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ABSTRACT 

Data-Independent Vs. Data-Dependent Dimension Reduction for Pattern 

Recognition in High Dimensional Spaces 

By Tahir Mohammed Hassan 

There has been a rapid emergence of new pattern recognition/classification techniques 

in a variety of real world applications over the last few decades. In most of the pattern 

recognition/classification applications, the pattern of interest is modelled by a data 

vector/array of very high dimension. The main challenges in such applications are 

related to the efficiency of retrieval, analysis, and verifying/classifying the 

pattern/object of interest. The “Curse of Dimension” is a reference to these challenges 

and is commonly addressed by Dimension Reduction (DR) techniques. Several DR 

techniques has been developed and implemented in a variety of applications. The most 

common DR schemes are dependent on a dataset of “typical samples” (e.g. the 

Principal Component Analysis (PCA), and Linear Discriminant Analysis (LDA)). 

However, data-independent DR schemes (e.g. Discrete Wavelet Transform (DWT), 

and Random Projections (RP)) are becoming more desirable due to lack of density ratio 

of samples to dimension. 

In this thesis, we critically review both types of techniques, and highlight advantages 

and disadvantages in terms of efficiency and impact on recognition accuracy. We shall 

study the theoretical justification for the existence of DR transforms that preserve, 

within tolerable error, distances between would be feature vectors modelling objects of 

interest. We observe that data-dependent DRs do not specifically attempts to preserve 

distances, and the problems of overfitting and biasness are consequences of low density 

ratio of samples to dimension. 

Accordingly, the focus of our investigations is more on data-independent DR schemes 

and in particular on the different ways of generating RPs as an efficient DR tool. RPs 

suitable for pattern recognition applications are only restricted by a lower bound on the 

reduced dimension that depends on the tolerable error. Besides, the known RPs that are 

generated in accordance to some probability distributions, we investigate and test the 

performance of differently constructed over-complete Hadamard mxn (m<<n) 

submatrices, using the inductive Sylvester and Walsh-Paley methods. Our 

experimental work conducted for 2 case studies (Speech Emotion Recognition (SER) 
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and Gait-based Gender Classification (GBGC)) demonstrate that these matrices 

perform as well, if not better, than data-dependent DR schemes. Moreover, dictionaries 

obtained by sampling the top rows of Walsh Paley matrices outperform matrices 

constructed more randomly but this may be influenced by the type of biometric and/or 

recognition schemes. We shall, also propose the feature-block (FB) based DR as an 

innovative way to overcome the problem of low density ratio applications and 

demonstrate its success for the SER case study. 
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1 CHAPTER ONE: INTRODUCTION 

Advances in computational sciences and technologies over the last few decades have 

resulted in the emergence of new automatic pattern recognition/analysis techniques and 

systems in a variety of diverse applications/scenarios. These applications often involve 

a “large” dataset/database of records often representing multiple instances of a set of 

distinct objects/patterns. Each instance of the objects/patterns in many applications is 

modelled by a vector/array of a finite number of measurements/coordinates called the 

dimension of the vectors. In most interesting applications, the data vectors are of very 

high dimension.  For example, in biometric systems the database may include records 

of Face images/videos, Fingerprints, Iris codes, handwritten text document, and/or 

speech recordings. The emerging field of Big Data analytics covers a variety of 

applications, including automatic medical diagnostic, that involve analysing large and 

complex types of data in order to discover known or hidden patterns and anomalies. 

The most common challenges that arise as a result of the high dimensionality of data 

for such applications relate to the efficiency of retrieving, analysing, and classifying 

the objects/patterns under investigation. Moreover, as the dimension of a dataset 

increases, the data points get further away from each other and some existing pattern 

of the points in a low dimensional space may disappear in high dimensional spaces. 

These challenges are often blamed on the so-called Curse of dimension. Most common 

approaches to deal with this problem are based on reducing dimension using known 

samples of the objects of interest, but most such methods depend on the density of the 

samples within the modelling domain. This thesis is devoted to review and investigate 

the theoretical bases for dimension reduction techniques. We shall develop and test the 

performance of data/samples-independent dimension reduction schemes in two Pattern 

recognition applications. 

In this introductory chapter, I shall primarily attempt to describe the research problem 

under investigation, our motivations, and the contributions made in this thesis. 

1.1 High Dimensional Data and Curse of Dimension 

A vector of dimension n is an array of a given type, and it is commonly used to 

mathematically model objects by incorporating their essential measurements/properties 

as coordinates. The use of such a model enables the use of computers to process, 

manipulate, and transform such objects using the wealth of knowledge inherent in the 
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algebraic structure of vector spaces ℝ𝑛 over the field ℝ of real numbers (or other 

fields). A vector space is a set V of elements, called vectors, together with an operation 

of addition of vectors and an operation of multiplication satisfying a number of 

properties such as commutative and associative laws of vector addition, the distributive 

law of scalar multiplication, and the existence and uniqueness of zero vector and the 

negative of a vector.   In this thesis, we only work with the n-dimensional vector 

spaceℝ𝑛 whose elements are size n arrays of real numbers, and addition of two arrays 

is simply the usual addition of their corresponding entries while the scalar 

multiplication of an array v by a scalar  is the product of  by every entry of v. It is 

essential to note that basic vector operations/functions defined on the ℝ2𝑎𝑛𝑑 ℝ3 vector 

spaces, such as the Euclidean distance and the angle between two vectors, generalise 

naturally to high dimensional space but require proportionally more computational 

time. But this may not be true for more complex operations such as those commonly 

used in pattern analysis. 

In many modern pattern recognition/analysis, classification and clustering applications, 

the dimension of vectors modelling the main objects of interest is tremendously high 

(hundreds, thousands or even in some applications are millions). High dimensional 

vector representation of objects presents several challenges to such modern 

computational problems. Among the well-known challenges one can list (1) the 

processing, analysis, and discovering discriminating features in such records; (2) 

facilitating building large databases of such objects allows very efficient or real time 

searching and retrieval; and (3) supporting essential datamining tasks. 

Consideration of these challenges when computing and communication capabilities, at 

the early age of computing, was rather very modest by today’s standards, the term 

(curse of dimension) became the common term to characterise the toughness of these 

challenges.  Moreover, for most pattern recognition/classification applications, there is 

an added complexity associated with the fact that in such applications we may not have 

sufficiently large samples to be used for training purposes. Bellman (1961) who first 

coined the Curse of dimension term noted that “the sample size required to estimate a 

function of several variables grows exponentially with increasing number of variables” 

(Jolliffe, 2002).  This means that, if we have more variables/dimensions, we need to 

have much more samples to fill the space. This comes from the fact that with increased 

dimension, the collected data samples get further away from each other and thus, the 

data sample density become very low. For instance, if 𝑆 samples are enough to cover 
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1𝐷 space with a good density, then we need 𝑆2 samples to cover 2𝐷 space with same 

density, 𝑆3 samples for 3𝐷 space, and so on. 

The rapid increase of computing technology certainly led to the emergence of Big data 

applications and sophisticate machine learning schemes, but when the dimension gets 

truly high, analysis of the data becomes unstable/sensitive and greatly affects the 

efficiency of the applications. The low density of data samples of high dimensional 

vectors is one of the biggest issues for machine learning applications. In practice, more 

often we have a small number of samples compared to the number of dimensions of 

data sets. Moreover, for applications that use supervised learning, we need to divide 

the data set into two sets (training and testing) which makes the number of samples 

even much smaller compare to the number of dimensions. Simply, the curse of 

dimension problem makes analysis of high dimensional data oversensitive and 

intractable. In the case of supervised learning low sample density leads to overfitting 

and biasness. In general, there are a few ways to avoid curse of dimension, Dimension 

Reduction is one of them. This thesis is focused on reviewing, investigating and testing 

the performance of various dimension reduction techniques especially for low density 

scenarios. 

1.2 Curse of Dimension – Face Recognition as an illustrating case. 

A face recognition system uses some elaborate algorithm which on the input of a face 

image of a person, it will compare it with the records in a database of face images and 

returns/verifies the identity of the person only if the person has already been enrolled. 

The face database of the system, usually contains many face images of the people 

enrolled (or their digital representation). Each enrolled person may have several images 

which are taken under different recording conditions such as: light condition, face 

orientation angle, pose, emotion expression, etc. These images are either in greyscale 

or coloured, but for simplicity, we only consider greyscale with the same 𝑚×𝑛 

resolution (number of pixels). Each image can be converted to an 𝑁 = (𝑚×𝑛)-

dimensional vector by row or column concatenation. A popular face database that is 

regularly used for evaluating the performance of face recognition schemes, in this case, 

we use The Extended Yale B database which includes 2432 face images for 38 persons 

(Georghiades et al., 2000), figure 1-1, below displays 50 sample images of 5 people, 

each with 10 different images in this database. The size of each image is 𝑚×𝑛 =

192×168. When converting each image by row concatenation, we get an 𝑁 = 𝑚×𝑛 =

192×168 = 32256 high dimensional vector of Bytes. For this database, the space 
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required to store the raw data for the images only is a matrix of size 2432×32256 

Bytes while each row represents one image. Note that the above matrix representation 

of the database records is very convenient way to illustrate this case study but there are 

other ways to represent and process such databases. This database may not present a 

serious burden on storage, but for serious biometric systems where the database is 

expected to contain multiple images of tens of millions of persons, storage though a 

serious challenge it may not be the only or even the most difficult concerns. The 

working of the biometric system requires frequent searching through the database and 

retrieving images from the database, as well as implementing computationally 

expensive tasks of processing/analysing and classifying input fresh images.  These 

some of the main challenges that are caused by the Curse of Dimension in this case 

study and many other applications. 

 

Figure 1-1 Example of high dimensional data, 50 sample images of 5 people, each with 10 different 

images from The Extended Yale B database. 

1.3 Approaches to mitigate the effect of Curse of Dimension 

As we mentioned earlier, directly processing high dimensional data in many common 

applications may not be as easy as in low dimensional data spaces because their 

analysis is quite complicated and their efficiency may be beyond the available 

resources. It has long been recognised that appropriate dimension reduction transform 

becomes crucial to overcome various difficulties in relation to memory storage as well 

in conducting necessary analysis tasks. This is justified by the observation that the n-

dimensional vectors representing the objects of interest in pattern analysis are unlikely 

to be scattered throughout the vast infinite space of ℝ𝑛. The 32256-dimensional vectors 

modelling face images in the previous example cannot be scattered densely throughout 
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the ℝ32256 space no matter how many persons are enrolled on the face biometric 

database. In fact, in most pattern recognition/classification applications, the actual set 

of possible vectors in ℝ𝑛 modelling the objects of interest may be clustered within or 

very close to a subspace/manifold of much lower dimension. Figure 1-2 illustrates this 

concept, and determining the subspace of the low dimension may help reducing the 

effect of curse of dimension. In this figure, the points are almost close to a plane and 

therefore projecting the 3D points onto this plane reduces the dimension of the points 

from 3 to 2 and distances are reasonably preserved in the projected plane. 

Data points in 3D space Projected data on a plane  

Figure 1-2 The concept of Dimension Reduction 

In general, Dimension Reduction (DR) is the process of finding a lower dimensional 

data set 𝑋′ that belongs to ℝ𝑑 from a high dimensional data set 𝑋 belongs to ℝ𝑁 

(𝑑 ≪ 𝑁) such that 𝑋′ has nearly the same structure (approximation) of 𝑋 and it retains 

almost all information that can be in 𝑋 within a small relative error. In a mathematical 

term, this means that a DR is a projection of ℝ𝑁onto a d-dimensional subspace of it so 

that the image 𝑋′ of the set 𝑋 in the projection subspace have similar geometric 

structure as 𝑋 in the original vector space ℝ𝑁. Obviously, it is not possible always to 

get exactly the same structure of any data set after dimension reduction. However, good 

approximation is sufficient for some applications when a slight error in data accuracy 

is not a big issue and acceptable in practice.  Moreover, with good DR projections 

means that 𝑋′ can be processed more effectively than the original data 𝑋 as the 

dimension of the reduced data is more manageable. Moreover, the density of the 

samples after projection will become higher with respect to the lower dimensional 

subspace, which is quite important for applications. Furthermore, the reduced version 

maintains all the essential information and it is a reliable approximation. In the 
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following chapters, we will explain that how DR techniques provide such 

approximation and how they preserve the sample dataset structure. 

Suppose that 𝐴 is a set of points that resides on a 𝑑 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 space and it is 

embedded in an 𝑁 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 space, 𝑃: ℝ𝑁 → ℝ𝑑. So, ℝ𝑑 is called intrinsic 

dimensional space for A and ℝ𝑁 is extrinsic dimensional space. In general, any data 

set is easier to analyse in more efficient ways, and provides a better understanding in 

its intrinsic dimensional space rather than any other space.  In the case of having a 

lower intrinsic dimension of a high dimensional data set (𝑑 ≪ 𝑁), DR is quite 

meaningful and the goal of useful DR techniques is simply the process of moving from 

an extrinsic dimensional space to an intrinsic one. More precisely, Wang in (Wang, 

2012) states “DR is a method of representing high dimensional data by their low-

dimensional embedding”, which means finding a linear transformation 𝑃: ℝ𝑁 → ℝ𝑑 

which is usually called a projection.  Theoretically, a high dimensional data set X can 

be projected onto different subspaces of different dimensions, however, the difficult 

challenge is to estimate the intrinsic dimension and find a subspace which is “best” fit 

to the dataset. 

In any recognition/classification application, the coordinates of the vectors in ℝ𝑁 that 

model the objects of interest (e.g. face image), are referred to in the computing literature 

as features of the objects. In the case of a face image, these features are simply the pixel 

values in the image while facial features often refer to nose, eyes, mouth, eyebrow, or 

ear.  The coordinates of the projected records in the lower dimension is usually referred 

to as meta-features, each of which is a linear combination of the original features. In 

the literature, feature selection is a special simple type of dimension reduction, 

whereby a relatively small number of coordinates (i.e. features) in the n-dimensional 

vectors are retained and all other coordinates are replaced with zeros. This is useful, 

when there are evidences that many of the coordinates may have little or no relevance 

to the subject under consideration. In other words, the projection is done onto a 

standard subspace of ℝ𝑁 generated by a small subset of the standard base of the vector 

space ℝ𝑁. Note that, if ei = (0, …, 0, 1,0,…,0) is the unit vector in ℝ𝑁, whose i-th 

coordinate is 1 and all other coordinates are zeros, then the set {e1,…, ei , …, eN} is the 

standard basis for ℝ𝑁 . In this thesis, we shall not use feature selection approach to 

dimension reduction, although we might use some simple types as a first step in some 

applications when the density is very low, see section (5.7). 
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Over the past few decades, mathematicians have investigated, and continue to do so, 

the curse of dimension problem for a variety of reasons and several DR techniques have 

been invented and developed many mathematical solutions for this problem and used 

these methods with a great deal of success in many applications.  Commonly used DR 

techniques include Principle Component Analysis (PCA), Linear Discriminant 

Analysis (LDA), and Random Projections (RP). 

High 

Dimensional 

Data

Low 

Dimensional 

Data

Dimension Reduction Application/Processing

Impractical/Intractable

 

Figure 1-3 The goal of dimension reduction. 

Due to issues like insufficient density of the original samples from a dataset or 

reliability of the model, uniqueness of output from DR is not guaranteed but for pattern 

recognition applications, it is essential that the distinguishing features of the pattern of 

interest are “preserved” with as little as possible loss in the lower dimension. This is a 

serious consideration through our investigations of this thesis. 

1.4 Advantages of Dimension Reduction 

The use of DR has been argued for in dealing with recognition/classification 

applications when the objects of interest are somewhat loosely modelled by very high 

dimensional vectors whose coordinates may involve a great deal of redundancies. The 

presence of redundancies in object representation reduces the discriminating power of 

the adopted high dimensional model. 

(1)  DR helps to overcome the challenge presented by the well-known problem (Curse of 

dimension) and provides a significant increase in data sample density, thus, it helps to 

boost performance of applications. 

(2)  Removes/reduces redundant and irrelevant features, and provides a compact 

representation of the objects of interest leading to efficient and more accurate object 

recognition/classification tasks. 
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(3)  Ideal DR technique preserves data structure with a good probability. So, any solution 

of a data set after reduction is considered as reliable approximation solution of the 

original data. 

(4)  Another useful advantage of using DR is saving time and space/memory. Obviously, 

the dimension of a reduced data is significantly less than the original one especially in 

the case of Hard DR, so, less dimension means doing much less computation and the 

required memory to save the reduced data will be much smaller. 

(5)  The applicability of DR techniques is by no mean limited to very high dimensional 

models, and its use for relatively low dimensional cases enables a better visualization 

of datasets especially when the reduced dimension is ≤ 3. 

However, these and other benefits, assumes the use of appropriate DR schemes that 

most likely be dependent on the domain of the application. In the rest of the thesis we 

shall attempt to review and investigate the various approaches to determine appropriate 

DR schemes. 

1.5 Motivation 

Advances in computer technology over the last few decades have led to the emergence 

of many successful algorithms to solve extremely difficult computational challenges in 

a variety of applications. Pattern recognition and classification is most widely 

researched applications and objects of interests are in most cases modelled by high 

dimension giving rise to curse of dimension. My ultimate motivation is to investigate 

mathematically inspired computations to deal with such challenges. 

Having realised the benefits of using DR for dealing with the most common challenging 

pattern recognition and classification of objects modelled by very high dimensional 

arrays, I was therefore motivated was comprehend the mathematical justification for 

the existence of linear transformations that significantly reduce dimensions of the 

model without adversely influencing the performance of the recognition/classification 

scheme. Moreover, my initial study of the variety of applications revealed that in most 

cases we only have relatively small dataset of samples/instances of the objects of 

interest, which have added toughness to the curse of dimension challenge. This fact 

provided the motivation to search for dataset independent DR schemes. Having found 

that Random Projections provide a variety of data-independent DR  techniques that 

have been shown to have the potential for success with a high probability  (Johnson 

and Lindenstrauss, 1984). 
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1.6 Aims and Objectives of the thesis 

(1) Investigate the mathematical theory of DR that is potentially applicable to pattern 

recognition/classification applications that adversely affected by curse of dimension. 

