7,028 research outputs found

    Outage Analysis for SWIPT-Enabled Two-Way Cognitive Cooperative Communications

    Full text link
    In this paper, we study a cooperative cognitive radio network (CCRN) where the secondary user-transmitter (SU-Tx) assists bi-directional communication between a pair of primary users (PUs) following the principle of two-way relaying. In return, it gets access to the spectrum of the PUs to enable its own transmission to SU-receiver (SU-Rx). Further, in order to support sustainable operation of the network, SU-Tx is assumed to harvest energy from the RF signals received from the PUs, using the technique of simultaneous wireless information and power transfer (SWIPT). Assuming a decode-and-forward behaviour and power-splitting based relaying protocol at SU-Tx, closed form expressions for outage probability of PU and SU are obtained. Simulation results validate our analytical results and illustrate spectrum-efficiency and energy-efficiency advantages of the proposed system over one-way relaying.Comment: 15 pages, 5 figures, Submitted to IEEE Transactions on Vehicular Technolog

    Outage Analysis for SWIPT-Enabled Two-Way Cognitive Cooperative Communications

    Full text link
    In this paper, we study a cooperative cognitive radio network (CCRN) where the secondary user-transmitter (SU-Tx) assists bi-directional communication between a pair of primary users (PUs) following the principle of two-way relaying. In return, it gets access to the spectrum of the PUs to enable its own transmission to SU-receiver (SU-Rx). Further, in order to support sustainable operation of the network, SU-Tx is assumed to harvest energy from the RF signals received from the PUs, using the technique of simultaneous wireless information and power transfer (SWIPT). Assuming a decode-and-forward behaviour and power-splitting based relaying protocol at SU-Tx, closed form expressions for outage probability of PU and SU are obtained. Simulation results validate our analytical results and illustrate spectrum-efficiency and energy-efficiency advantages of the proposed system over one-way relaying.Comment: 15 pages, 5 figures, Submitted to IEEE Transactions on Vehicular Technolog

    Stackelberg Game for Distributed Time Scheduling in RF-Powered Backscatter Cognitive Radio Networks

    Full text link
    In this paper, we study the transmission strategy adaptation problem in an RF-powered cognitive radio network, in which hybrid secondary users are able to switch between the harvest-then-transmit mode and the ambient backscatter mode for their communication with the secondary gateway. In the network, a monetary incentive is introduced for managing the interference caused by the secondary transmission with imperfect channel sensing. The sensing-pricing-transmitting process of the secondary gateway and the transmitters is modeled as a single-leader-multi-follower Stackelberg game. Furthermore, the follower sub-game among the secondary transmitters is modeled as a generalized Nash equilibrium problem with shared constraints. Based on our theoretical discoveries regarding the properties of equilibria in the follower sub-game and the Stackelberg game, we propose a distributed, iterative strategy searching scheme that guarantees the convergence to the Stackelberg equilibrium. The numerical simulations show that the proposed hybrid transmission scheme always outperforms the schemes with fixed transmission modes. Furthermore, the simulations reveal that the adopted hybrid scheme is able to achieve a higher throughput than the sum of the throughput obtained from the schemes with fixed transmission modes
    • …
    corecore