103 research outputs found

    Author index to volumes 301–400

    Get PDF

    Data-independent vs. data-dependent dimension reduction for pattern recognition in high dimensional spaces

    Get PDF
    There has been a rapid emergence of new pattern recognition/classification techniques in a variety of real world applications over the last few decades. In most of the pattern recognition/classification applications, the pattern of interest is modelled by a data vector/array of very high dimension. The main challenges in such applications are related to the efficiency of retrieval, analysis, and verifying/classifying the pattern/object of interest. The “Curse of Dimension” is a reference to these challenges and is commonly addressed by Dimension Reduction (DR) techniques. Several DR techniques has been developed and implemented in a variety of applications. The most common DR schemes are dependent on a dataset of “typical samples” (e.g. the Principal Component Analysis (PCA), and Linear Discriminant Analysis (LDA)). However, data-independent DR schemes (e.g. Discrete Wavelet Transform (DWT), and Random Projections (RP)) are becoming more desirable due to lack of density ratio of samples to dimension. In this thesis, we critically review both types of techniques, and highlight advantages and disadvantages in terms of efficiency and impact on recognition accuracy. We shall study the theoretical justification for the existence of DR transforms that preserve, within tolerable error, distances between would be feature vectors modelling objects of interest. We observe that data-dependent DRs do not specifically attempts to preserve distances, and the problems of overfitting and biasness are consequences of low density ratio of samples to dimension. Accordingly, the focus of our investigations is more on data-independent DR schemes and in particular on the different ways of generating RPs as an efficient DR tool. RPs suitable for pattern recognition applications are only restricted by a lower bound on the reduced dimension that depends on the tolerable error. Besides, the known RPs that are generated in accordance to some probability distributions, we investigate and test the performance of differently constructed over-complete Hadamard mxn (m<<n) submatrices, using the inductive Sylvester and Walsh-Paley methods. Our experimental work conducted for 2 case studies (Speech Emotion Recognition (SER) and Gait-based Gender Classification (GBGC)) demonstrate that these matrices perform as well, if not better, than data-dependent DR schemes. Moreover, dictionaries obtained by sampling the top rows of Walsh Paley matrices outperform matrices constructed more randomly but this may be influenced by the type of biometric and/or recognition schemes. We shall, also propose the feature-block (FB) based DR as an innovative way to overcome the problem of low density ratio applications and demonstrate its success for the SER case study

    Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions

    Get PDF
    Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets. This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed—either explicitly or implicitly—to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, robustness, and/or speed. These claims are supported by extensive numerical experiments and a detailed error analysis. The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition of an m × n matrix. (i) For a dense input matrix, randomized algorithms require O(mn log(k)) floating-point operations (flops) in contrast to O(mnk) for classical algorithms. (ii) For a sparse input matrix, the flop count matches classical Krylov subspace methods, but the randomized approach is more robust and can easily be reorganized to exploit multiprocessor architectures. (iii) For a matrix that is too large to fit in fast memory, the randomized techniques require only a constant number of passes over the data, as opposed to O(k) passes for classical algorithms. In fact, it is sometimes possible to perform matrix approximation with a single pass over the data

    Author index for volumes 101–200

    Get PDF

    Low rank representations of matrices using nuclear norm heuristics

    Get PDF
    2014 Summer.The pursuit of low dimensional structure from high dimensional data leads in many instances to the finding the lowest rank matrix among a parameterized family of matrices. In its most general setting, this problem is NP-hard. Different heuristics have been introduced for approaching the problem. Among them is the nuclear norm heuristic for rank minimization. One aspect of this thesis is the application of the nuclear norm heuristic to the Euclidean distance matrix completion problem. As a special case, the approach is applied to the graph embedding problem. More generally, semi-definite programming, convex optimization, and the nuclear norm heuristic are applied to the graph embedding problem in order to extract invariants such as the chromatic number, Rn embeddability, and Borsuk-embeddability. In addition, we apply related techniques to decompose a matrix into components which simultaneously minimize a linear combination of the nuclear norm and the spectral norm. In the case when the Euclidean distance matrix is the distance matrix for a complete k-partite graph it is shown that the nuclear norm of the associated positive semidefinite matrix can be evaluated in terms of the second elementary symmetric polynomial evaluated at the partition. We prove that for k-partite graphs the maximum value of the nuclear norm of the associated positive semidefinite matrix is attained in the situation when we have equal number of vertices in each set of the partition. We use this result to determine a lower bound on the chromatic number of the graph. Finally, we describe a convex optimization approach to decomposition of a matrix into two components using the nuclear norm and spectral norm

    Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions

    Get PDF
    Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets. This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed---either explicitly or implicitly---to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, speed, and robustness. These claims are supported by extensive numerical experiments and a detailed error analysis

    A sparse decomposition of low rank symmetric positive semi-definite matrices

    Get PDF
    Suppose that ARN×NA \in \mathbb{R}^{N \times N} is symmetric positive semidefinite with rank KNK \le N. Our goal is to decompose AA into KK rank-one matrices k=1KgkgkT\sum_{k=1}^K g_k g_k^T where the modes {gk}k=1K\{g_{k}\}_{k=1}^K are required to be as sparse as possible. In contrast to eigen decomposition, these sparse modes are not required to be orthogonal. Such a problem arises in random field parametrization where AA is the covariance function and is intractable to solve in general. In this paper, we partition the indices from 1 to NN into several patches and propose to quantify the sparseness of a vector by the number of patches on which it is nonzero, which is called patch-wise sparseness. Our aim is to find the decomposition which minimizes the total patch-wise sparseness of the decomposed modes. We propose a domain-decomposition type method, called intrinsic sparse mode decomposition (ISMD), which follows the "local-modes-construction + patching-up" procedure. The key step in the ISMD is to construct local pieces of the intrinsic sparse modes by a joint diagonalization problem. Thereafter a pivoted Cholesky decomposition is utilized to glue these local pieces together. Optimal sparse decomposition, consistency with different domain decomposition and robustness to small perturbation are proved under the so called regular-sparse assumption (see Definition 1.2). We provide simulation results to show the efficiency and robustness of the ISMD. We also compare the ISMD to other existing methods, e.g., eigen decomposition, pivoted Cholesky decomposition and convex relaxation of sparse principal component analysis [25] and [40]
    corecore