(2) Review existing data-dependent DR schemes and investigate their implementation and 

advantages as well as limitations. 

(3) Investigate the various Data independent DR schemes with focus on Random 

projections. 

(4) Investigate the various approaches to generating Hadamard Random Projections as DR 

schemes and test the performance of these different approaches for 2 well-known 

pattern recognition/classification case studies. 

The scope of the investigation in the last two chapters is influenced by the original 

experimental work conducted in these two-case studies: SER and GBGC. PCA was 

mainly used for DR rather than other schemes like LDA in the original work (Al-

Talabani, 2015; Sabir, 2015). Therefore, we test the performance of Hadamard based 

RPs and compare their performance with PCA in both case studies. 

1.7 Thesis Organization 

➢ Chapter two provides relevant mathematical background for DR techniques with 

focusing on linear transformations and change of basis. It also presents the 

mathematical theory of existence of dimension reduction and the feasibility of 

such procedure, it also includes a general discussion on the classification of DR 

techniques. 

➢ Chapter three is aimed at studying data-dependent DR techniques, it starts by 

reviewing the theory of eigenvalue problem followed by investigating several DR 

schemes that follow eigenvalue problem approach and its link to matrix 

factorization. 

➢ Chapter four is aimed at studying data-independent DR techniques. It starts by 

studying wavelet-based DR approach. It also investigates different approaches to 

generating data-independent Hadamard based random projections for DR and the 

link to over-complete compressive sensing (CS) dictionaries. 

➢ Chapter five presents the performance of various Hadamard based dictionaries for 

DR within the SER pattern recognition application. It also proposes the Feature 

Block (FB) based dimension reduction technique as an innovative solution to 

overcome the problem of low density ratio of samples to dimension. 
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➢ Chapter six presents the performance of various Hadamard based dictionaries for 

DR within the GBGC pattern recognition application. 

➢ Chapter seven presents the conclusions of the thesis and potential directions for 

future research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 
 

2 CHAPTER TWO: BACKGROUND 

The first, and probably the most, serious computational challenge in pattern 

recognition/classification applications is the modelling of the complex objects of 

interest such as a face image, a speech signal, an MRI scan of the brain, … etc. Often 

such objects have obvious computer representation as high dimensional arrays of 

measurements while human, and in particular experts, can interpret and describe such 

objects with much less effort. Hence one can deduce that many types of real-life high 

dimensional models of data are not necessarily high dimensional (Wang, 2012). We all 

recognise that a large number of image pixels are redundant and it is the fact that is 

exploited in image compression techniques. In fact, any image contains smooth regions 

in that there are little variations in the pixel values and/or colours in such regions, i.e. 

there are lot of redundancies in such regions. While human can see and easily identify 

such regions, automatic identification of such facts by a computer requires a good 

model to represent the main characteristics of the pixel values in such regions. 

For general object recognition/classification, even if the computer model of the 

investigated objects is genuinely high dimensional, then it is inconceivable that the full 

dataset of interest is scattered densely and uniformly across its model high dimensional 

vector space. Realising that most high dimensional datasets include some significantly 

large amounts of redundant features is an incentive to determine the “best” lower 

dimensional subspace of the whole space that capture all the discriminating features 

for the classification problem under consideration. Determining and locating the 

interesting and/or redundant features/entries in the high dimensional vector model of 

the objects under investigation require a good understanding of basic concepts in Linear 

Algebra and Matrix theory.  Therefore, in this chapter we review the essential 

background in this field of Mathematics with focus on linear transformations and 

change of basis. We then describe the concept of dimension reduction in terms of 

matrix operations and discuss the mathematical theory of existence of dimension 

reduction procedures. We then end the chapter with a general discussion on the 

classification of Dimension reduction schemes. 
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2.1 Basic Terminology in Linear Algebra and Matrix theory 

Traditionally, vectors are objects representing fixed length directed lines (i.e. has 

magnitude and direction/orientation), while scalars have only magnitudes. Linear 

Algebra is concerned with the study of spaces of vectors that could be scaled by a 

number system. 

Definition (2.1): A vector space over a field 𝐹 (elements are called scalars or numbers) 

is a triple (𝑉, +, . ) where 𝑉 is a set (whose elements are called vectors), satisfying the 

following properties for all vectors 𝑢, 𝑣, 𝑤 ∈ 𝑉 and scalars 𝑟, 𝑠 ∈ 𝐹: 

1. (Closure of vector addition) 𝑢 + 𝑣 ∈ 𝑉 

2. (Commutativity of addition) 𝑢 + 𝑣 = 𝑣 + 𝑢 

3. (Associativity of addition) 𝑢 + (𝑣 + 𝑤) = (𝑢 + 𝑣) + 𝑤 

4. (Additive identity) There exists and element 0 ∈ 𝑉 such that 𝑢 + 0 = 𝑢 = 0 + 𝑢 

5. (Additive inverse) There exists an element −𝑢 ∈ 𝑉 such that 

𝑢 + (−𝑢) = 0 = (−𝑢) + 𝑢 

6. (Closure of scalar multiplication) 𝑟. 𝑢 ∈ 𝑉 

7. (Distributive law) 𝑟. (𝑢 + 𝑣) = 𝑟. 𝑢 + 𝑟. 𝑣 

8. (Distributive law) (𝑟 + 𝑠). 𝑢 = 𝑟. 𝑢 + 𝑠. 𝑢 

9. (Associative law) (𝑟𝑠). 𝑢 = 𝑟. (𝑠. 𝑢) 

10. (Preservation of scale) 1. 𝑢 = 𝑢 

The field of scalars could be the real numbers ℝ, the complex numbers ℂ, the rational 

numbers ℚ, or even finite fields. In this thesis, we are only considering finite 

dimensional vector spaces over the field of real numbers, but most definitions and facts 

can be generalised to other fields. In other words, we will be working with the n-

dimensional real vector space ℝ𝑛 whose vectors are size n-arrays of real numbers. In 

this vector space, vector addition and multiplication of a vector by a scalar are simply 

done coordinate by coordinate, i.e. for all 𝑢, 𝑣 ∈ ℝ𝑛 and 𝑠 ∈ ℝ: 

𝑢 + 𝑣 = [𝑢1, 𝑢2, ⋯ , 𝑢𝑛] + [𝑣1, 𝑣2, ⋯ , 𝑣𝑛] = [𝑢1 + 𝑣1, 𝑢2 + 𝑣2, ⋯ , 𝑢𝑛 + 𝑣𝑛] 

𝑠. 𝑢 = 𝑠. [𝑢1, 𝑢2, ⋯ , 𝑢𝑛] = [𝑠. 𝑢1, 𝑠. 𝑢2, ⋯ , 𝑠. 𝑢𝑛] 

 

 



13 
 

Definition (2.2): Let 𝑣 = [𝑣1, 𝑣2, ⋯ , 𝑣𝑛] ∈ ℝ𝑛 be any vector. The Length/Magnitude 

of 𝑎 is 

‖𝑣‖ = √𝑣1
2 + 𝑣2

2 + ⋯𝑣𝑛
2 

For example,  

𝑣 = [2, 1, 2, 4] → ‖𝑣‖ = √(2)2 + (1)2 + (2)2 + (4)2 = √25 = 5 

Definition (2.3): Let 𝑥 = [𝑥1, 𝑥2, ⋯ , 𝑥𝑛] and 𝑦 = [𝑦1, 𝑦2, ⋯ , 𝑦𝑛] be any two vectors in 

ℝ𝑛 and 𝜃 is the angle between them. The Dot/Inner product of 𝑥 𝑎𝑛𝑑 𝑦 is a scalar 

denoted by 𝑥. 𝑦 and given by 

                      𝑥. 𝑦 = 𝑥1𝑦1 + 𝑥2𝑦2 + ⋯+ 𝑥𝑛𝑦𝑛 = ‖𝑥‖‖𝑦‖(cos 𝜃) 

From this formula, we get that cos 𝜃 =
𝑥.𝑦

‖𝑥‖‖𝑦‖
 . 

Simply, the angle between 𝒙 𝒂𝒏𝒅 𝒚 while they are nonzero vectors is defined as: 

𝜃 = cos−1 (
𝑥. 𝑦

‖𝑥‖‖𝑦‖
) 

For example, 𝑥 = [2, 2, 1, 0] and 𝑦 = [1, 5, −3, 1] 

𝑥. 𝑦 = 2 ∗ 1 + 2 ∗ 5 + 1 ∗ (−3) + 0 ∗ 1 = 9 

‖𝑥‖ = √(2)2 + (2)2 + (1)2 + (0)2 = 3 

‖𝑥‖ = √(1)2 + (5)2 + (−3)2 + (1)2 = 6 

𝜃 = cos−1 (
𝑥. 𝑦

‖𝑥‖‖𝑦‖
) = cos−1 (

9

3 ∗ 6
) = cos−1 (

9

18
) = cos−1 (

1

2
) → 𝜃 = 60° 

The above Euclidean norm/distance is just one example of an infinite number of 

norms/distances that can be defined on the vector space ℝ𝑛. 

For any 𝑝 ∈ [1,∞), the 𝑙𝑝 − 𝑛𝑜𝑟𝑚 is defined for any vector 𝑥 ∈ ℝ𝑛 as follows:  

‖𝑥‖𝑝 = { (∑|𝑥𝑖|
𝑝

𝑛

𝑖=1

)

1/𝑝

               𝑝 ∈ [1,∞) 

𝑚𝑎𝑥|𝑥𝑖|, 𝑖 = 1,2,⋯ , 𝑛        𝑝 = ∞

 

Note that 𝑙2 − 𝑛𝑜𝑟𝑚 stands for the Euclidean norm.  Hence throughout this thesis 

‖𝑥‖2 = ‖𝑥‖. The most commonly used norms also include the 𝑙1 − 𝑛𝑜𝑟𝑚,  which is 
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called the city-block norm. Different norms define different geometries on the 

ℝ𝑛vector spaces, because distances and angles will have different meanings. Unless 

otherwise stated, we will only be working on vectors in the Euclidean space ℝ𝑛. 

Definition (2.4): Let 𝑥, 𝑦 ∈ ℝ𝑛 be any two vectors. 𝑥 𝑎𝑛𝑑 𝑦 are 

Orthogonal/Perpendicular if  

𝑥. 𝑦 = 0 

i.e. the angle between 𝑥 𝑎𝑛𝑑 𝑦, 𝜃 = 90°, 

𝑥. 𝑦 = ‖𝑥‖‖𝑦‖(cos𝜃) = ‖𝑥‖‖𝑦‖(cos 90) = ‖𝑥‖‖𝑦‖ ∗ 0 = 0 

One can think the way around, the angle between 𝒙 𝒂𝒏𝒅 𝒚 is  

θ = cos−1 (
𝑥.𝑦

‖𝑥‖‖𝑦‖
) = cos−1 (

0

‖𝑥‖‖𝑦‖
) = cos−1(0) =90°, it means 𝜃 = 90° 

For example,  𝑥 = [−2,3,1], 𝑦 = [4,1,5] be two vectors in ℝ3. 

𝑥. 𝑦 = (−2 ∗ 4) + (3 ∗ 1) = (1 ∗ 5) = −8 + 3 + 5 = 0 

θ = cos−1 (
𝑥. 𝑦

‖𝑥‖‖𝑦‖
) = cos−1 (

0

‖𝑥‖‖𝑦‖
) = cos−1(0) = 90° 

 then we say 𝑥 𝑎𝑛𝑑 𝑦 are orthogonal/perpendicular. 

Definition (2.5): A Unit vector is a vector of length 1. Any vector 𝑥 ∈ ℝ𝑛 can be scaled 

by dividing all the coordinates in it by its magnitude and converted to a unit vector. 

For example, 𝑥 = [4, 1 , −2, 2] 

‖𝑥‖ = √(4)2 + (1)2 + (−2)2 + (2)2 = √25 = 5 

Then, 𝑥 is not a unit vector, we can scale it by dividing all the components by 5. 

𝑥 = [
4

5
,
1

5
,
−2

5
,
2

5
] 

‖𝑥‖ = √(
4

5
)
2

+ (
1

5
)

2

+ (
−2

5
)

2

+ (
2

5
)
2

= √
25

25
= 1 

Now, 𝑥 is a unit vector. 
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Definition (2.6): Let 𝑥, 𝑦 ∈ ℝ𝑛 be any two vectors, then 𝑥 𝑎𝑛𝑑 𝑦 are two Orthonormal 

vectors if  

𝑥. 𝑦 = 0   𝑎𝑛𝑑    ‖𝑥‖ = ‖𝑦‖ = 1 

For example: We can easily show that  𝑣1 = [
2

3
,
1

3
,
2

3
]  𝑎𝑛𝑑 𝑣2 = [

−2

3
,
2

3
,
1

3
] ∈ ℝ3 are two 

orthonormal vectors. 

𝑣1. 𝑣2 =
2

3
∗
−2

3
+

1

3
∗

2

3
+

2

3
∗
1

3
=

−4 + 4

9
= 0 

‖𝑣1‖ = √(
2

3
)
2

+ (
1

3
)
2

+ (
2

3
)
2

= √
4

9
+

1

9
+

4

9
= 1 

‖𝑣2‖ = √(
−2

3
)
2

+ (
2

3
)
2

+ (
1

3
)
2

= √
4

9
+

4

9
+

1

9
= 1 

Definition (2.7): Let 𝑉 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑚} be a set of vectors in ℝ𝑛 and 𝑎1, 𝑎2, ⋯ , 𝑎𝑚 

be 𝑚 scalars in ℝ, then 𝑉 is called linearly independent if the equation                      

𝑣1𝑎1 + 𝑣2𝑎2 + ⋯+ 𝑣𝑚𝑎𝑚 = 0 holds with only 𝑎𝑖 = 0 for all 𝑖 = 1,2,⋯ ,𝑚. If this 

linear combination is equal to zero with at least one of 𝑎𝑖 ≠ 0, then, 𝑉 is called linearly 

dependent. 

For example, 𝑥 = [0,2,4, −1], 𝑦 = [0,4,8, −2] are two linearly dependent vectors as 

2𝑥 = 𝑦 

2 ∗ [0,2,4, −1] = 1 ∗ [0,4,8, −2] → 2 ∗ [0,2,4, −1] − 1 ∗ [0,4,8,−2] = 0 

There are two scalars 2,−1 such that 2𝑥 − 𝑦 = 0 while 2, −1 ≠ 0. 

Definition (2.8): Let 𝑉 be a vector space and 𝐵 = {𝑏1, 𝑏2, ⋯ , 𝑏𝑛} be a set of vectors in 

𝑉. 𝐵 forms a Basis of V if and only if it is linearly independent and spans/generates 𝑉, 

by span we mean for any vector 𝑣 ∈ 𝑉, there is a linear combination of 𝑏1, 𝑏2, ⋯ , 𝑏𝑛 

such that 𝑣 = 𝑠1𝑏1 + 𝑠2𝑏2 + ⋯+ 𝑠𝑛𝑏𝑛 where 𝑠𝑖 ∈ ℝ 𝑓𝑜𝑟 𝑖 = 1,2⋯ , 𝑛. Such linear 

combination is unique for each vector 𝑣 and the vector [𝑠1, 𝑠2, ⋯ , 𝑠𝑛] is called 

coordinate vector of 𝑣 relative to 𝐵. 

For example, 𝐵 = {[1,0,0, ][0,1,0, ][0,0,1]} is called the standard basis of ℝ3. 
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Definition (2.9): For a finitely generated vector space 𝑉, the Dimension of 𝑉 is 

cardinality (number of elements) in a basis 𝐵 of 𝑉 which is denoted by dim(𝑉). 

In the above example, 𝐵 = {[1,0,0, ][0,1,0, ][0,0,1]} is standard basis of ℝ3, So, 

dim(ℝ3) = 3, as the number of elements in 𝐵 is equal to three. In fact, the set {e1,…, 

ei , …, en} is the standard basis for ℝ𝑛 where ei = (0, …, 0, 1,0,…,0) is the unit vector 

in ℝ𝑛, whose i-th coordinate is 1 and all other coordinates are zeros, then dim(ℝ𝑛)=n. 

2.2 Linear Transformations 

A function 𝐹 that maps a vector space 𝐴 into another vector space 𝐵, 𝐹: 𝐴 → 𝐵 is called 

linear transformation if it satisfies the following axioms for all 𝑥, 𝑦 ∈ 𝐴 and any scalar 

𝑟 ∈ ℝ. 

1. 𝐹(𝑥 + 𝑦) = 𝐹(𝑥) + 𝐹(𝑦),                                 [Addition preservation] 

2. 𝐹(𝑟𝑥) = 𝑟𝐹(𝑥),                                                   [Scalar multiplication preservation] 

For example, a function 𝐹:ℝ3 → ℝ2 where 𝐹[𝑥1, 𝑥2, 𝑥3] = [𝑥1 + 𝑥2, 2𝑥3] for any 𝑥 ∈

ℝ3 is a linear transformation. We can easily show that such map is a linear 

transformation, let 𝑎, 𝑏 ∈ ℝ3 and 𝑟 ∈ ℝ. 

