4 research outputs found

    Open sub-granting radio resources in overlay D2D-based V2V communications

    Get PDF
    Capacity, reliability, and latency are seen as key requirements of new emerging applications, namely vehicle-to-everything (V2X) and machine-type communication in future cellular networks. D2D communication is envisaged to be the enabler to accomplish the requirements for the applications as mentioned earlier. Due to the scarcity of radio resources, a hierarchical radio resource allocation, namely the sub-granting scheme, has been considered for the overlay D2D communication. In this paper, we investigate the assignment of underutilized radio resources from D2D communication to device-to-infrastructure communication, which are moving in a dynamic environment. The sub-granting assignment problem is cast as a maximization problem of the uplink cell throughput. Firstly, we evaluate the sub-granting signaling overhead due to mobility in a centralized sub-granting resource algorithm, dedicated sub-granting radio resource (DSGRR), and then a distributed heuristics algorithm, open sub-granting radio resource (OSGRR), is proposed and compared with the DSGRR algorithm and no sub-granting case. Simulation results show improved cell throughput for the OSGRR compared with other algorithms. Besides, it is observed that the overhead incurred by the OSGRR is less than the DSGRR while the achieved cell throughput is yet close to the maximum achievable uplink cell throughput

    Interference mitigation in D2D communication underlaying LTE-A network

    Get PDF
    The mobile data traffic has risen exponentially in recent days due to the emergence of data intensive applications, such as online gaming and video sharing. It is driving the telecommunication industry as well as the research community to come up with new paradigms that will support such high data rate requirements within the existing wireless access network, in an efficient and effective manner. To respond to this challenge, device-to-device (D2D) communication in cellular networks is viewed as a promising solution, which is expected to operate, either within the coverage area of the existing eNB and under the same cellular spectrum (in-band) or separate spectrum (out-band). D2D provides the opportunity for users located in close proximity of each other to communicate directly, without traversing data traffic through the eNB. It results in several transmission gains, such as improved throughput, energy gain, hop gain, and reuse gain. However, integration of D2D communication in cellular systems at the same time introduces new technical challenges that need to be addressed. Containment of the interference among D2D nodes and cellular users is one of the major problems. D2D transmission radiates in all directions, generating undesirable interference to primary cellular users and other D2D users sharing the same radio resources resulting in severe performance degradation. Efficient interference mitigation schemes are a principal requirement in order to optimize the system performance. This paper presents a comprehensive review of the existing interference mitigation schemes present in the open literature. Based on the subjective and objective analysis of the work available to date, it is also envisaged that adopting a multi-antenna beamforming mechanism with power control, such that the transmit power is maximized toward the direction of the intended D2D receiver node and limited in all other directions will minimize the interference in the network. This could maximize the sum throughput and hence, guarantees the reliability of both the D2D and cellular connections

    Spectrum allocation and mode selection for overlay D2D using carrier sensing threshold

    No full text

    Interferência em comunicações Device-to-Device D2D

    Get PDF
    A constante necessidade de aumento da capacidade de rede para atender às crescentes demandas dos assinantes, leva a indústria de telecomunicações, apoiada pela comunidade científica, a criar novos paradigmas que suportem requisitos de taxa de dados binários elevados dentro da rede de acesso sem fio existente de forma eficiente e eficaz. Para responder a este desafio, a Comunicação Device-to-Device (D2D) em redes celulares é vista como uma solução promissora. Deste modo, a presente dissertação consiste na exploração do modelo de comunicação D2D (Device-to-Device), mediante o desenvolvimento de várias rotinas de comunicação D2D dentro de uma estrutura de rede celular LTE-A, usando simuladores já existentes, nomeadamente, simuladores de sistema em JAVA e simuladores de ligação em MatLab, afim de analisar o eventual aumento de capacidade da comunicação D2D para rede celular. Tipicamente, as comunicações em D2D permitem que os utilizadores localizados na proximidade, possam comunicar diretamente sem a intervenção da estação base (BS - Base Station). Essa comunicação pode permitir ritmos binários muito elevados, baixos atrasos e poupança de energia. Nesta dissertação alterou-se o simulador de sistema celular existente para incluir as comunicações D2D e as suas interferências, sendo apresentados os resultados obtidos. Os resultados obtidos por simulação confirmaram o que se esperava, nomeadamente, aumento dos ritmos binários nas comunicações D2D e redução do atraso.The continuing need to increase network capacity to meet growing subscriber demands leads the telecommunications industry, backed by the scientific community, to create new paradigms that support high binary data rate requirements within the existing wireless access network efficiently and effectively. To meet this challenge, Device-toDevice (D2D) Communication in cellular networks is seen as a promising solution. Thus, the present dissertation consists of the exploitation of the D2D (Device-toDevice) communication model, by developing several D2D communication routines within a LTE-A cellular network structure, using existing simulators, namely, simulator of system in JAVA and simulator of link in MatLab, in order to analyze the possible increase of capacity of D2D communication for cellular network. Typically, D2D communications allow users located in close proximity to communicate directly without the intervention of the base station (BS - Base Station). This communication can allow very high binary rates, low delays and energy savings. In this dissertation, the existing cellular system simulator was modified to include D2D communications and their interference, and the results obtained were presented. Simulation results have confirmed what was expected, namely, increasing bit rate with D2D communications and lower delays
    corecore