96,092 research outputs found

    Near-Surface Interface Detection for Coal Mining Applications Using Bispectral Features and GPR

    Get PDF
    The use of ground penetrating radar (GPR) for detecting the presence of near-surface interfaces is a scenario of special interest to the underground coal mining industry. The problem is difficult to solve in practice because the radar echo from the near-surface interface is often dominated by unwanted components such as antenna crosstalk and ringing, ground-bounce effects, clutter, and severe attenuation. These nuisance components are also highly sensitive to subtle variations in ground conditions, rendering the application of standard signal pre-processing techniques such as background subtraction largely ineffective in the unsupervised case. As a solution to this detection problem, we develop a novel pattern recognition-based algorithm which utilizes a neural network to classify features derived from the bispectrum of 1D early time radar data. The binary classifier is used to decide between two key cases, namely whether an interface is within, for example, 5 cm of the surface or not. This go/no-go detection capability is highly valuable for underground coal mining operations, such as longwall mining, where the need to leave a remnant coal section is essential for geological stability. The classifier was trained and tested using real GPR data with ground truth measurements. The real data was acquired from a testbed with coal-clay, coal-shale and shale-clay interfaces, which represents a test mine site. We show that, unlike traditional second order correlation based methods such as matched filtering which can fail even in known conditions, the new method reliably allows the detection of interfaces using GPR to be applied in the near-surface region. In this work, we are not addressing the problem of depth estimation, rather confining ourselves to detecting an interface within a particular depth range

    Personal area technologies for internetworked services

    Get PDF

    Three basic issues concerning interface dynamics in nonequilibrium pattern formation

    Get PDF
    These are lecture notes of a course given at the 9th International Summer School on Fundamental Problems in Statistical Mechanics, held in Altenberg, Germany, in August 1997. In these notes, we discuss at an elementary level three themes concerning interface dynamics that play a role in pattern forming systems: (i) We briefly review three examples of systems in which the normal growth velocity is proportional to the gradient of a bulk field which itself obeys a Laplace or diffusion type of equation (solidification, viscous fingers and streamers), and then discuss why the Mullins-Sekerka instability is common to all such gradient systems. (ii) Secondly, we discuss how underlying an effective interface description of systems with smooth fronts or transition zones, is the assumption that the relaxation time of the appropriate order parameter field(s) in the front region is much smaller than the time scale of the evolution of interfacial patterns. Using standard arguments we illustrate that this is generally so for fronts that separate two (meta)stable phases: in such cases, the relaxation is typically exponential, and the relaxation time in the usual models goes to zero in the limit in which the front width vanishes. (iii) We finally summarize recent results that show that so-called ``pulled'' or ``linear marginal stability'' fronts which propagate into unstable states have a very slow universal power law relaxation. This slow relaxation makes the usual ``moving boundary'' or ``effective interface'' approximation for problems with thin fronts, like streamers, impossible.Comment: 48 pages, TeX with elsart style file (included), 9 figure

    Polarization Modeling and Predictions for DKIST Part 2: Application of the Berreman Calculus to Spectral Polarization Fringes of Beamsplitters and Crystal Retarders

    Get PDF
    We outline polarization fringe predictions derived from a new application of the Berreman calculus for the Daniel K. Inouye Solar Telescope (DKIST) retarder optics. The DKIST retarder baseline design used 6 crystals, single-layer anti-reflection coatings, thick cover windows and oil between all optical interfaces. This new tool estimates polarization fringes and optic Mueller matrices as functions of all optical design choices. The amplitude and period of polarized fringes under design changes, manufacturing errors, tolerances and several physical factors can now be estimated. This tool compares well with observations of fringes for data collected with the SPINOR spectropolarimeter at the Dunn Solar Telescope using bi-crystalline achromatic retarders as well as laboratory tests. With this new tool, we show impacts of design decisions on polarization fringes as impacted by anti-reflection coatings, oil refractive indices, cover window presence and part thicknesses. This tool helped DKIST decide to remove retarder cover windows and also recommends reconsideration of coating strategies for DKIST. We anticipate this tool to be essential in designing future retarders for mitigation of polarization and intensity fringe errors in other high spectral resolution astronomical systems.Comment: Accepted for publication in JATI
    corecore