1. 𝐹(𝑎 + 𝑏) = 𝐹([𝑎1, 𝑎2, 𝑎3] + [𝑏1, 𝑏2, 𝑏3]) = [(𝑎1 + 𝑏1) + (𝑎2 + 𝑏2), 2(𝑎3 + 𝑏3)] 

= [𝑎1 + 𝑎2, 2𝑎3] + [𝑏1 + 𝑏2, 2𝑏3] = 𝐹(𝑎) + 𝐹(𝑏) 

2. 𝐹(𝑟𝑎) = 𝐹(𝑟[𝑎1, 𝑎2, 𝑎3]) = 𝐹([𝑟𝑎1, 𝑟𝑎2, 𝑟𝑎3]) = [(𝑟𝑎1 + 𝑟𝑎2), 2𝑟𝑎3] = 𝑟𝐹(𝑎) 

2.3 Matrix-Terminology 

Matrices play an important role in linear algebra. The set of all real valued matrices of a 

fixed size mxn forms a vector space of dimension N=mn over the field of real numbers. 

However, they also define linear transformations of vector spaces. 

Definition (2.10): Let 𝐴 𝑎𝑛𝑑 𝐵 be two matrices, 𝐵 is called Transpose of 𝐴 and denoted 

by 𝐵 = 𝐴𝑇, if each entry 𝑏𝑖𝑗  𝑖𝑛 𝐵 is equal to 𝑎𝑖𝑗 𝑖𝑛 𝐴. If 𝐴 = 𝐴𝑇, then 𝐴 is called 

Symmetric matrix. 

For example, if 𝐴 = [
−2 0 5
1 1 2

], then 𝐴𝑇 = [
−2 1
0 1
5 2

] 
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If 𝐺 = [
0 2 −3
2 1 6

−3 6 0
], then 𝐺𝑇 = [

0 2 −3
2 1 6

−3 6 0
], obviously 𝐺 = 𝐺𝑇 . So, 𝐺 is a 

symmetric Matrix. 

Definition (2.11): The Determinant of a square 𝑛×𝑛 matrix 𝐴 is a scalar, denoted by 

det(𝐴), defined as follows:  

det(𝐴) = ∑𝑎1𝑗𝛼1𝑗

𝑛

𝑗=1

 

Where the 𝑎𝑖𝑗 is an entry of 𝐴 at position (𝑖, 𝑗), and the coefficients 𝛼𝑖𝑗are given by: 

𝛼𝑖𝑗 = (−1)𝑖+𝑗𝛽𝑖𝑗 

Where 𝛽𝑖𝑗 is the determinant of the (𝑛 − 1)×(𝑛 − 1) submatrix of 𝐴 that obtained by 

deleting the 𝑖𝑡ℎ row and the 𝑗𝑡ℎ column of 𝐴. 

Note: if 𝑛 = 1, 𝐴 = [𝑎11], then det(𝐴) = 𝑎11. 

: if 𝑛 = 2, 𝐴 = [
𝑎11 𝑎12

𝑎21 𝑎22
], it is easy to show that: 

det(𝐴) = [
𝑎11 𝑎12

𝑎21 𝑎22
] = 𝑎11𝑎22 − 𝑎12𝑎21 

Example: the determinant of the matrix 𝐵 = [
1 0 2
1 −2 3
2 5 3

] is calculated as follows: 

𝑎11𝛼11 = 1 ∗ (−1)1+1 ∗ det ([
−2 3
5 3

]) = −21 

𝑎12𝛼12 = 0 ∗ (−1)1+2 ∗ det ([
1 3
2 3

]) = 0 

𝑎13𝛼13 = 2 ∗ (−1)1+3 ∗ det ([
1 −2
2 5

]) = 18 

det(𝐵) = − 3 

Definition (2.12): A square matrix 𝐴 of size 𝑛𝑥𝑛 is called Invertible, if there is a square 

matrix 𝐵 of the same size such that 𝐴𝐵 = 𝐵𝐴 = 𝐼, where 𝐼 is the identity matrix of size 

𝑛𝑥𝑛. 𝐵 is called the inverse of 𝐴 and it is denoted by 𝐴−1. 

For example, 𝐴 = [
1 2

−2 −5
] , 𝐵 = [

5 2
−2 −1

] 

𝐴𝐵 = [
1 2

−2 −5
] [

5 2
−2 −1

] = [
1 0
0 1

] = [
5 2

−2 −1
] [

1 2
−2 −5

] = 𝐵𝐴 
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So, 𝐵 is the inverse matrix of 𝐴, (𝐵 = 𝐴−1) and conversely. 

Definition (2.13): A square matrix 𝐴 of size 𝑛𝑥𝑛 is Orthogonal matrix if it is invertible 

and 𝐴−1 = 𝐴𝑇, (𝐴𝑇𝐴 = 𝐼 = 𝐴𝐴𝑇). Or equivalently, if the rows/columns of 𝐴 form an 

orthonormal basis of ℝ𝑛. 

For example, 𝐻 = [

1

√2

1

√2
1

√2
−

1

√2

] is an orthogonal matrix, 

𝐻 =

[
 
 
 
1

√2

1

√2
1

√2
−

1

√2]
 
 
 

=
1

√2
[
1 1
1 −1

] 

𝐻𝑇𝐻 =
1

√2
[
1 1
1 −1

] ∗
1

√2
[
1 1
1 −1

] =
1

2
[
2 0
0 2

] = [
1 0
0 1

] = 𝐻𝐻𝑇 

The previous linear transformation 𝐹:ℝ3 → ℝ2 defined for any 𝑥 ∈ ℝ3 by the 

formula:   

𝐹[𝑥1, 𝑥2, 𝑥3] = [𝑥1 + 𝑥2, 2𝑥3] 

can be represented as a matrix, 𝐹(𝑥) = [
1 1 0
0 0 2

] ∗ [

𝑥1

𝑥2

𝑥3

].  

In this format, the transformation becomes a matrix multiplication by a column 

vector 𝑥 ∈ ℝ3. In fact, all linear transformations in Euclidian space have a matrix 

representation. 

On the other hand, it is obvious that any (𝑚 𝑥 𝑛) matrix A defines a linear 

transformation 

𝑇𝐴: ℝ𝑛 → ℝ𝑚 

For any column vector 𝑥 ∈ ℝ𝑛, the transformation defined by a matrix multiplication 

𝑇𝐴 = 𝐴𝑥. 

2.4 Change of Basis and Coordinates 

Let 𝑉 be a finite dimensional vector space and 𝐴 = {𝑎1, 𝑎2, ⋯ , 𝑎𝑛} and 𝐵 =

{𝑏1, 𝑏2, ⋯ , 𝑏𝑛} be two ordered bases of 𝑉. Any vector 𝑣 ∈ 𝑉 can be presented uniquely 

as a linear combination of each basis, i.e. 
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𝑣 = 𝑠1𝑎1 + 𝑠2𝑎2 + ⋯+ 𝑠𝑛𝑎𝑛 , 𝑠𝑖 ∈ ℝ ∀𝑖 

This is the presentation of 𝑣 in relative to 𝐴 and the vector 𝑣𝐴 = [𝑠1, 𝑠2, ⋯ , 𝑠𝑛]𝑇 is the 

coordinate vector of 𝑣 in relative to 𝐴 and it can be written in a matrix form 

𝑣 = 𝐴𝑣𝐴 

The vector 𝑣 has another unique representation in relative 𝐵 in the same format 

𝑣 = 𝑟1𝑏1 + 𝑟2𝑏2 + ⋯+ 𝑟𝑛𝑏𝑛 , 𝑟𝑖 ∈ ℝ  ∀ 𝑖  

𝑣 = 𝐵𝑣𝐵 

From the above equations, we get that 

𝐴𝑣𝐴 = 𝑣 = 𝐵𝑣𝐵 → 𝐴𝑣𝐴 = 𝐵𝑣𝐵 

𝑣𝐴 = 𝐴−1𝐵𝑣𝐵   

So, in the above equation, the matrix 𝐴−1𝐵 transforms the coordinates of 𝑣 in relative 

to 𝐵 into its coordinates in relative to 𝐴.  The inverse of this transformation is 𝐵−1𝐴. 

The matrix 𝐴−1𝐵 is called transition matrix and it is a linear transformation which 

transform a vector in a coordinate system into a new one.  This type of transformation 

is very important in the case linear dimensionality reduction techniques as some data 

dependent DR techniques reduce the dimension of a dataset after transforming it into a 

new space by changing its coordinate system. In the transformed space, some 

dimensions become very important and others become irrelevant and negligible, thus 

we can discard some of them and project the data set on only important dimensions. 

2.5 Mathematical underpinning of DR 

The feasibility of dimension reduction using random projections with providing a 

strong guarantee on “preserving” pairwise distances with high probability has been 

proved in 1984 by Johnson and Lindenstrauss in their well-known article (Extensions 

of Lipschitz maps into a Hilbert space). 
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Theorem (2.1) (Johnson and Lindenstrauss, 1984) 

For any dataset 𝐴 of 𝑛 points in ℝ𝑁, and any  0 < 𝜖 < 1, there is a function            

𝑓: ℝ𝑁 → ℝ𝑘, with  

𝑘 ≥ 𝑂(𝜖−2 log 𝑛) 

such that for any two points 𝑎, 𝑏 ∈ 𝐴 

(1 − 𝜖)‖𝑎 − 𝑏‖2 ≤ ‖𝑓(𝑎) − 𝑓(𝑏)‖2 ≤ (1 + 𝜖)‖𝑎 − 𝑏‖2 

The JL theorem insures the existence of linear transformations that reduces dimensions 

of input vectors while the distances between the map of vectors are within any desired 

tolerance of the distance between the original vectors as long as the reduced dimension 

is bounded below by a number proportional to the tolerance level. Various modification 

of the JL theorem have been established that impose different restrictions on the value 

of k or on the nature of the vectors. More details will be discussed in Chapter 4. 

2.6 Dimension Reduction and Preservation of Information 

One of the most popular questions around dimension reduction process is that (is it 

possible to reduce the dimension of a dataset without a significant structure distortion? 

i.e. without losing too much information? To answer this question, first, we need to 

explain that what do we mean by dataset structure? The most natural characteristic of 

dataset structure, that is relevant to pattern recognition, is pairwise distances of data 

sample vectors and ideally DR techniques provide some guarantees on preserving these 

distances within a small tolerable error. We shall explain the concept of preserving 

dataset structure in a simple example. Consider the simple dataset in 2-dimensional 

space displayed in figure 2-1.  

 

Figure 2-1  Two-dimensional dataset 
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The dimension of this data set can be reduced simply by discarding one of the 

dimensions and projecting it onto the other one. Clearly, the data set is more scattered 

along the X-axis rather than Y-axis and there is a large variance among the x-

coordinates compare to the y-coordinates. This means that X-axis maintain more 

information of this data compare to the other axis. If we discard the Y-axis and project 

the data set onto X-axis, we will get the projected data in red points in figure 2-2. It can 

be clearly seen that the pairwise distances are preserved approximately, by looking to 

the distance between the two points 𝑎 𝑎𝑛𝑑 𝑏 in the original data set and the distance 

between their projection, it is fairly preserved. However, those points in the original 

data set that their x-coordinates are close, then their projections are also close to each 

other, nevertheless, the projected data is a proper approximation to the original one. 

b a

 

Figure 2-2 The projected data on X-axis is a good approximation 

If we instead have projected our data set onto Y-axis by discarding X-axis as shown in 

figure 2-3, the projection causes a huge error in the pairwise distances. So, the pairwise 

distances are not preserved as the projected data is very inaccurate and it does not 

represent the original data properly. If we compare the distance between  𝑎 𝑎𝑛𝑑 𝑏 in 

the original data and the projected set, the distance between their projection is nearly 

zero while they are quite far from each other before projection. Thus, the projection on 

the X-axis is much better and provides more accuracy than projecting on Y-axis. 
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Figure 2-3 The projected data on Y-axis is inaccurate  

Now, suppose that we have another dataset as shown in figure 2-4, which is simply a 

rotation of the previous dataset by 45o. 

 

Figure 2-4 The rotated dataset by 45o 

In this case, projecting our data onto X-axis or Y-axes does not provide a good data 

accuracy as the variance among both coordinates are nearly the same and discarding 

anyone of them will not preserve pairwise distances properly. We need to find another 

direction that is more suitable than these two axes for projection. This means discarding 

some axes is not the only way to project our data, in this case, the best direction/line 

for projection is the direction/line that captures maximum variance present in the 

dataset as shown in figure 2-5. 
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Figure 2-5 The optimal direction for projecting the rotated dataset 

The above examples show that dimension reduction is not necessarily about discarding 

dimensions, it is a process of finding some dimensions that are important in some way 

for the dataset and maintain essential information (structure) after reduction. The 

projected subspace must be quite easy to compute for the reduced data while the 

structure is preserved with some tolerable errors. Based on the above explanation, we 

can say that; it is possible for DR techniques to reduce dimension without a significant 

distortion. These types of direction/basis that capture almost all the variance in a data 

set can be found by solving an eigenvalue problem of a matrix that model variation in 

the original data set. This is indeed one of the most common approaches in certain type 

of DR’s which will be reviewed in the next chapter. So, dimension reduction and more 

precisely dimension transformation is a process of finding some new basis/directions 

that maintain almost all the information present in a dataset, such techniques reduce the 

dimension of a dataset carefully and having different DR techniques means that; there 

are different ways to provide such new basis and different ways to measure data 

distortion. 

2.7 Classification of Dimensionality Reduction Methods 

There are different ways of categorising dimensional reduction approaches. Dimension 

reduction problems have been classified in terms of the dataset feature model into two 

types: Hard and Soft DR  depending on the number of extrinsic dimension of datasets 

(Wang, 2012). If the number of extrinsic dimensions is between hundreds and hundreds 

of thousands or above that, it is called hard DR problem and in this case an extreme 

reduction needs to be done. For instance, DR of facial images for recognition 

applications is one of the hard DR problems as the number of extrinsic dimension is 
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about hundreds of thousands. On the other hand, a DR problem is called soft if the 

number of extrinsic dimension is at most a few tens. In this case, the reduction is not 

drastic. The aim of soft DR problems is the analysis of the data rather than reduction 

as the original dimension of the data set is not truly high. In terms of the most 

challenging recognition/classification problems this classification is not of significant 

relevance because in general we are dealing with Hard DR problems. In general, DR 

methods can be classified as follows: 

2.7.1 Dimension Selection (DS) 

Dimension selection is one of the Dimensionality reduction methods which has been 

commonly used in the pre-processing stage of pattern recognition. This technique 

reduces the dimension of a data set by taking a proper dimension subset and discarding 

other dimensions out of the set of all dimensions based on a criterion. There are two 

major methods of Dimension Selection (DS): Filter and Wrapper (Kojadinovic and 

Wottka, 2000). The criterion of Filter method is measuring some properties of the 

dimensions using certain type of filters while the criterion for Wrapper method is 

finding a dimension subset which provides the “best” accuracy for the application. DS 

is a good alternative for other DR techniques where either the dimension of a data set 

is not very high or there are different types of dimension and some of them are highly 

correlated (Sabir, 2015). This method of DR is not the objective of this thesis while 

having knowledge about them will help to study other DR methods properly. 

2.7.2 Dimension Transformation/Embedding (DT) 

Dimension transformation method is a process of transforming a high dimensional 

dataset into a much lower subspace by using some mappings. Such method reduces 

dimension by providing a new linear or non-linear combination of the original data 

features, while in the case of dimension selection, we only choose a proper 

feature/dimension subset from the set of all features. In general, there are two types of 

feature transformation, either it is linear such as the Random Projections or non-linear 

like the Kernel PCA. Some of the techniques are unsupervised like the Principal 

Component Analysis (PCA) or supervised such as the Linear Discriminant Analysis 

(LDA). In this thesis, we focus on the Linear dimension transformation techniques. 

Simply, suppose that 𝐴𝑚𝑥𝑁 is a data set consists of 𝑚 −points in 𝑁 −dimensional space 

(𝑁 is usually large). To reduce the dimension of this set using Linear DT, we only need 

to provide a suitable projection matrix (Linear Transformation) which is an 

overcomplete matrix/dictionary say 𝑃𝑑×𝑁 where (𝑑 ≪ 𝑁). Mathematically, this 
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projection matrix is a linear transformation which transforms the original high 

dimensional data into a much lower subspace. The original dataset is multiplied by the 

projection matrix to produce the low dimensional approximation 𝐴𝑚×𝑑
′  using this 

formula 

 (𝐴𝑚×𝑑
′ = 𝐴𝑚×𝑁𝑃𝑁×𝑑

𝑇 ) 

In the case of studying Linear DT techniques, all the questions are around the projection 

matrix. Some of the techniques extract the projection matrix from the data set itself, 

these techniques are called Data-Dependent such as PCA and LDA. We can also 

generate the projection matrix independently from the dataset by using Data-

Independent techniques such as Random Projection (RP) Methods. It will be explained 

that how PCA, LDA, and RPs provide such projection matrix and how they guarantee 

information preservation in the following two chapters. 

2.8 Summary 

In this chapter, we reviewed some important basic concepts in Linear Algebra and 

Matrix Theory as the mathematical background of linear DR techniques. We first 

defined Vector Spaces and specified our work space, we then revised Linear 

Transformations and Change of Basis since all linear DR techniques whether it is data-

dependent or data-independent are linear transformations that transform/imbed a high 

dimensional dataset into a much lower subspace by finding some new directions/basis 

that maintain essential information of the dataset in the transformed space. We stated 

the JL theorem as a mathematical underpinning of DR, and investigated the feasibility 

of dimension reduction without losing significant information in a simple example. We 

finally explained different classification methods of DR techniques. In the next chapter, 

we shall revise the theory of Eigenvalue problem and its computation. We will also 

investigate data-dependent DR techniques that use Eigenvalue problem approach. 
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3 CHAPTER THREE: DATA-DEPENDENT DIMENSION 

REDUCTION 

In the last chapter, we noted that for a general dataset of high-dimensional vectors, 

modelling a recognition application, dimension reduction by feature selection may not be 

adequate. When the dataset of 2D points in section (2.6) where rotated by a certain angle, 

it became more susceptible to dimension reduction into one dimension with little loss in 

variation in the other direction. This meant that DR is about projecting the points onto a 

lower dimensional subspace that captures the maximum variation between the points in 

the direction of subspace basis vectors.   The directions of the subspace basis vector, 

depend on the dataset, and can be found by solving the eigenvalue problem of a matrix 

that models variation in the original dataset. In fact, the further away the eigenvalue is 

from 0, the more important are the variations between the projected points onto the 

corresponding eigenvector(s). Data-dependent DR is dominated by different methods of 

finding bases built from eigenvectors for a carefully defined eigenvalue problem. This 

chapter is concerned with such approaches as well as modified techniques that have 

similar effect.  We first review the theory of Eigenvalue problems and relevant 

computation with focus on high dimensions. This will be followed by investigating three 

different DR methods that follow the eigenvalue problem approach and its link to matrix 

factorisation. 

