27,107 research outputs found

    Cost-Aware Green Cellular Networks with Energy and Communication Cooperation

    Full text link
    Energy cost of cellular networks is ever-increasing to match the surge of wireless data traffic, and the saving of this cost is important to reduce the operational expenditure (OPEX) of wireless operators in future. The recent advancements of renewable energy integration and two-way energy flow in smart grid provide potential new solutions to save the cost. However, they also impose challenges, especially on how to use the stochastically and spatially distributed renewable energy harvested at cellular base stations (BSs) to reliably supply time- and space-varying wireless traffic over cellular networks. To overcome these challenges, in this article we present three approaches, namely, {\emph{energy cooperation, communication cooperation, and joint energy and communication cooperation}}, in which different BSs bidirectionally trade or share energy via the aggregator in smart grid, and/or share wireless resources and shift loads with each other to reduce the total energy cost.Comment: Submitted for possible publicatio

    Energy saving market for mobile operators

    Full text link
    Ensuring seamless coverage accounts for the lion's share of the energy consumed in a mobile network. Overlapping coverage of three to five mobile network operators (MNOs) results in enormous amount of energy waste which is avoidable. The traffic demands of the mobile networks vary significantly throughout the day. As the offered load for all networks are not same at a given time and the differences in energy consumption at different loads are significant, multi-MNO capacity/coverage sharing can dramatically reduce energy consumption of mobile networks and provide the MNOs a cost effective means to cope with the exponential growth of traffic. In this paper, we propose an energy saving market for a multi-MNO network scenario. As the competing MNOs are not comfortable with information sharing, we propose a double auction clearinghouse market mechanism where MNOs sell and buy capacity in order to minimize energy consumption. In our setting, each MNO proposes its bids and asks simultaneously for buying and selling multi-unit capacities respectively to an independent auctioneer, i.e., clearinghouse and ends up either as a buyer or as a seller in each round. We show that the mechanism allows the MNOs to save significant percentage of energy cost throughout a wide range of network load. Different than other energy saving features such as cell sleep or antenna muting which can not be enabled at heavy traffic load, dynamic capacity sharing allows MNOs to handle traffic bursts with energy saving opportunity.Comment: 6 pages, 2 figures, to be published in ICC 2015 workshop on Next Generation Green IC

    NOMA based resource allocation and mobility enhancement framework for IoT in next generation cellular networks

    Get PDF
    With the unprecedented technological advances witnessed in the last two decades, more devices are connected to the internet, forming what is called internet of things (IoT). IoT devices with heterogeneous characteristics and quality of experience (QoE) requirements may engage in dynamic spectrum market due to scarcity of radio resources. We propose a framework to efficiently quantify and supply radio resources to the IoT devices by developing intelligent systems. The primary goal of the paper is to study the characteristics of the next generation of cellular networks with non-orthogonal multiple access (NOMA) to enable connectivity to clustered IoT devices. First, we demonstrate how the distribution and QoE requirements of IoT devices impact the required number of radio resources in real time. Second, we prove that using an extended auction algorithm by implementing a series of complementary functions, enhance the radio resource utilization efficiency. The results show substantial reduction in the number of sub-carriers required when compared to conventional orthogonal multiple access (OMA) and the intelligent clustering is scalable and adaptable to the cellular environment. Ability to move spectrum usages from one cluster to other clusters after borrowing when a cluster has less user or move out of the boundary is another soft feature that contributes to the reported radio resource utilization efficiency. Moreover, the proposed framework provides IoT service providers cost estimation to control their spectrum acquisition to achieve required quality of service (QoS) with guaranteed bit rate (GBR) and non-guaranteed bit rate (Non-GBR)

    Market Based Approaches for Dynamic Spectrum Assignment

    Get PDF
    Abstract—Much of the technical literature on spectrum sharing has been on developing technologies and systems for non-cooperative) opportunistic use. In this paper, we situate this approach to secondary spectrum use in a broader context, one that includes cooperative approaches to Dynamic Spectrum Access (DSA). In this paper, we introduce readers to this broader approach to DSA by contrasting it with non-cooperative sharing (opportunistic use), surveying relevant literature, and suggesting future directions for researc

    Energy sharing and trading in multi-operator heterogeneous network deployments

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.With a view to the expected increased data traffic volume and energy consumption of the fifth generation networks, the use of renewable energy (RE) sources and infrastructure sharing have been embraced as energy and cost-saving technologies. Aiming at reducing cost and grid energy consumption, in the present paper, we study RE exchange (REE) possibilities in late-trend network deployments of energy harvesting (EH) macrocell and small cell base stations (EH-MBSs, EH-SBSs) that use an EH system, an energy storage system, and the smart grid as energy procurement sources. On this basis, we study a two-tier network composed of EH-MBSs that are passively shared among a set of mobile network operators (MNOs), and EH-SBSs that are provided to MNOs by an infrastructure provider (InP). Taking into consideration the infrastructure location and the variety of stakeholders involved in the network deployment, we propose as REE approaches 1) a cooperative RE sharing, based on bankruptcy theory, for the shared EH-MBSs and 2) a non-cooperative, aggregator-assisted RE trading, which uses double auctions to describe the REE acts among the InP provided EH-SBSs managed by different MNOs, after an initial internal REE among the ones managed by a single MNO. Our results display that our proposals outperform baseline approaches, providing a considerable reduction in SG energy utilization and costs, with satisfaction of the participant parties.Peer ReviewedPostprint (author's final draft
    corecore