensemble of single-speaker-regression-models (SSRMs). The estimation of emotion is provided by combining a subset of the initial pool of SSRMs selecting those that are most concordance among them. The proposed approach allows the addition or removal of speakers from the ensemble without the necessity to re-build the entire machine learning system. The simplicity of this aggregation strategy, coupled with the flexibility assured by the modular architecture, and the promising results obtained on the RECOLA database highlight the potential implications of the proposed method in a real-life scenario and in particular in WEB-based applications

    Speech-based recognition of self-reported and observed emotion in a dimensional space

    Get PDF
    The differences between self-reported and observed emotion have only marginally been investigated in the context of speech-based automatic emotion recognition. We address this issue by comparing self-reported emotion ratings to observed emotion ratings and look at how differences between these two types of ratings affect the development and performance of automatic emotion recognizers developed with these ratings. A dimensional approach to emotion modeling is adopted: the ratings are based on continuous arousal and valence scales. We describe the TNO-Gaming Corpus that contains spontaneous vocal and facial expressions elicited via a multiplayer videogame and that includes emotion annotations obtained via self-report and observation by outside observers. Comparisons show that there are discrepancies between self-reported and observed emotion ratings which are also reflected in the performance of the emotion recognizers developed. Using Support Vector Regression in combination with acoustic and textual features, recognizers of arousal and valence are developed that can predict points in a 2-dimensional arousal-valence space. The results of these recognizers show that the self-reported emotion is much harder to recognize than the observed emotion, and that averaging ratings from multiple observers improves performance

    Detecting User Engagement in Everyday Conversations

    Full text link
    This paper presents a novel application of speech emotion recognition: estimation of the level of conversational engagement between users of a voice communication system. We begin by using machine learning techniques, such as the support vector machine (SVM), to classify users' emotions as expressed in individual utterances. However, this alone fails to model the temporal and interactive aspects of conversational engagement. We therefore propose the use of a multilevel structure based on coupled hidden Markov models (HMM) to estimate engagement levels in continuous natural speech. The first level is comprised of SVM-based classifiers that recognize emotional states, which could be (e.g.) discrete emotion types or arousal/valence levels. A high-level HMM then uses these emotional states as input, estimating users' engagement in conversation by decoding the internal states of the HMM. We report experimental results obtained by applying our algorithms to the LDC Emotional Prosody and CallFriend speech corpora.Comment: 4 pages (A4), 1 figure (EPS

    Speech Emotion Recognition Using Multi-hop Attention Mechanism

    Full text link
    In this paper, we are interested in exploiting textual and acoustic data of an utterance for the speech emotion classification task. The baseline approach models the information from audio and text independently using two deep neural networks (DNNs). The outputs from both the DNNs are then fused for classification. As opposed to using knowledge from both the modalities separately, we propose a framework to exploit acoustic information in tandem with lexical data. The proposed framework uses two bi-directional long short-term memory (BLSTM) for obtaining hidden representations of the utterance. Furthermore, we propose an attention mechanism, referred to as the multi-hop, which is trained to automatically infer the correlation between the modalities. The multi-hop attention first computes the relevant segments of the textual data corresponding to the audio signal. The relevant textual data is then applied to attend parts of the audio signal. To evaluate the performance of the proposed system, experiments are performed in the IEMOCAP dataset. Experimental results show that the proposed technique outperforms the state-of-the-art system by 6.5% relative improvement in terms of weighted accuracy.Comment: 5 pages, Accepted as a conference paper at ICASSP 2019 (oral presentation
    corecore