3.1 Eigenvalues and Eigenvectors 

Let 𝐴 be an 𝑛𝑥𝑛 square matrix of real numbers. A scalar number 𝜆 is said to be an 

eigenvalue of 𝐴 if there exists a non-zero vector 𝑣 ∈ ℝ𝑛 such that 

𝐴𝑣 = 𝜆𝑣 

In this case, we say that 𝑣 is corresponding eigenvector while 𝜆 is an eigenvalue of the 

matrix 𝐴. There are a few methods to calculate eigenvalues and eigenvectors, and 

Characteristic Equation method is one of them. Simply, the above equation can be 

written as follows: 

𝐴𝑣 = 𝜆𝑣 → 𝐴𝑣 − 𝜆𝑣 = 0 → (𝐴 − 𝜆𝐼)𝑣 = 0 
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Where 𝐼 is the 𝑛𝑥𝑛 identity matrix. The matrix equation (𝐴 − 𝜆𝐼)𝑣 = 0 is a homogeneous 

system, and has a non-trivial solution vector 𝑣 whenever the matrix (𝐴 − 𝜆𝐼) is not 

invertible, i.e. 

 det(𝐴 − 𝜆𝐼) = 0 

The left-hand side of this equation is a degree 𝑛 polynomial 𝑃(𝜆) in , and 

𝑃(𝜆) = 0 

is called the characteristic equation of the matrix A. 

The eigenvalues of a matrix A can be computed by solving its characteristics equation, 

and the corresponding eigenvectors can be computed by solving the matrix equation  

𝐴𝑣 − 𝜆𝑣 = 0. 

For example: if matrix 𝐴 = [
0 3
5 2

] then  

|𝐴 − 𝜆𝐼| = 0 → |[
0 3
5 2

] − [
𝜆 0
0 𝜆

]| = 0 

Therefore, 

|[
−𝜆 3
5 2 − 𝜆

]| = (−𝜆)(2 − 𝜆) − 15 = 𝜆2 − 2𝜆 − 15 = (𝜆 − 5)(𝜆 + 3) = 0 

The eigenvalues of A are 𝜆1 = 5,   𝜆2 = −3 

 For 𝜆1 = 5, 𝐴𝑣 = 𝜆𝑣 → [
0 3
5 2

] [
𝑣1

𝑣2
] = 5 [

𝑣1

𝑣2
] → [

3𝑣2

5𝑣1 + 2𝑣2
] = [

5𝑣1

5𝑣2
] 

Which implies that  𝑣2 =
5

3
𝑣1. Setting 𝑣1 = 1,  yields the eigenvector 𝑣 = [

1
5/3

]. 

Similarly, for 𝜆2 = −3,  𝑣 = [
1

−1
] is a corresponding eigenvector. 

General remarks. 

(1)  if 𝑣 is an eigenvector corresponding to an eigenvalue , then for any scalar value  

the vector 𝑣 is also an eigenvector for . Hence 𝑣 generates a 1-dimensional 

subspace of ℝ𝑛. 

(2) The characteristic equation of A is a polynomial of degree n, and therefore it has n 

eigenvalues {𝜆1, 𝜆2, ⋯ , 𝜆𝑛} not all distinct or even real numbers. 
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For example, [
0 1

−1 0
] has 2 complex conjugate eigenvalues 𝜆1 = 𝑖, 𝑎𝑛𝑑  𝜆2 = −𝑖.  

And the matrix, [
1 2
0 1

] has 2 equal eigenvalues 𝜆1 = 𝜆2 = 1. 

Theorem (3.1): Let 𝐴 be a matrix of size 𝑛×𝑛. If 𝐵 =  {𝑣1, 𝑣2, ⋯ , 𝑣𝑛} is the set of 

eigenvectors corresponding to the distinct eigenvalues {𝜆1, 𝜆2, ⋯ , 𝜆𝑛} of 𝐴., then 𝐵 is 

linearly independent. 

Proof, see (Fraleigh et al., 1995). 

Although linear independence of the eigenvectors is a useful property, but for 

computation purposes orthogonality of these vectors is more desirable. Note that, our 

interest in the eigenvalue problem is based on the observation that we need a change of 

basis so that a smaller number of the vectors in the new basis can capture the maximum 

amount of variation between the various vectors representing the given set of application 

objects. The variation in a dataset 𝑈 = {𝑢1, 𝑢2, ⋯ , 𝑢𝑁} of application records is 

represented by the covariance matrix  

𝐶𝑜𝑣(𝑈) =  [〈𝑢𝑖 − µ, 𝑢𝑗 − µ〉] 

The covariance matrix is a symmetric matrix with real-valued entries. Here, µ is the 

average vector of the vectors in U, each coordinate of which is the mean of that 

coordinates of the vectors in U. In this case, the following is a very important property 

that has very useful implications for the DR process for the dataset U. 

Theorem (3.2): Let 𝐴 be a square real symmetric matrix, then the eigenvectors of 𝐴 

corresponding to different eigenvalues are orthogonal. 

Proof: see (Fraleigh et al., 1995) 

Definition (3.1): Let 𝐴𝑛𝑥𝑛 be a matrix, then it is called orthogonally diagonalizable if 

there is a diagonal matrix 𝐷 and an orthogonal matrix 𝐵 such that 𝐴 = 𝐵𝐷𝐵−1 = 𝐵𝐷𝐵𝑇. 

Fundamental Theorem of Real symmetric matrix (3.3): Let 𝐴𝑛𝑥𝑛 be a real symmetric 

matrix, then 𝐴 is orthogonally diagonalizable and it has only real eigenvalues (Fraleigh 

et al., 1995). 

Definition (3.2): Let 𝐴𝑛𝑥𝑛 be a matrix and 𝜆1, 𝜆2, ⋯ , 𝜆𝑛 be the eigenvalues of 𝐴, then  𝜆1 

is called the dominant eigenvalue of 𝐴 if |𝜆1| > |𝜆𝑖| 𝑓𝑜𝑟 𝑖 = 2,3,⋯ , 𝑛 and the 

corresponding eigenvector say 𝑣1 to the 𝜆1 is called the dominant eigenvector of 𝐴. 
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In the example (3.1), where 𝐴 = [
0 3
5 2

]  𝑎𝑛𝑑 𝜆1 = 5,   𝜆2 = −3 , clearly, |𝜆1| =

5, |𝜆2| = 3, and  |𝜆1| > |𝜆2|. So, 𝜆1 is called the dominant eigenvalue of 𝐴 and the 

corresponding eigenvector 𝑣 = [
1

5/3
] is called the dominant eigenvector. 

Sorting the eigenvalues of the covariance matrix of a dataset of objects in order of 

descending their magnitude/absolute value, plays an important role in the DR process, 

because more dominant eigenvalue is the more variation along its eigenvector is away 

from the average vector. In this way, we can find those directions that capture almost all 

variation present in a dataset. 

In dimension reduction applications, computing the dominant Eigenpairs of the matrix 

that models the variation in the dataset of objects is an essential requirement. However, 

computing the eigenvalues and eigenvectors of large size matrices, which relates to the 

(curse of dimension) problem, by solving its characteristic equation is not stable because 

approximating the roots of high order polynomials is so sensitive and ill-condition (i.e. 

just a little inaccuracy in the variables can cause a significant error in the results) (Fraleigh 

et al., 1995) 

The Power Method is an iterative procedure to approximately compute such Eigen pairs. 

For more details see (Fraleigh et al., 1995). The algorithm, repeatedly estimate the next 

eigenvector corresponding to the next dominant eigenvalue. 

3.2 Computing Dominant/Top Eigenpairs of  Real Symmetric 

Matrices 

The reason of stating the above theorems and definitions is that, the Eigenpairs of any 

real symmetric matrix have some very nice properties and it is quite useful in the case of 

studying linear data-dependent DR techniques, because the linear transformations of 

some of these techniques are constructed by top eigenvectors of some real symmetric 

matrices. By top eigenvectors, we mean, after sorting the eigenvectors in the order of 

descending magnitude of the corresponding eigenvalues, those eigenvectors 

corresponding to the eigenvalues with high absolute value/magnitude. 

Now, we are looking for a method to find a subset of top eigenpairs instead of calculating 

all by using the (Power Method) and Theorem (3.3). 

Let 𝐴𝑛𝑥𝑛 be a real symmetric matrix with its eigenvalues 𝜆1, 𝜆2, ⋯ , 𝜆𝑛 such that |𝜆1| ≥

|𝜆2| ≥ ⋯ ≥ |𝜆𝑛| and corresponding unit eigenvectors 𝑣1, 𝑣2, ⋯ , 𝑣𝑛. Let 𝐷𝑛𝑥𝑛 be a 
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diagonal matrix with the eigenvalues on its diagonal in the same order and 𝐵𝑛𝑥𝑛  is another 

matrix which has the eigenvectors in its columns correspondingly. Using the definition 

of eigenpairs 𝐴𝑣 = 𝜆𝑣 for each eigenpair, then we can write the above equation in this 

way 𝐴𝐵 = 𝐵𝐷, we know that 𝐵 consists of 𝑛 −orthogonal unit eigenvectors which 

implies that 𝐵 is invertible and 𝐵−1 = 𝐵𝑇, then we get that 

𝐴𝐵 = 𝐵𝐷 → 𝐴 = 𝐵𝐷𝐵−1 = 𝐵𝐷𝐵𝑇 

More precisely,  

𝐴 = 𝐵𝐷𝐵𝑇 = 𝜆1𝑏1𝑏1
𝑇 + 𝜆2𝑏2𝑏2

𝑇 + ⋯+ 𝜆𝑛𝑏𝑛𝑏𝑛
𝑇 

 Clearly, (𝜆1, 𝑏1) is the dominant eigenpair of 𝐴 and it can be found using the Power 

Method. Then, if we write the above equation in this form 

𝐴 − 𝜆1𝑏1𝑏1
𝑇 = 𝜆2𝑏2𝑏2

𝑇 + ⋯+ 𝜆𝑛𝑏𝑛𝑏𝑛
𝑇 

Now, we get another matrix (𝐴 − 𝜆1𝑏1𝑏1
𝑇) with the dominant eigenpair (𝜆2, 𝑏2) and it 

can be found using the Power Method again. By repeating this procedure, we can compute 

the top eigenvalues successively in a descending order instead of computing all of them. 

Such procedure is quite interesting and we will explain that later why we are interested 

in computing top Eigen pairs. In the following sections, we shall study these data-

dependent DR techniques that follows Eigen problem approach.  

3.3 Principal Component Analysis (PCA) 

Principal Component Analysis is perhaps the most popular linear DR technique which is 

data-dependent. The term PCA refers to the process of obtaining an orthonormal linear 

transformation that maps a high dimensional dataset into a lower subspace whose basis 

vectors correspond to the maximum variance directions in the original apace (Martinez 

and Kak, 2001). The matrix that represents this linear transformation is called the PCA 

projection matrix and such technique is data dependent as the projection matrix is 

extracted from the dataset of sample vectors representing objects of interest for a given 

application. 

The key idea of this technique is that, coordinates of high dimensional data are usually 

highly correlated except the case that the data set is very small or it has a simple structure 

(Jolliffe, 2002). PCA finds a set of new uncorrelated directions/basis for the data set 

which are called principal components such that the data set has the maximum variance 

along the direction of the PCs in a descending order as shown in figure 3-1. More 
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precisely, it has the maximum variance along the direction of the first PC and it has the 

second maximum variance along the second direction and so on. By projecting the data 

set on the PCs, the variation present of the data set can be captured as much as possible. 

Interestingly, the first few PCs can capture almost all the variation present of the data set 

and the variation on other PCs is very small and they are negligible. This property makes 

PCA to be an effective dimension reduction technique and the reduction can be done by 

discarding these PCs with low variation/information. Moreover, PCA provides a better 

representation of any correlated dataset as the input data is possibly correlated while the 

projected data is uncorrelated. This transformation can be obtained for any dataset of 

records by computing the generalized Eigenproblem of the covariance matrix of the 

dataset as explained in the following section. 

 

Figure 3-1 Principal Component Analysis captures variance present in a data set 

3.3.1 PCA steps for Dimension Reduction. 

The following steps explain that how to implement PCA technique on a dataset for DR 

purposes. 

(1) Let 𝑋 = { 𝑥1,𝑥2, … , 𝑥𝑚 } be a data set of 𝑚 points in ℝ𝑛. Firstly, it is arranged in a 

matrix called data matrix 𝑋𝑚𝑥𝑛. 

(2) Compute the centred data matrix 𝐴 from the data matrix 𝑋 in this way, compute the 

mean of each column/feature, 

ℎ[𝑗] =
1

𝑚
∑𝑥[𝑖, 𝑗]

𝑚

𝑖=1

      𝑤ℎ𝑒𝑛     𝑗 = 1,2, … , 𝑛.    →      𝐻 = [ℎ1, ℎ2, … , ℎ𝑛] 
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Then 𝐴 is computed using this formula 

𝐴𝑚𝑥𝑛 = 𝑋𝑚𝑥𝑛 − 𝐺𝑚𝑥1𝐻1𝑥𝑛     𝑤ℎ𝑒𝑛      𝐺[𝑖] = 1      𝑓𝑜𝑟     𝑖 = 1,2, … ,𝑚 

(3) Compute the covariance matrix 𝐶 which is a real symmetric matrix from the centred 

data matrix 𝐴 using this formula, 

𝐶𝑛𝑥𝑛 = 𝐴𝑇𝐴 

(4) Compute eigenvalues and eigenvectors of the covariance matrix 𝐶. Clearly, 

Eigenvectors of 𝐶 are orthogonal and then normalize them by dividing each by its length 

(Normalization). Sort the orthonormal eigenvectors in the order of descending magnitude 

of the eigenvalues |𝜆1| ≥ |𝜆2| ≥ ⋯ ≥ |𝜆𝑛|. 

(5) The orthonormal transformation matrix 𝑇 is obtained by considering the 𝑘𝑡ℎ 

eigenvectors corresponding to the top 𝑘 (𝑘 ≪ 𝑛) eigenvalues as its columns in the same 

order. To produce the projected/reduced data 𝐷𝑚𝑥𝑘, we do the projection using this 

formula 

𝐷𝑚𝑥𝑘 = 𝐴𝑚𝑥𝑛𝑇𝑛𝑥𝑘 

In this way, we can reduce the dimension of a high dimensional data set 𝐴𝑚𝑥𝑛 into a much 

lower dimensional subspace (𝑘 ≪ 𝑛) without losing too much information and providing 

a better representation 

3.3.2 Covariance Matrix and Eigen Problem 

The entries of covariance matrix are dot products and simply the dot product measures 

the similarity between two vectors. In this way, Covariance matrix measures correlation 

between data features/dimensions. We solve the generalized eigenproblem for covariance 

matrix and among the eigenvectors, we only choose those correspond to the top 

eigenvalues in the sense of their magnitude in order to choose the direction that 

maximizes the variance present in a dataset. Interestingly, Covariance matrix 𝐶 is a real 

symmetric matrix, we can easily show that: 

𝐶𝑇 = (𝐴𝑇𝐴 )𝑇 = 𝐴𝑇𝐴𝑇𝑇
= 𝐴𝑇𝐴 = 𝐶 

Clearly, to create the projection matrix, we only use a subset of eigenvectors that 

corresponding top eigenvalues, this means that, we do not need to calculate all the 

eigenpairs and by using the steps in section (3.2), we can only calculate the top eigenpairs 

which is computationally cheaper than calculating all of them. 
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Furthermore, since the covariance matrix is a real symmetric matrix and according to 

Spectral theorem, it has only real eigenvalues. The matrices 𝐴𝑇𝐴 and 𝐴𝐴𝑇 have the same 

eigenvalues and this follows from the fact that if  𝜆 ≠ 0 is an eigenvalue of 𝐴𝑇𝐴 and 𝑣 is 

its eigenvector then:  

(𝐴𝑇𝐴)𝑣 = 𝜆𝑣 

𝐴(𝐴𝑇𝐴)𝑣 = 𝐴𝜆𝑣 → (𝐴𝐴𝑇)(𝐴𝑣) = 𝜆(𝐴𝑣) 

So, it shows that if 𝜆 is a non-zero eigenvalue of 𝐴𝑇𝐴 with the eigenvector 𝑣, then it is 

also an eigenvalue of 𝐴𝐴𝑇 with the corresponding eigenvector 𝐴𝑣. Consequently, if the 

number of data records is less than the number of dimensions 𝑚 ≪ 𝑛, there will be up to 

𝑚 useful eigenvector and the rest will have eigenvalues of zero. In this case, it is better 

to solve the eigenproblem for 𝐴𝐴𝑇 instead of 𝐴𝑇𝐴 and in this way, we reduce the 

calculation significantly and it becomes more manageable since calculating eigenpairs is 

an expensive task (Turk and Pentland, 1991). 

The following example illustrate, the use of PCA for face recognition. 

 

Figure 3-2 A selection from a 200 training face images from the ORL database 

 

Figure 3-3 (10-most) significant Eigenfaces out of the 200 eigenfaces 
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Original Image

100 Eigenfaces        70 Eigenfaces         60 Eigenfaces         50 Eigenfaces 

10 Eigenfaces         20 Eigenfaces         30 Eigenfaces         40 Eigenfaces 

 

Figure 3-4 Incremental reconstruction of a face image from set of top Eigenfaces 

The above example, illustrate the success of PCA in reconstructing high dimensional face 

image from a significantly reduced dimensional subspace in the PCA domain. The 

original image can be represented with a very good approximation, by 100 PCA 

coefficients using the 100 eigenvectors that corresponds to top 100 significant 

eigenvalues. This comes from the fact that PCA minimizes the reconstruction error. 

3.3.3 Covariance matrix and Limitations of PCA 

Despite the success of PCA as a dimension reduction scheme, some shortcomings of the 

scheme limit its use directly and modifications are essential. Here we list the 2 most 

important limitations: 

(1) As we showed that if 𝜆 is a non-zero eigenvalue of 𝐴𝑇𝐴 with the eigenvector 𝑣, then 

it is also an eigenvalue of 𝐴𝐴𝑇 with the corresponding eigenvector 𝐴𝑣. Now, the point is 

that 𝐴𝑇𝐴 and 𝐴𝐴𝑇 have the same set of non-zero eigenvalues. This property makes some 

limitation on PCA in practice by restricting the produced number of meaningful principal 

components, for instance, suppose we have a data set 𝐴 consist of 50 samples in 5000-

dimensional space resulting in a matrix of size (50×5000). In this case, PCA generates 

up to 50 useful eigenvectors and the rest will have associated eigenvalue of zero. In other 

words, it cannot produce more than 50 PCs and this restriction comes from the fact that 

PCA is a data dependent technique. To overcome with this limitation, Data Independent 

PCA (DIPCA) has been suggested in (Al-Talabani, 2015). DIPCA has the same 

projection matrix of PCA which is trained on another dataset and is used to project another 

given dataset which is independent from this projection matrix. In this way, we can pass 

such limitation and get benefit from the good characteristics of PCA projection matrix. 

(2) The covariance matrix is an estimation of the variation between a dataset records away 

from their mean, but this estimation does not consider the topological relations among 
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them. The topological relationships provide information about the subspace that spanned 

by the data samples. This type of information and prior knowledges can be used to 

generate a more suitable subspace (projection matrix) and for this reason, Topological 

PCA (TPCA) has been suggested instead of the usual PCA in (Pujol et al., 2001). The 

covariance matrix of the TPCA is a linear combination of usual covariance matrix and a 

prior covariance matrix which contains topological relationships of the data samples. This 

method provides a more robust version of covariance matrix and thus it improves the 

general capabilities of PCA. 

3.4 Linear Discriminant Analysis (LDA) 

Although PCA is widely used as a dimension reduction prior to classification, in the 

construction of PCA and particularly covariance matrix, no consideration is given of class 

information/labels as PCA looks to the dataset as a global set. This makes PCA not to be 

an optimal dimensionality reduction technique for classification applications because it 

does not guarantee class discriminatory in the projected subspace and it might cause a 

huge overlapping between different classes. In fact, the performance of PCA based 

recognition could adversely influenced by the within class variation. In the case of face 

recognition variation in lighting, age and pose are examples of conditions leading to 

significant within class variation.  For this reason, PCA has been modified and optimised 

for class discriminatory by the so called Linear Discriminant Analysis (LDA). 

 

Figure 3-5 PCA does not consider class labels 

LDA is also a data-dependent DR technique that has been commonly used in pattern-

recognition and machine learning applications. It transforms a high dimensional dataset 

into a lower subspace that is optimal for class-discriminatory. It was first designed by 

Fisher (Fisher, 1936) which finds a new basis of a linear subspace of ℝ𝑛 along the 
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directions of which classes of the given dataset are well separated i.e. (a new basis that 

makes the distance between the mean of classes as far as possible and the variance of each 

class as small as possible). To obtain such basis, we compute two scatter matrices, 

between class scatter matrix 𝑆𝐵 and within class scatter matrix 𝑆𝑊, and the goal is 

maximizing 𝑆𝐵 and minimizing 𝑆𝑊. Equivalently, we aim to maximize the ratio 
det (𝑆𝐵)

det (𝑆𝑊)
 

which is called Fisher criterion and it yields by solving the generalized Eigen problem for 

the matrix (𝑆𝑊
−1𝑆𝐵) (Martinez and Kak, 2001). Among all the eigenvectors of this matrix, 

we use some of the top eigenvectors corresponding top eigenvalues to generate LDA 

projection matrix which is an optimal subspace that separate different classes quite nicely. 

 

Figure 3-6 LDA provides a good class-discriminatory 

3.4.1 LDA steps for Dimension reduction. 

(1) Let 𝑋 = { 𝑥1,𝑥2, … , 𝑥𝑚 } be a data set of 𝑚 points in ℝ𝑛. Firstly, compute the centred 

data matrix 𝐴𝑚𝑥𝑛,  see(step 1 and 2 PCA steps). Suppose there are 𝐶 classes. 

(2) Let 𝑛𝑖 be the number of samples in the class 𝑖. Compute the mean vector 𝑚𝑖 for each 

class the mean vector 𝑚 for all the dataset. 

(3) Compute the between and within scatter matrices 𝑆𝐵 and 𝑆𝑊 respectively. 

𝑆𝐵 = ∑(𝑚𝑖 − 𝑚)(𝑚𝑖 − 𝑚)𝑇

𝑐

𝑖=1

 

𝑆𝑊 = ∑∑(𝑥𝑗 − 𝑚𝑖)(𝑥𝑗 − 𝑚𝑖)
𝑇

𝑛𝑖

𝑗=1

𝑐

𝑖=1
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(4) Compute the eigenvalues and eigenvectors for the matrix 𝑆𝑊
−1𝑆𝐵 and Sort the 

eigenvectors in order of descending magnitude of eigenvalues |𝜆1| ≥ |𝜆2| ≥ ⋯ ≥ |𝜆𝑛|. 

(5) choose a 𝑑-eigenvectors (𝑑 ≪ 𝑛) corresponding to the top 𝑑-eigenvalues to Create a 

projection matrix 𝑃 by taking the 𝑑-eigenvectors as its columns in the same order. Do the 

projection using this formula  𝑋′ = 𝑋𝑃, where 𝑋′ is an 𝑛𝑥𝑑-matrix representing the data 

set after reduction. 

In this way, LDA provide some good class-discriminatory directions which is very 

important for classification/recognition applications. We cannot achieve this property 

with PCA as it considers the whole classes as a set globally. However, we might think 

LDA always outperforms PCA in classification and pattern recognition applications, but 

it is not always true. Especially, when there is a small (non-representative) training data 

set, PCA outperforms LDA and furthermore, LDA is more sensitive than PCA to different 

training set (Martinez and Kak, 2001). 

3.5 Singular Value Decomposition (SVD) 

The above linear DR schemes yields an approximate matrix factorisation of the data 

covariance matrix. Singular Value Decomposition or simply SVD is an exact matrix 

factorization methods which generalises the use of eigenvalue problem but for rectangular 

matrices of data. 

Let 𝐴 be a matrix of size 𝑚𝑥𝑛, and by SVD of 𝐴 we mean that 𝐴 can be uniquely 

represented as a product of three matrices 𝐴 = 𝑈∑𝑉𝑇 where 

𝐴𝑚𝑥𝑛:  the input data matrix. 

𝑈𝑚𝑥𝑚: matrix of left singular vectors, Orthogonal Matrix. 

∑𝑚𝑥𝑛: a rectangular diagonal matrix, there are 𝑟 non-zero singular values             

𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑟 > 0 on its diagonal. 

𝑉𝑛𝑥𝑛: matrix of right singular vectors, Orthogonal Matrix. 

The SVD is indirectly related to PCA, in the sense that solving the Eigenvalue problems 

for the covariance matrix, and its transpose, for the training set 𝑋 = { 𝑥1,𝑥2, … , 𝑥𝑚 } of 

n-dimensional vectors is equivalent to decomposing the m×n matrix whose i-th row is 

(𝑥𝑖 − 𝜇) where µ is mean vector of the elements in X. In this case, the singular values are 

the squares of the eigenvalues of the covariance matrix. Computing the SVM of a 
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rectangular mxn matrix A is based on solving the Eigenvalue problems of the 2 square 

matrices (𝐴𝑇𝐴) 𝑎𝑛𝑑 (𝐴𝐴𝑇) as described below. 

The SVD decomposition of a matrix can be computed using the following Steps: 

1. Compute the matrix 𝐵 = 𝐴𝑇𝐴, where 𝐴 is the data matrix. 

2. Calculate the eigenvalues and eigenvectors of 𝐵. 

3. Calculate the singular values 𝜎𝑖 which are square roots of non-zero eigenvalues 

of 𝐵 and sort them in a decreasing order. 

4. Compute the three components of the factorization 𝑈, ∑ and 𝑉𝑇 where 

𝑉 = [𝑣1, 𝑣2, ⋯ , 𝑣𝑛] where 𝑣𝑖is a normalized eigenvector of 𝐵 = 𝐴𝑇𝐴. 

∑ is a diagonal matrix, the diagonal entries are singular values 𝜎𝑖 in a decreasing 

order which are square roots of non-zero eigenvalues of 𝐵 = 𝐴𝑇𝐴. We assume for 

some index 𝑟, (𝜎1, 𝜎2, ⋯ , 𝜎𝑟) are non-zero and the rest are zero. 

𝑈 = [𝑢1, 𝑢2, ⋯ , 𝑢𝑚]  where  𝑢𝑖 =
1

𝜎𝑖
𝐴𝑣𝑖 , 𝜎𝑖 ≠ 0. Now, 

𝐴 = 𝑈∑𝑉𝑇 = ∑𝑢𝑖𝜎𝑖𝑣𝑖
𝑇

𝑟

𝑖=1

= ∑𝜎𝑖𝑢𝑖𝑣𝑖
𝑇

𝑟

𝑖=1

 

It is very important to sort the singular values in a decreasing order with corresponding 

left and right singular vectors especially in the case of using SVD for data 

reduction/compression. SVD as a matrix decomposition has some interesting 

applications, one of them is dimension reduction, although in the literature such procedure 

is referred to data compression which has the same meaning of dimension reduction. In 

the following section, we shall explain that how SVD can be used for this purpose. 

Definition (3.3): Let 𝐴 be a matrix of size 𝑚×𝑛 and 𝑎𝑖,𝑗 is the entry of 𝐴 at (𝑖, 𝑗) position.  

the Frobenius norm of 𝐴 is defined as 

‖𝐴‖𝐹 = √∑(𝑎𝑖,𝑗)
2

𝑖,𝑗
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Theorem (3.4): Let 𝐴 be a matrix of size 𝑚×𝑛 and the singular value decomposition of 

𝐴 is 𝐴 = 𝑈∑𝑉𝑇, where 𝑈 𝑎𝑛𝑑 𝑉 are orthogonal matrices of left and right singular vectors 

respectively and ∑ is a diagonal matrix of singular values (𝜎1, 𝜎2, ⋯ , 𝜎𝑟),  𝜎1 ≥ 𝜎2 ≥

⋯ ≥ 𝜎𝑟 > 0 and 𝑟 = 𝑟𝑎𝑛𝑘(𝐴). Then for any 1 ≤ 𝑘 ≤ 𝑟, min{‖𝐴 −

𝐵‖𝐹
2  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑟𝑎𝑛𝑘(𝐵) = 𝑘} = ∑ 𝜎𝑖

2𝑟
𝑖=𝑘+1 , where for any approximation matrix 𝐵 of 

𝐴, ‖𝐴 − 𝐵‖𝐹 is called reconstruction error. The minimum of the equation is achieved with 

𝐵 = 𝐴𝐾, where 𝐴𝑘 = 𝑈𝑘∑𝑘𝑉𝑘
𝑇, 𝑈𝑘 𝑎𝑛𝑑 𝑉𝑘 are formed by the first 𝑘 columns of 𝑈 𝑎𝑛𝑑 𝑉 

and ∑𝑘 = 𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, ⋯ , 𝜎𝑘) (Ye, 2005). 

3.5.1 Dimension Reduction using SVD 

Suppose we have a very large image/matrix 𝐴 and we want to represent, save or send it 

as its SVD factors, the factors 𝑈, ∑ and 𝑉𝑇 are also large matrices. Interestingly, SVD 

can be used to determine the most essential information in our data matrix, i.e. SVD can 

provide a compressed/reduced version of 𝐴 without losing too much information. The 

key idea of using SVD as dimension reduction tool is the singular values. In general, some 

of singular values are very large and others are quite small. The ideal way to reduce the 

three components of SVD is to keep the most significant singular values and set others to 

zero. By setting most of small singular values to zero, we eliminate corresponding 

columns in the matrices 𝑈 𝑎𝑛𝑑 𝑉, see figure 3-7. In this way, we reduce the dimension 

of  𝑈, ∑ and 𝑉𝑇. At the same time, we retain almost all the information of our data matrix 

by keeping these top singular values because removing small singular values only cause 

losing a little information. Theorem (3.4) states that, retaining the top “𝑘” singular values 

provide the optimal k-rank approximation of 𝐴. 

=

A - mxn U - mxr ∑ - rxr V
T
 - rxn

 

Figure 3-7 Using SVD for dimensionality reduction 
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3.5.2 Example: Image reduction/compression using SVD 

In this example, we shall explain image compression using SVD. Let 𝐴 be greyscale 

image of size 1000x1000. If we want to send or save this image, it contains 

1000×1000 = 1000000 numbers (pixel intensity values) which is a huge number. The 

required memory can be reduced significantly by computing a good approximation of 𝐴 

using SVD which maintain all the essential information in 𝐴 and reduce/remove 

redundant/irrelevant information. The reduced version of the image can be used more 

effectively instead of the original one with accepting that we lose little information (Kahu 

and Rahate, 2013). Firstly, we compute the SVD of 𝐴 

𝐴 = ∑𝑢𝑖𝜎𝑖𝑣𝑖
𝑇

𝑟

𝑖=1

= 𝑢1𝜎1𝑣1
𝑇 + 𝑢2𝜎2𝑣2

𝑇 + ⋯+ 𝑢𝑟𝜎𝑟𝑣𝑟
𝑇 

We will have some large singular values and others are very small while they are sorted 

in a decreasing order. Suppose 𝐴 is the original image in figure 3-8, which is a 1000x1000 

greyscale image. After computing SVD decomposition of 𝐴, if we keep only three 

singular values from top, it means we keep the first three terms of the summation in the 

SVD formula and the approximation is not good enough. By adding more singular values 

from the top, clearly, we obtain a better representation from 7, 10, to 15, by keeping only 

15 terms, the approximation is not too bad and the picture is recognizable. Moving on to 

25 and then 50 terms, when we retain only 50 singular values, the approximation image 

is fairly good. If we decide to use that image with only 50 terms, then the required memory 

for it is much smaller than the original as it consists of only 50 ∗ (1000 + 1000 + 1) =

50 ∗ 2001 = 100,050 values, since in each term we have two vectors 𝑢𝑖 , 𝑣𝑖
𝑇of length 

1000 with a scalar 𝜎𝑖. If we compare the required space to save 100,050 values with 

1,000,000 values, there is a huge difference while we retain almost all the information in 

this compressed version. In this way, we can use only 100,050 numbers instead of using 

1,000,000 numbers. 
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3-terms 5-terms 7-terms 10-terms

15-terms 20-terms 25-terms 50-terms

100-terms 150-terms 200-terms Original
 

Figure 3-8 Image compression/reduction using SVD 

 

3.6 CUR Decomposition 

In matrix factorisation, the sparsity of the various factors is a useful property that help 

provide efficient computation. When we compute the SVD decomposition of a sparse 

matrix 𝐴, we obtain 2 components 𝑈 and 𝑉𝑇 that are generally dense and only the 

diagonal matrix ∑ is sparse.  This lack of sparsity of the 𝑈 and 𝑉𝑇 factors is counted by 

some as one of the drawbacks of SVD. For this reason, another method of matrix 

decomposition has been developed (Drineas et al., 2008), which is much faster and easier 

than SVD to compute and it provides another simple DR technique. Here we shall briefly 

introduce this matrix factorisation. 

CUR matrix Decomposition is another DR technique which is designed to maximize data 

sparsity in all its factor matrices. The goal of CUR is quite similar to SVD, for a given 

matrix 𝐴, CUR represents 𝐴 as a product of three matrices 𝐶, 𝑈 𝑎𝑛𝑑 𝑅 while 𝐶 𝑎𝑛𝑑 𝑅 are 

alternatives to 𝑈 and 𝑉𝑇, and CUR tries to make the reconstruction error ‖𝐴 − 𝐶𝑈𝑅‖𝐹 as 

small as possible. Clearly, SVD provides optimal guarantee on the reconstruction error, 

so, CUR is expected to produce a greater error than SVD.  
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Definition (3.4) (Drineas et al., 2008): Let 𝐴 be a matrix of size 𝑚×𝑛, CUR-

decomposition of 𝐴 is an approximate matrix factorization 𝐴′ = 𝐶𝑈𝑅, where 𝐶 stands for 

column matrix and it is an actual subset of columns of 𝐴, 𝑅 stands for row matrix and it 

is an actual subset of rows of 𝐴 and 𝑈 can be computed from 𝐶 𝑎𝑛𝑑 𝑅 as follows 

𝐶: a matrix of size 𝑚×𝑐, it consists of (𝑐 < 𝑛)-columns of 𝐴 

𝑅: a matrix of size 𝑟×𝑛, it consists of (𝑟 < 𝑚)-rows of 𝐴 

𝑈: is a matrix of size 𝑐×𝑟 and it is a pseudo inverse of the intersection of 𝐶 𝑎𝑛𝑑 𝑅.  

Note: The pseudo inverse of any matrix 𝐵 is denoted by 𝐵† and computed as follows: 

Given a matrix 𝐵 of size 𝑚×𝑛 and compute its SVD decomposition 

𝐵 = 𝑈∑𝑉𝑇 = [𝑢1, 𝑢2, ⋯ , 𝑢𝑟]𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, ⋯ , 𝜎𝑟)[𝑣1, 𝑣2, ⋯ , 𝑣𝑟]
𝑇 

Then, the pseudo inverse of 𝐵 which is denoted by 𝐵† is defined using the orthogonality 

properties of U and V as follows: 

𝐵† = 𝑉∑†𝑈𝑇 = [𝑣1, 𝑣2, ⋯ , 𝑣𝑟]𝑑𝑖𝑎𝑔(1/𝜎1, 1/𝜎2, ⋯ , 1/𝜎𝑟 )[𝑢1, 𝑢2, ⋯ , 𝑢𝑟]
𝑇 

Pseudo inverse is a special type of matrix inverse and it is one of the applications of SVD. 

Several Algorithms have been designed for this decomposition, some of the algorithms 

can be found in (Boutsidis and Woodruff, 2014) and one of the most compact versions of 

CUR is proposed in (Sun et al., 2007). 

A

mxn

C

mxc

U

cxr

R

rxn

≈

 

Figure 3-9 CUR Decomposition 
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3.7 Summary 

In this chapter, we studied the theory of Eigenvalue problem with focus on important 

characteristics of eigenpairs of square real symmetric matrices and their role in data-

dependent DR techniques. We critically investigated the two most widely used data-

dependent DR schemes: PCA and LDA and highlighted their advantages and 

disadvantages. Having noted that the PCA has the effect of factorising the covariance 

matrix of the training dataset, we then studied the most relevant matrix factorisation that 

generalises and underpin the theory of PCA, namely the SVD matrix decomposition. We 

have studied data/image reduction/compression as an important application of the SVD 

method. Our investigation also covered the recently proposed CUR matrix decomposition 

which maintains sparsity in its factor and computationally cheaper than SVD.  

All these methods, being defined in terms of a dataset of samples of digital representation 

of the objects under investigation do preserve the global information, relevant to the 

recognition task, that is conveyed by the training dataset. For example, the PCA captures 

the maximum variation between all pairs samples in the training set. In other word, there 

is no guarantee that the distances between every pair of samples are preserved before and 

after the projection. Accordingly, these data-dependent DR schemes are not JL compliant 

by design. This is the reason why recognition errors are dependent on the selected training 

dataset.  In the next chapter, we shall focus on data-independent DR schemes that are 

designed to comply with JL theory. These include Discrete Wavelet transform (DWT) 

and Random Projections (RP). We shall study several examples of RP matrices and 

generate projection matrices from well-known Hadamard matrices. 
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4 CHAPTER FOUR: DATA-INDEPENDENT DIMENSION 

REDUCTION 

The success of the data-dependent DR techniques, discussed in the previous chapter, for 

pattern recognition/classification applications depends on a number of factors. Firstly, the 

dataset of samples used for training the DR scheme need to be selected carefully to 

guarantee the widest representation of the typical objects of interest while taking into 

account all possible variants of vectors that model the same object/class and yet genuinely 

discriminates different classes.  In many applications, the set of such objects is not easy 

to determine even when it is finite but large. Generally, one expect that the matching 

decision for any new sample would be more reliable when the sample is nearer to one of 

the training sample. Hence one may expect overfitting and biasness of the model to the 

training samples, so that a different training set may be less reliable. Moreover, the 

scalability of data-dependent DR techniques is not guaranteed when the population, of 

the objects of interest, expands by a large factor or by change of recording scenarios. A 

PCA system for face recognition that is trained for images captured in controlled 

scenarios and/or for a specific ethnic group may not perform as well when it is used to 

recognise people photographed in uncontrolled illumination/pose conditions. Therefore, 

DR techniques that are independent of training samples data are preferable. In this 

chapter, we review and investigate such dimension reduction schemes.  Such techniques 

are to be based on reducing the dimension of individual biometric feature vectors 

independently of each other but using the same procedure. For example, down 

sampling/compressing face images by a fixed ratio can be considered as an independent 

DR that could be used for face recognition, where matching is done between down-

sampled/compressed images. In fact, in this chapter we investigate DR schemes that are 

based on transforms that create or act on sparse biometric templates. For face images, 

frequency domain transforms such as wavelets and Discrete Cosine Transforms are 

suitable for these tasks.  We shall first discuss the wavelet-based DR approach and will 

focus on using the emerging field of compressive sensing as a source of DR.  In the last 

section, we focus on data-independent DR schemes that are based on the use of random 

submatrices of Hadamard matrices which are known to satisfy the Compressive sensing 

condition for unique recovery of sparse signals. 
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4.1 Discrete Wavelet Transform (DWT) 

Wavelets are mathematical transformations that decompose a given signal/image 

hierarchically into its low and high frequency building blocks and DWT is a special case 

of wavelets (Al-Hassan, 2014). For an image 𝐼 of size 𝑚×𝑛, there are exactly 𝑚×𝑛 

wavelet coefficients that are divided into sub-bands of different frequency range. The 

original image can be reconstructed form Wavelet building blocks (sub-bands) without 

losing information as these transformations are invertible. In all but one sub-band, the 

majority of coefficients are very small, and hence these sub-bands can be made sparse by 

only considering a small number of significant coefficients to get a highly-compressed 

signal. Moreover, the inverse wavelet transformation of the compressed sub-band results 

in a very good quality signal that is almost indistinguishable from the original signal. 

A wavelet function is a small waveform which unlike the trigonometric functions has its 

most energy concentrated in a small interval, called its support.  However, like the 

trigonometric functions, any wavelet function W generates infinite versions (building 

blocks) of itself through a systematic scaling (usually by a factor of 2) and shifting by a 

fixed length (usually 1 unit).  In this case, ψ is referred to as the mother wavelet. The 

process of scaling and shifting decomposes the space of all continuous square integrable 

signals L2(R), into a sequence of subspaces approaching L2(R). The initial subspace 𝑊0 is 

generated by ψ and all its shifted copies. At the next stage, the scaled, by 2, version of ψ 

together with all its shifted copies generate a subspace 𝑊−1  of L2(R) and 𝑊−1 = 𝑉0 ⊕

 𝑊0  where 𝑉0  is the orthogonal complements of 𝑊0 . This process is repeated at infinitum 

and provides the Multi-resolution analysis of L2(R). Transforming a signal is done by 

repeatedly approximating the signal in terms of the generators of the 𝑉𝑖  𝑎𝑛𝑑 𝑡ℎ𝑒 𝑊𝑖 using 

inner product of the output from previous stage.  Therefore, we use the mother wavelet 

and its orthogonal complement as a filter bank.    

There are various multi-resolution schemes that use Wavelet transforms to decompose a 

signal/image. The most commonly used scheme is the Pyramid scheme, which when 

applied on raw image 𝐼 we get four wavelet sub-bands (LL, HL, LH, HH). At the second 

and other levels, we apply Wavelet again on the LL sub-band only to get the second level 

of decomposition. This process could continue as shown in figure (4.1). Therefore, the 

pyramid scheme decomposes the Image 𝐼 at level 𝑞 into 3𝑞 + 1 sub-bands. 



46 
 

The Haar Wavelet is the simplest example of Discrete Wavelet transform (DWT) 

(Abdulla, 2007), and that is why we adopted it in this thesis. This transformation is linear 

and orthonormal and the filtering can be expressed in a matrix form: 

𝐻 =
1

√2
[
1 1
1 −1

] 

Simply, it consists of two operators (sums and differences). For an image 𝐼 and two 

adjacent pixel values (𝑝1 𝑎𝑛𝑑 𝑝2), it is computed as follow: 

[𝑦1, 𝑦2] = 𝐻([𝑝1, 𝑝2]) =
1

√2
[𝑝1, 𝑝2] ∗ [

1 1
1 −1

] 

𝑦1 =
1

√2
(𝑝1 + 𝑝2),   (𝐿𝑜𝑤 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) 

𝑦2 =
1

√2
(𝑝1 − 𝑝2),    (𝐻𝑖𝑔ℎ 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) 

For mxn images, it is customary to apply the wavelet transform in two stages of encoding 

(decomposing) at any level: In the first stage, we apply Haar Wavelet on horizontally 

adjacent pixels which will create 2 vertical sub-bands of size mx(n/2) coefficients. The 

left-hand block contains the low frequencies (sums) and it is called approximation sub-

band/low sub-band, and the right-hand block contains high frequencies (differences) and 

it is called detailed sub-band/ high sub-band. We denote these two sub-bands as 𝐿 𝑎𝑛𝑑 𝐻.  

In the second stage, we apply the Haar wavelet on vertically adjacent pixel values within 

each of L and H sub-bands resulting in four sub-bands (𝐿𝐿, 𝐻𝐿, 𝐿𝐻,𝐻𝐻) at the first level 

of resolution. In the next level, the above process is repeated only on 𝐿𝐿-sub-bands. At 

any resolution level, 𝐿𝐿-sub-band approximates the original Image 𝐼. Other sub-bands, 

𝐻𝐿, 𝐿𝐻 𝑎𝑛𝑑 𝐻𝐻 maintain vertical, horizontal and diagonal texture components in the 

original Image 𝐼. 

Back to our objective, Dimensionality reduction, as we explained that Wavelet is a multi-

resolution signal analysis technique. It also can be considered as an effective DR 

technique. Each of the different wavelet sub-bands, at different levels, provide different 

feature vectors representation of the image with lower resolution, i.e. reduced dimension. 

In figure 4-1. The original Image is 512x512, if we converted to a vector by row 

concatenation, it becomes a vector in 262144-dimensional space which is very high. After 

applying Haar Wavelet at the first level, we obtain four Wavelet sub-bands 

(𝐿𝐿1, 𝐻𝐿1, 𝐿𝐻1, 𝐻𝐻1) each of size 256x256. Each sub-band maintain important 
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information about the original image and it can be considered as a reduced version. In 

this level, each sub-band is a vector of 65536 dimension, the dimension is reduced from 

262144 to 65536. At the second level, after applying Haar Wavelet on 𝐿𝐿1, 

(𝐿𝐿2, 𝐻𝐿2, 𝐿𝐻2, 𝐻𝐻2) is obtained with each of size 128x128 and each sub-band can be 

represented as a 16384-dimensional vector. If we apply Haar Wavelet on 𝐿𝐿2 at third 

level. It will produce (𝐿𝐿3, 𝐻𝐿3, 𝐿𝐻3, 𝐻𝐻3) each of size 64x64 which means a vector in 

4096-dimensional space. In this way, a drastic dimension reduction can be done by 

moving from a level to the next one while each sub-band contains important 

features/information of the original input image. So, Wavelet reduce the dimension of 

image data with preserving different Features in different sub-band at different resolution. 

Note: The amount of reduction in dimension achieved by the DWT at different resolution 

depth, increases the deeper one resolves the image.  Finally, we observe that this process 

is applied to any image without depending on other images and the amount of reduction 

achieved by any of sub-band does not depend on what is in the image but on the image 

size. Moreover, there is another source to further reduce the dimension in each of the non-

LL-sub-bands, because the majority of coefficients in such sub-bands are nearly 0, and if 

we set all these small coefficients then we get a sparse representation which is exploited 

in image compression. However, the positions of the significant non-zero coefficients in 

the non-LL sub-band are not easy to determine. The concept of compressive sensing, to 

be discussed later, is based on designing certain types of random matrices that can be used 

to project the image itself or its wavelet sub-bands directly onto to the significant 

coefficients only. The rest of the chapter, is devoted to investigating this kind of data-

independent approach to DR. 
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Figure 4-1 Pyramid Wavelet Transform for 1st, 2nd, and 3rd levels  
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4.2 Random Projections (RP) 

Random projection, is a powerful linear DR tool which does not distort local properties 

significantly and at the same time, RP is totally independent from training data samples 

as the projection matrix is constructed independently. Papadimitriou says in his foreword 

in (Vempala, 2004) “if distance is all you care about, there is no reason to stay in high 

dimension”. It is often remarked that, unlike the data-dependent DR’s, random 

projections do not benefit from good dataset and it is not affected by bad datasets. 

Theoretical results demonstrate that, under certain conditions, there exist transformations 

on the Euclidian spaces whose range is a lower dimensional subspace that “preserve” 

pairwise distances within a relatively small error with high probability (Dasgupta and 

Gupta, 2003), (The term high probability here means that the chance of preserving 

pairwise distances is very high, i.e. it is highly possible to preserve the distances between 

almost all the points, and this term will be repeatedly used in the rest of the thesis). These 

conditions are related to the desirable value of the reduced dimension and on the error 

tolerance level. The JL lemma as stated in section (2.5) shows that for any set 𝐴 of 𝑛 

points in any Euclidean space, there is a map to embed 𝐴 into a Euclidean space of 

dimension 𝑘 ≥ 𝑂(𝜖−2 log 𝑛) while it guarantees that this function does not distort 

pairwise distances by more than a factor (1 ± 𝜖) with a good probability (Johnson and 

Lindenstrauss, 1984). In this lemma, the original dimension of 𝐴 is not directly involved 

but the value of 𝑘 depends only on 𝜖 and the number n of points in set A. This means that 

for any 𝑛 points in high dimensional space whether the number of dimension is hundreds 

or thousands, such a map exists. However, the stated lower bound on the value of k 

ensures that one is dealing with sufficiently dense set in the high dimension of the points. 

Interestingly, the lemma says, such a map exists for any dataset, no matter how the data 

records are distributed or convoluted. This is one of the most important properties of 

random projections. However, it does not mean that a random projection matrix is suitable 

for every dataset and any application. Nonetheless, this property is quite useful while it 

is not easy to achieve with other data-dependent DR techniques like PCA and LDA, as 

mentioned before, the distribution of a given data set affect the performance of the PCA 

and it can make PCA success or fail. In fact, the practice of selecting the number of 

significant eigenvalue in the PCA scheme is normally linked with the given dataset which 

may not control the tolerable error. In fact, the number of significant eigenvectors are not 

linked to guaranteeing the preservation of distances between all pairs of point after the 
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projection, i.e. PCA is tolerance of existing anomalies representing some points that have 

large projection along the non-significant eigenvectors. 

The JL theorem states that the lowest reduced dimension  𝑘 = 𝑂(𝜖−2 log 𝑛) in order to 

preserve pairwise distances within a small relative error (1 ± 𝜖). The number 𝑘 must be 

sufficiently large to guarantee the above statement. In practice, we need to know what is 

the value of 𝑂(𝜖−2 log 𝑛). There are some simplifications of the original proof of this 

theorem that also provide different lower bound and culminating in Dasgupta and Gupta’s 

work that provides a more specific lower-bound in their theorem as follows: 

Theorem (4.1) (Dasgupta and Gupta, 2003) : For any set 𝐴 of 𝑛 points in ℝ𝑁, and any 

0 < 𝜖 < 1, there is a function 𝑓:ℝ𝑁 → ℝ𝑘, with 

𝑘 ≥
4

𝜖2

2 −
𝜖3

3

ln(𝑛) =
24

∈2 (3 − 2 ∈)
ln(𝑛) 

such that for any two points 𝑎, 𝑏 ∈ 𝐴 

(1 − 𝜖)‖𝑎 − 𝑏‖2 ≤ ‖𝑓(𝑎) − 𝑓(𝑏)‖2 ≤ (1 + 𝜖)‖𝑎 − 𝑏‖2 

A very interesting computational consequence of using random projections that are 

compatible with the conditions, stated in the above theorems, relates to efficiency. The 

construction of random projection matrices, in accordance with the JL theorem is totally 

independent from any training dataset in contrast of data-dependent techniques such as 

PCA, and LDA. Thus, this technique is computationally very efficient and its 

computational complexity is just 𝑂(𝑛𝑁𝑘) which is the cost of a matrix multiplication 

while the computational cost of PCA is 𝑂(𝑁2𝑛) + 𝑂(𝑁3) (Bingham and Mannila, 2001). 

Here, N is the dimension of the original space, while k is the desired number of reduced 

dimension. 

Finally, we observe that the distance inequality condition in the J-L theorem in the case 

when we are dealing with sparse high dimensional feature vectors have a significant 

relevance to the concept of compressive sensing discussed next. 

4.3 Compressive Sensing (CS) 

Traditional methods of signal acquisition follow Shannon’s theorem which states that: to 

avoid losing information in the process of capturing a signal and guarantee a perfect signal 

recovery, one must sample the signal at a rate, which is known as Nyquist-rate,  two times 

faster than the signal bandwidth, i.e. the sampling rate, must be greater than or equal to 
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the highest frequency of the signal (Candes and Wakin, 2008), (Baraniuk, 2007). In many 

applications, such as digital images and videos, the Nyquist-rate is very high and 

commercial devices cannot acquire samples at this rate. Compression techniques become 

necessary to obtain a sparse but very concise signal representation of the signal. 

Transform coding techniques, such as JPEG and JPEG2000, find a proper basis for the 

signal that provides a sparse or a compressible representation for the signal, i.e. in terms 

of such basis, the signal has a few large coefficients and the rest are small and close to 

zero. Sparse representation is obtained by preserving the value and location of 𝑘 largest 

coefficients and setting the rest 𝑁 − 𝑘 coefficients to zero (𝑘 ≪ 𝑁) without losing too 

much information. So, traditional protocols of signal acquisition sample at a rate which 

is very high to produce all the data and then most of it will be thrown away in the process 

of data compression. Now, the question is that, is it possible to directly acquire a 

compressed form of a signal which maintain the important part of the data without going 

through the above stages? This is the question that Compressive sensing tries to answer 

it. 

The concept of compressive sensing (CS) was first introduced by David Donoho 

(Donoho, 2006) as a new paradigm of signal acquisition which relaxes significantly the 

Nyquist-Shannon sampling condition while facilitating the recovery of good quality 

digital signal. It relies on two fundamental premises: Sparsity and Incoherence. The first 

concept pertains to the signal of interest and the latter one is related with the sensing 

method. In fact, most of the signals involved in pattern recognition are sparse or 

compressible when represented in terms of proper bases. The CS paradigm states that in 

the case of sampling a sparse signal, the number of measurements needed to be collected 

can be extremely reduced compared to the number of required samples that suggested in 

the Shannon-Nyquist sampling theorem. The trick in this case is really to take 

measurements/meta-features that are linear combinations of the raw features. In short, 

compressive sensing provide a new source of dimension reduction by projecting onto a 

multiple basis rather than a single basis, using what mxN matrices (with m<<N) that 

satisfy similar properties to JL conditions but only when applied to sparse (or nearly 

sparse) signals. Such matrices are referred to as CS dictionaries. Here we shall give a 

brief introduction, but the reader is advised to consult with  (Candes and Tao, 2005,  and 

Donoho, 2006). 
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4.3.1 The sensing/sampling problem 

Compressive Sensing (CS) simply correlate the signal of interest 𝑥 ∈ ℝ𝑁 with a small 

number of non-adaptive linear measurements 𝑚 (𝑚 ≪ 𝑁) which can be arranged as rows 

of an overcomplete matrix dictionary say 𝐷𝑚×𝑁 , such a matrix is fixed and independent 

from the signal. The vector 𝑦 ∈ ℝ𝑚 consists of the sampled values, (i.e. (𝑚 ≪ 𝑁) inner 

products between 𝑥 and 𝐷), this process can be written as 

𝑦𝑚×1 = 𝐷𝑚×𝑁 ∗ 𝑥𝑁×1 

The main challenges in the sensing problem are: First, designing a stable dictionary that 

“preserves” the information/length of the 𝑘 −sparse signals (𝑘 ≤ 𝑀) with a good 

probability while it reduces the dimension (𝐷:ℝ𝑁 → ℝ𝑚), such dictionary must allow us 

to reconstruct the full-length signal 𝑥 from only 𝑚 measurements 𝑦. Second, an algorithm 

to accurately recover the signal 𝑥. 

4.3.2 Restricted Isometry Property (RIP) 

An 𝑚×𝑁 (𝑚 ≪ 𝑁) dictionary 𝐷 is said to have the Restricted Isometry Property (RIP) 

of order 𝑘 if there exists a constant 0 < 𝛿𝑘 < 1, such that for any 𝑘-sparse vector/signal 

𝑥 ∈ ℝ𝑁: 

(1 − 𝛿𝑘)‖𝑥‖2 ≤ ‖𝐷𝑥‖2 ≤ (1 + 𝛿𝑘)‖𝑥‖2 

Also, the smallest constant 𝛿𝑘 is defined as Restricted Isometry Constant (RIC) of order 

𝑘. If 𝐷 is a dictionary that satisfies RIP condition with the RIC 𝛿2𝑘, and 𝑥, 𝑦 ∈ ℝ𝑁 be any 

two 𝑘 −sparse vectors then projection by this dictionary defines a Random projection that 

preserves, up to a tolerance error, the distances between pairs 𝑘-sparse vectors as follows: 

(1 − 𝛿2𝑘)‖𝑥 − 𝑦‖2 ≤ ‖𝐷𝑥 − 𝐷𝑦‖2 ≤ (1 + 𝛿2𝑘)‖𝑥 − 𝑦‖2 

Candes (Candès, 2008) proved that if a dictionary 𝐷 satisfies RIP condition with the RIC 

𝛿2𝑘 < √2 − 1, then the equation 𝑦 = 𝐷𝑥 can be uniquely solved by  𝑙1 − 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛. 

for the sparsest solution. 

Another criterion that guarantees unique recovery of the sparsest solution of 𝑦 = 𝐷𝑥 by 

𝑙1 − 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛  is the Null Space Property (NSP) which imposes bounds on the 𝑙1 −

𝑛𝑜𝑟𝑚 of every set of k non-trivial vectors in the kernel of 𝐷.  For details see (Candes and 

Tao, 2006) and (Rubinstein et al., 2010). 

Both RIP and NSP are difficult to test directly for high dimensional matrices. However, 

a number of algebraic criteria have been developed that can be used to test the suitability 
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of an mxN matrix D (with m<<N) to act as a CS dictionary. These conditions are mostly 

associated with the ability to recovering the unique sparse solution based on L1-

minimization. Sufficient, but not necessary, conditions include (1) coherence value of D 

defined as the largest absolute normalized inner product of pairs of columns of D. It has 

also been shown that if D satisfies RIP of order k, then every 2k-columns submatrix of D 

must be well-conditioned (i.e. the condition number CN = ratio of its maximum to its 

minimum singular values need to be < 2.5). Another indicator of RIP-compliance is the 

spark of D defined as the minimum number of linearly dependent columns. Clearly, 

spark(D)≤ m+1. Equality occurs when D has a full row rank. For more details see 

(Baraniuk et al., 2008, Rauhut, 2010, and Chen and Dongarra, 2005). 

4.3.3 The Relation Between RIP and JL conditions 

The JL theorem and its modified versions apply to any set 𝐴 of 𝑛-points in ℝ𝑁, and 

guarantee the existence of a function 𝑓 that transforms 𝐴 into a lower dimensional 

subspace with at least 𝑂(𝜖−2 log 𝑛) dimensions while approximately preserves distances, 

with a small relative error between any two vectors 𝑥, 𝑦 ∈ ℝ𝑁. However, the RIP 

condition is very similar to that of the JL condition in preserving distances but only 

between vectors of k-sparsity. However, the RIP is independent of any training set of 

samples.  

The JL condition applies whether the vectors are sparse or not, while with RIP condition 

are concerned with sparse vectors only. So, we can say that the RIP is a special case of 

the JL conditions. Linear transformations that satisfy the JL theorem are good candidates 

for CS applications and for data-independent DR.  We shall next identify some classes of 

matrices, known for their suitability for CS dictionaries, as DR tools. 

We first begin by investigating several examples of random sensing matrices generated 

by known probability density functions. These classes of matrices are predicted to satisfy 

RIP condition with high probability. The generation of these classes is guided by the 

Hecht-Nelson probabilistic assertion that as we go to high dimension, the number of 

nearly orthogonal directions increases, and hence the chance of picking a set of almost 

orthogonal is very high in high dimensional space (Hecht-Nielsen, 1994). 
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4.3.4 A Selection of CS dictionaries 

1. Gaussian Random Matrix 

Gaussian Random Matrix with normalized columns of size (𝑚×𝑛,𝑚 ≪ 𝑛) is one of the 

most widely used RIP dictionaries in CS applications, entries of this dictionary are 

independently identically distributed from the Gaussian distribution with mean 0 and 

variance 1/𝑚 which is denoted by 𝑥𝑖,𝑗~𝑁(0,1/𝑚) (Al-Hassan, 2014). 

2. Achlioptas Matrices 

Achlioptas (Achlioptas, 2001) replaced the normal Gaussian entries 𝑁(0,1) by either one 

of these two probability distributions: {1,0, −1} with probabilities {
1

6
,
2

3
,
1

6
} or {1, −1} with 

probabilities {
1

2
,
1

2
} 

𝑟𝑖𝑗 = √3× {

+1 𝑝 = 1/6
    0 𝑝 = 2/3
−1 𝑝 = 1/6

 

𝑟𝑖𝑗 = {
+1             𝑝 = 1/2
−1             𝑝 = 1/2

 

Li et al. (Li et al., 2006) proposed a generalized form of Achlioptas matrices as follows, 

where Achlioptas matrices are special cases for 𝑠 = 1,3   

𝑟𝑖𝑗 = √𝑠× {

+1 𝑝 = 1/2𝑠
    0      𝑝 = 1 − 1/𝑠
−1 𝑝 = 1/2𝑠

 

3. Bernoulli Random matrix 

Bernoulli Random Matrix of size (𝑚×𝑛,𝑚 ≪ 𝑛) is another example of random RIP 

matrix, its entries are identically independently distributed from the following 

distribution: 

𝑟𝑖𝑗 = {
+1/√𝑚            𝑝 = 1/2

−1/√𝑚            𝑝 = 1/2
 

4. Semi-Structured Circulant (C) and Toeplitz matrices 

Random dictionaries like Gaussian and Bernoulli random matrices guarantee sparse 

recovery using 𝑙1 − 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 with near optimal required number of measurements. 

However, using structured dictionaries in some applications helps to raise the speed of 

sparse recovery algorithm significantly (Rauhut, 2010). The circulant matrix is one of the 
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widely-used matrices in CS applications, each row of this matrix is the right cyclic shift 

of the previous row and the Toeplitz matrix is known as a submatrix of circulant and each 

Toeplitz matrix can be embedded in a circulant matrix, every left to right descending 

diagonal is a fixed constant in both types as shown in figure 4-2. 

Toeplitz

Circulant

 

Figure 4-2 Circulant and Toeplitz Matrix 

 

The overcomplete dictionary (𝑚×𝑛,𝑚 ≪ 𝑛) is created ether by, creating the first row 

using a random distribution such as standard Gaussian 𝑁(0,1) and generating other rows 

by shifting iteratively. Alternatively, one can generate the full size circulant matrix and 

select a subset of 𝑚 −rows randomly. 

Remarks: The simplicity of generating the above random matrices, comes at a price of 

less than adequate efficiency of the projection procedure. Moreover, the Hecht-Nielsen 

probabilistic assertion may not be valid for the lower range of high dimension and in any 

case random generation procedures may not be successful all the time. Therefore, many 

DR schemes that are based on Gaussian random matrices start by generating 𝑚 pseudo 

random vectors in ℝ𝑁, then, these rows are converted to a set of orthonormal vectors 

using Gram-Schmidt process to obtain an orthonormal projection matrix. 
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4.4 Gram-Schmidt (GS) Process 

Let {𝑣1, 𝑣2, ⋯ , 𝑣𝑘} be a basis of a subspace 𝑉 in ℝ𝑛, from this set, we can find an 

orthonormal basis {𝑢1, 𝑢2, ⋯ , 𝑢𝑘} for 𝑉 using the following algorithm which is called 

Gram-Schmidt process: 

𝑤1 = 𝑣1    → 𝑢1 =
𝑤1

‖𝑤1‖
 

𝑤2 = 𝑣2 −
𝑣2. 𝑤1

𝑤1. 𝑤1
𝑤1    → 𝑢2 =

𝑤2

‖𝑤2‖
 

𝑤3 = 𝑣3 −
𝑣3. 𝑤1

𝑤1. 𝑤1
𝑤1 −

𝑣3. 𝑤2

𝑤2. 𝑤2
𝑤2    → 𝑢3 =

𝑤3

‖𝑤3‖
 

⋮ 

𝑤𝑘 = 𝑣𝑘 − ∑
𝑣𝑘. 𝑤𝑖

𝑤𝑖. 𝑤𝑖
𝑤𝑖

𝑘−1

𝑖=1

   → 𝑢𝑘 =
𝑤𝑘

‖𝑤𝑘‖
 

For example, let 𝑣1 = [
0
1
1
] , 𝑣2 = [

3
2
2
] and 𝑉 = 𝑠𝑝𝑎𝑛{𝑣1, 𝑣2}. We can find an 

orthonormal basis of 𝑉 using Gram-Schmidt Process as follows: 

𝑤1 = 𝑣1 = [
0
1
1
]    → 𝑢1 =

𝑤1

‖𝑤1‖
=

[
 
 
 
 
0
1

√2
1

√2]
 
 
 
 

 

𝑤2 = 𝑣2 −
𝑣2. 𝑤1

𝑤1. 𝑤1
𝑤1  = [

3
2
2
] −

4

2
[
0
1
1
] = [

3
0
0
]   → 𝑢2 =

𝑤2

‖𝑤2‖
= [

1
0
0
] 

Now, 𝑢1, 𝑢2 form an orthonormal basis of 𝑉. 

Unfortunately, this procedure has some drawbacks and it is not an easy task in practice. 

Firstly, there is no absolute guarantee on the 𝑚 pseudo random vectors to be linearly 

independent which is essential for GS. Secondly, GS algorithm is very high demanding 

and not stable (Jassim et al., 2009), (Bingham and Mannila, 2001). In fact, (Jassim et al., 

2009) deviate from this naive RP generation and does not use the Gram-Schmidt 

orthogonalizing but adopt an efficient and stable method. This scheme, uses block 

diagonal matrices using a number of known small size orthonormal square matrices. It 

exploits the fact that small size orthonormal matrices can be generated from known 
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rotation/reflection matrices. For example, for any θ the following rotation matrices define 

orthonormal projections of the 2-dimensional plane (resp. the 3-dimensional Cartesian 

space): 

𝑅𝜃 = [
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃
],        𝑅𝜃

′ = [
cos 𝜃 sin 𝜃 0
−sin 𝜃 cos 𝜃 0

0 0 1
].  

(Jassim et al., 2009) scheme for RP generation of size 2nx2n, simply generates a random 

sequence of angles {𝜃1, 𝜃2, ⋯ , 𝜃𝑛} and use the corresponding 2x2 rotation matrices 𝑅𝜃𝑖
′𝑠  

to construct the following block diagonal matrix:  

𝐴 =  

(

 

𝑅𝜃1
0

0 𝑅𝜃2

⋯
⋯

0
0

⋮       ⋮ ⋱ ⋮
0     0 ⋯ 𝑅𝜃𝑛)

  

For feature vector of odd size (2n+1) simply select an i and replace 𝑅𝜃𝑖
with 𝑅𝜃𝑖

′ .  

This scheme is efficient and unlike the above naive scheme it has been shown to be 

computationally stable. Any user can change at will the randomly generated sequence 

{𝜃1, 𝜃2, ⋯ , 𝜃𝑛}, and thereby this procedure generates cancellable biometric templates (or 

biometric feature vectors). Moreover, these RP matrices being highly sparse make the 

process of transforming biometric templates extremely efficient. 

The impact of using these random sensing matrices, whichever way generated, have been 

positive and yielding good performances in different applications. Next, we shall focus 

on constructing projection matrices from different types of Hadamard matrices and their 

impact will be tested in the remaining chapters of this thesis for different pattern 

recognition case studies. 

4.5 Overcomplete Hadamard Submatrices 

Hadamard Matrices are square and simple structured matrices, their entries are +1 or −1 

and any two-distinct row/column vectors are mutually perpendicular (Agaian, 2011). Due 

to its simplicity and efficiency, it is found in several applications such as: Digital signal 

and image processing, combinatorial designs, quantum computing, physics, chemistry, 

etc. In relation to our objective, Random Projections and Dimensionality Reduction, these 

matrices provide a very interesting class of matrices consisting of orthogonal direction 

vectors, from which we can construct a variety of overcomplete Hadamard submatrices 

for dimensionality reduction simply by randomly selecting sufficient number of rows in 

terms of compatibility with J-L and RIP conditions. 
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Definition: A square matrix 𝐻 of order 𝑁 with entries 1 𝑎𝑛𝑑 − 1 is called Hadamard 

matrix if it satisfies the following equation:  

𝐻𝑁𝐻𝑁
𝑇 = 𝑁𝐼𝑁 = 𝐻𝑁

𝑇𝐻𝑁 

Where 𝐻𝑁 is a Hadamard matrix of size 𝑁×𝑁, 𝐻𝑁
𝑇 is the transpose of 𝐻𝑁 and 𝐼𝑁is the 

NxN identity matrix. Obviously, the square matrix  
1

√𝑁
 𝐻𝑁 is an orthogonal matrix.  

There are few different ways to construct such matrices, we shall explain three methods 

of constructing Hadamard matrices with examples and illustrative display format. We 

need to define a special type of matrix operation, the so called Kronecker/Tensor Product. 

Definition: Let 𝐴𝑚×𝑛 𝑎𝑛𝑑 𝐵𝑝×𝑞 be two matrices, the kronecker product of 𝐴 𝑎𝑛𝑑 𝐵 is 

a matrix 𝐶 of size 𝑚𝑝×𝑛𝑞 which is computed using this formula: 

𝐶 = 𝐴 ⊗ 𝐵 = [
𝑎11𝐵 ⋯ 𝑎1𝑛𝐵

⋮ ⋱ ⋮
𝑎𝑚1𝐵 ⋯ 𝑎𝑚𝑛𝐵

] 

For example, Let 𝐴 = [
1 −2
0 0.5

] and 𝐵 = [
2 4 −6
1 0 7

] 

𝐶 = 𝐴 ⊗ 𝐵 = [
1𝐵 −2𝐵
0𝐵 0.5𝐵

] =

























5.305.0000

321000

1402701

1284642

 

4.5.1 Sylvester-type Hadamard Matrices (SH) 

The Sylvester construction method is a successive method of creating Sylvester-type 

Hadamard matrices of order 𝑁 where 𝑁 = 2𝑛, 𝑛 is a positive integer by using the 

following formula: 

𝐻2 = [
1 1
1 −1

] = [
+ +
+ −

] 

Where ±  𝑠𝑡𝑎𝑛𝑑𝑠 𝑓𝑜𝑟 ± 1 respectively. This will be used later to display Hadamard 

matrices as a binary image, + and - replace with black and white pixel respectively.   

𝐻𝑁 = 𝐻2𝑛 = 𝐻2 ⊗ 𝐻2 ⊗ ⋯⊗ 𝐻2 = [
+ +
+ −

] ⊗ [
+ +
+ −

] ⊗ ⋯⊗ [
+ +
+ −

] 

For example, by using this formula, we can create 𝐻4 from 𝐻2. 
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𝐻4 = 𝐻2 ⊗ 𝐻2 = [
+ +
+ −

] ⊗ [
+ +
+ −

] =



























 

Recurrently, we can construct 𝐻8 from 𝐻2 and 𝐻4. 

𝐻8 = 𝐻2 ⊗ 𝐻2 ⊗ 𝐻2 = 𝐻2 ⊗ 𝐻4 = [
+ +
+ −

] ⊗



























=

















































 

 Iterating this process yield Hadamard matrices of order 16, 32, and 64 or above. 

Equivalently, the above formula can be written in this way, 

𝐻𝑁 = 𝐻2𝑛 = 𝐻2 ⊗ 𝐻2 ⊗ ⋯⊗ 𝐻2 = 𝐻2 ⊗ 𝐻2𝑛−1 = [
𝐻2𝑛−1 𝐻2𝑛−1

𝐻2𝑛−1 −𝐻2𝑛−1
] 

It means, a Hadamard matrix of order 2𝑛 can be computed from a Hadamard matrix of 

order 2𝑛−1 simply by collocating for copies of it in a 4×4 block and negating one of 

them. Figure 4-3 is the picture of Sylvester-type Hadamard matrices. 

In generally, an entry of Sylvester-type Hadamard matrix at the position (𝑗, 𝑘) can be 

computed individually by using this formula: 

𝑆𝐻(𝑗, 𝑘) = (−1)∑ (𝑗𝑖𝑘𝑖)
𝑛−1
𝑖=0  

Where 𝑗𝑖 𝑎𝑛𝑑 𝑘𝑖 are the 𝑖𝑡ℎ bits in the binary representations of 𝑗 𝑎𝑛𝑑 𝑘 respectively. 
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SH2
SH4

SH8

SH16

SH32
 

Figure 4-3 Binary display of Sylvester-type Hadamard Matrices of order 2, 4, 8, 16, and 32.  

4.5.2 Walsh-Paley Matrices (WP) 

Walsh-Paley construction method differs from the Sylvester construction by an iterative 

procedure that depend on a different tensor product of different constituent matrices. To 

create the Walsh-Paley Hadamard matrices of order 𝑁 𝑤ℎ𝑒𝑟𝑒 𝑁 = 2𝑛 𝑓𝑜𝑟 𝑛 = 1,2,3,⋯ 

we use the following recursive formula: 

𝑊𝑃1 = [1], 𝑎𝑛𝑑  𝑓𝑜𝑟 𝑁 = 2𝑛  ( 𝑛 = 1, 2, 3,⋯ )      𝑊𝑃𝑁 = [

𝑊𝑃𝑁
2

⊗ [1       1]

𝑊𝑃𝑁
2

⊗ [1  − 1]
] 

Hence, 

𝑊𝑃2 = [
𝑊𝑃1 ⊗ [1       1]
𝑊𝑃1 ⊗ [1 − 1]

] = [
[1] ⊗ [1       1]

[1] ⊗ [1  − 1]
] = [

+ +
+ −

] 

𝑊𝑃4 = [
𝑊𝑃2 ⊗ [+     +]
𝑊𝑃2 ⊗ [+     −]

] = [
[
+ +
+ −

] ⊗ [+     +]

[
+ +
+ −

] ⊗ [+     −]
] =



























 

𝑊𝑃8 = [
𝑊𝑃4 ⊗ [+     +]

𝑊𝑃4 ⊗ [+     −]
] =

[
 
 
 
 
 
 
 
 
 
 



























⊗ [+     +]



























⊗ [+     −]

]
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=

















































 

Generally, an entry at the position (𝑗, 𝑘) of Walsh-Paley matrix can be expressed as   

𝑊𝑃(𝑗, 𝑘) = (−1)∑ (𝑘𝑛−𝑖+𝑘𝑛−𝑖−1)𝑗𝑖
𝑛−1
𝑖=0  

Where 𝑗𝑖 𝑎𝑛𝑑 𝑘𝑖 are the 𝑖𝑡ℎ bits in the binary representations of 𝑗 𝑎𝑛𝑑 𝑘 respectively. 

WP32

WP16

WP8

WP4

WP2

 

Figure 4-4 Binary display of Walsh-Paley Matrices of order 2, 4, 8, 16, and 32  

4.5.3 Walsh Matrices (W) 

The Walsh Hadamard matrices are constructed with yet a third recursive formula: 

𝑊𝑁 = [𝑊2 ⊗ 𝐴1, 𝑄 ⊗ 𝐴2, ⋯ ,𝑊2 ⊗ 𝐴
(
𝑁
2
)−1

, 𝑄 ⊗ 𝐴
(
𝑁
2
)
] 

𝑊ℎ𝑒𝑟𝑒 𝑁 = 2𝑛 𝑓𝑜𝑟 𝑛 = 1,2,3,⋯𝑎𝑛𝑑 𝑊2 = [
+ +
+ −

] , 𝑄 = [
+ +
− +

]  𝑎𝑛𝑑 

𝐴𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑐𝑜𝑙𝑢𝑚𝑛 𝑜𝑓 𝑎 𝑤𝑎𝑙𝑠ℎ 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟
𝑁

2
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For example, 

𝑊4 = [𝑊2 ⊗ 𝐴1, 𝑄 ⊗ 𝐴2] = [[
+ +
+ −

] ⊗ [
+
+

] , [
+ +
− +

] ⊗ [
+
−

] ] =



























 

𝑊8 = [𝑊2 ⊗ 𝐴1, 𝑄 ⊗ 𝐴2, 𝑊2 ⊗ 𝐴3, 𝑄 ⊗ 𝐴4] 

=

[
 
 
 
 
 

[
+ +
+ −

] ⊗



























, [
+ +
− +

] ⊗  



























, [
+ +
+ −

] ⊗



























, [
+ +
− +

] ⊗  



























,

]
 
 
 
 
 

=

















































 

Generally, the (𝑗, 𝑘) entry of a Walsh Hadamard matrix a can be computed as follows 

𝑊(𝑗, 𝑘) = (−1)∑ (𝑗𝑛−𝑖−1+𝑗𝑛−𝑖)𝑘𝑖
𝑛−1
𝑖=0  

Where 𝑗𝑖 𝑎𝑛𝑑 𝑘𝑖 are the 𝑖𝑡ℎ bits in the binary representations of 𝑗 𝑎𝑛𝑑 𝑘 respectively. 

W2

W4

W8

W16

W32  

Figure 4-5 Binary display of Walsh Matrices of order 2, 4, 8, 16, and 32  
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Some Properties of Hadamard Matrices 

Let 𝐻𝑁 be a Hadamard matrix of order 𝑁  

1. 𝐻𝑁 ∗ 𝐻𝑁
𝑇 = 𝑁𝐼𝑁 = 𝐻𝑁

𝑇 ∗ 𝐻𝑁 where 𝐼𝑁 is the identity matrix of the same order, this 

means, 
1

√𝑁
𝐻𝑁 form an orthonormal matrix, 

1

√𝑁
𝐻𝑁 ∗

1

√𝑁
𝐻𝑁

𝑇 = 𝐼𝑁 =
1

√𝑁
𝐻𝑁

𝑇 ∗
1

√𝑁
𝐻𝑁 

2. |det(𝐻𝑁)| = 𝑁
1

2
𝑁

 

3. Hadamard matrices can be changed into other Hadamard matrices by multiplying rows 

and column by −1 and by permuting rows and columns 

4.5.4 Generating Over-complete Hadamard submatrices (Projection Matrices) 

The above approaches are designed to construct different types of square Hadamard 

matrices. In this section, we explain how to generate different types of random 

overcomplete mxN dictionaries to be used as RP matrix for dimension reduction. In 

particular, we describe only three types: Fully Random, Semi Random and Structured 

over-complete dictionaries using the various Hadamard square matrices of order 𝑁 = 2𝑛. 

(1) Fully random over-complete dictionaries (RD): The 𝑚 rows of these projection 

matrices are selected randomly without repetition from a selected Hadamard matrix 

of order N but we construct RD only from the SH matrices. 

(2) Semi-random over-complete dictionaries (SRD): The 𝑚 rows of these matrices 

are divided into two nearly equal size. The first part at the top of the projection matrix 

are the top rows of the selected Hadamard matrix while the other rows are randomly 

sampled without repetition from the rest of the same Hadamard matrix, in this thesis, 

we construct SRD from WP. 

(3) Structured over-complete dictionaries(SD): The 𝑚 rows of these projection 

matrices are the top 𝑚 rows of the selected Hadamard matrix, but we construct SD 

only from the WP constructed matrices in this thesis. 

Figure 4-6, below displays the binary illustration of some of the examples of the 

Hadamard over-complete dictionaries constructed in accordance to the above 3 choices. 

These are used for testing in the next section. 
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SH-RD-25 WP-SRD-5-25

WP-SRD-10-25 WP-SRD-15-25

WP-SRD-20-25 WP-SD-25
 

Figure 4-6 Binary display of SH-RD, WP-SRD, and WP-SD overcomplete matrices/dictionaries of 

size 25×512 

Now, we give some explanation on the terminology of the dictionaries in figure (4-6), 

SH-RD-25 stands for a Fully random over-complete dictionary (RD) constructed from 

SH and the number of its rows (𝑚 = 25). WP-SRD-5-25 stands for a Semi-random over-

complete dictionary (SRD) constructed form WP and the number of its rows (𝑚 = 25) 

while 5 rows at the top of the dictionary are the top 5 rows of selected WP matrix and the 

rest 20 rows are selected randomly from the rest of the matrix without repetition, this is 

true for all other WP-SRD. WP-SD-25 stands for a Structured over-complete dictionary 

(SD) constructed from WP and the number of its rows(𝑚 = 25). The same construction 

method is used to generate over-complete Circulant matrices (C). In the rest of the thesis, 

we shall test the performance of the different types of Hadamard over-complete 

dictionaries when used for pattern recognition in different case studies. 
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4.6 Testing CS- compliance of different random Hadamard Matrices. 

In this section, we report on the results of experiments conducted in collaboration with 

Dr. Nadia Al-Hassan (Visiting Postdoc at the university of Buckingham) to test the RIP 

characteristics of the various random overcomplete Hadamard matrices using the 

Sylvester and the Walsh-Paley constructions and compared the results with variant copies 

of Circulant dictionaries. These tests examine a random sample of 400 submatrices in 

terms of coherence, Condition number (CN), and the row ranks as measures of ability to 

recover sparse solutions. 

The average coherence for 400 randomly selected submatrices of different sizes, ranging 

from 25×12 to the full size 25×512 to test the coherence CS property. Fig 4-7 shows, 

average coherence values only for submatrices of 25-columns. As can be seen, the 

coherence values for such submatrices of all Hadamard dictionaries and Circular matrices 

are comfortably within the bounding, (1∕ √m) = 0.2 ≤ coherence ≤ 1. Similar comments 

are true for the full-size matrices, displayed in Table 4.1 below. 

 

Figure 4-7 Average coherence for 400 randomly selected submatrices of size 25×25 

In order to ensure sparse recovery, we also calculated condition number CN and row rank 

for the full size 25x512 dictionaries. The results, shown in Table 4-1, again confirm that 

all Hadamard matrices have CN=1 and markedly smaller than CN of Circulant matrices 

but still comfortably within the safe zone of CN < 2.5. Therefore, the different Hadamard 

and Circulant dictionaries are well-conditioned at full size. Moreover, all dictionaries 

attain maximum spark value with a row rank of 25. 
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Table 4-1 Coherence, Condition Number and Row Rank for the dictionaries 

Dictionaries 

RIP indicators 

Coherence CN 
Row 

Rank 

SH-RD-25 0.68 1 25 

C-RD-25 0.75 1.44 25 

WP-SRD-5-25 0.76 1 25 

C-SRD-5-25 0.74 1.44 25 

WP-SRD-10-25 0.76 1 25 

C-SRD-10-25 0.79 1.45 25 

WP-SRD-15-25 0.92 1 25 

C-SRD-15-25 0.74 1.48 25 

WP-SRD-20-25 0.92 1 25 

C-SRD-20-25 0.76 1.69 25 

WP-SD-25 1 1 25 

C-SD-25 0.72 1.68 25 

 

Finally, we conducted experiments to test the ability of these dictionaries to recover 

vectors of certain sparsity (a fraction to the size of the low-resolution image patch) 

specified by the definition of RIP. Therefore, the sparsity of vectors 𝛼 ∈ ℝ𝑛 for 400 5x5 

patches were calculated for 10 images. Ideally, for such patches sparsity k must be < 6. 

The average k values, together with the standard deviations, for each dictionary are shown 

in figure 4-8, below. From the results, we noticed that the recovered coefficients are 

always sparse and the level of sparsity varies depending on the complexity of each tested 

patch. Notably, the WP-SD-25 dictionary gives a good sparse recovery with k ∈ [1, 5.5]. 

For the C-SD-25, k ∈ [1, 6.85] and for the other dictionaries, the number k > 8 and reach 

nearly to 14. 

 



67 
 

 

Figure 4-8 Mean and standard deviation for sparsity of 400 patches in 10images 

From the above tests on coherence, CN, spark values, and k-sparsity one can conclude 

that the WP-SD-25 matrix is the only dictionary that satisfy the above necessary RIP 

conditions with high probability. 

4.7 Summary 

In this chapter, we investigated different JL compliant approaches to generating data 

independent RP’s that can be used for linear dimension reduction, i.e. we were focused 

on designing dimension reducing projections that maintain distances between pairs of 

vectors within acceptable error tolerance before and after transformation. Having noted 

the relevance of JL condition to the recent emerging paradigm of compressive sensing 

(CS), we observed that the wealth of research conducted in the area of CS for designing 

a variety of CS dictionaries that facilitate significant reduction in the number of attributes 

(often referred to as meta-features) needed to model objects of interest in most interesting 

pattern recognition applications. Compliance of overcomplete dictionaries with the CS 

paradigm is dependent on a modified version of the JL condition. Instead of preserving 

distance between any pair of vectors, CS compliance is based on satisfying the Restricted   

Isometry Property (RIP) whereby the distance between sparsely represented vectors. We 

exploited these facts and investigated different classes of JL compliant DR matrices that 

are linked to over-complete CS dictionaries. These included various well investigated 

random matrices such as Gaussian and Bernoulli overcomplete dictionaries.  However, 

we extended our investigation to include a large pool of the random selection of such 

dictionaries from the rows of the well-known class of Hadamard matrices constructed 
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using three different methods. We tested the compatibility of such dictionaries with RIP 

condition and found that random submatrices of Hadamard matrices form a very rich pool 

of RP tools for DR. In the rest of the thesis we shall test the performance of dictionaries 

in this pool in pattern recognition for different biometric case studies. 
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5 CHAPTER FIVE: CASE STUDY 1: SPEECH EMOTION 

RECOGNITION (SER) 

5.1 Introduction 

Speech is the most common form of interaction between people, and emotion may change 

the meaning of any uttered speech, perhaps conveying different meaning. For instance, a 

word like “really”, could have a definitive, disbelief, admiration or even a query 

depending on the emotional expression of the speaker. Speech Emotion Recognition 

(SER) is concerned with identifying the emotional state of a speaker from the speech 

signal. SER is an important area of pattern recognition/classification research and could 

improve effectiveness and efficiency of many speech system/applications, e.g. it helps 

assess pilot’s stressed-speech in aircraft cockpits. and is becoming very useful in many 

applications including in healthcare and human computer interaction (Al-Talabani, 2015). 

In general, any pattern recognition problem, and in particular, SER can be summarized in 

three steps: (1) remove silence portions and extracting important speech features that 

discriminate different emotions from the raw speech samples; (2) pre-processing the 

extracted feature vectors by dimensionality reduction to remove redundancy and 

overcome the curse of dimension; and (3) use appropriate classifier(s). In the last step, 

usually the data set is divided into training and testing sets to build a model. Figure 5-1 

shows SER steps. 

Since the 2nd step is concerned with DR, then we take the SER as our first case study to 

investigate and compare the performance of the various DR approaches investigated in 

the past chapters. In particular, we consider the differently constructed Hadamard 

dictionaries as well as the PCA. We shall briefly describe the most commonly adopted 

feature extraction step in SER. We also, describe the selected testing database(s) and the 

main adopted classifier used for the SER. And then, we shall represent our results. As a 

benchmark, we adopted the various choices made in steps (1) and (3) from the work of 

Dr Al-Talabani in his PhD thesis, done at Buckingham University. I acknowledge and 

highly appreciate his guidance and help in the experimental work. We shall conduct 

different sets of experiments and propose the Feature-Block (FB) approach as an 

innovative approach to deal with lack of density ratio of samples to dimension. The FB 

approach is certainly useful for data-dependent DR schemes but we shall demonstrate its 

success in Data-independent Hadamard based DR schemes. 
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Figure 5-1 Pattern Recognition/SER steps 

 

5.2 Feature Extraction:  Low Level Descriptors (LLDs) 

There are different approaches to extract emotion relevant speech features from speech 

signals, in this case study, we adopted the “brute force” approach. The openEAR 

toolkit/software (Eyben et al., 2009, and Schuller et al., 2009) was used by (Al-Talabani, 

2015), to extract by brute force a total of 6552 features representing the Low Level 

Descriptors (LLD) baseline. For our performance testing experiments, we simply used 

these already extracted features for the FAU-Aibo database. The 6552 LLDs features are 

extracted as 39 functionals of 56 acoustic LLDs and corresponding first and second order 

delta regression coefficients, in total (56 ∗ 39 ∗ 3 = 6552). The 56 acoustic LLDs are 

given in table 5-1, and the 39 statistical functionals are given in table 5-2. 
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Table 5-1  Low Level Descriptors (LLD) used in Acoustic analysis with openEAR 

Feature Group  

Raw Signal Zero-crossing-rate 

Signal Energy 

Pitch 

Logarithmic fundamental frequency F0 in Hz via cep- strum and 

autocorrelation (ACF). Exponentially smoothed F0 envelope. 

Voice Quality Probability of voicing (
ACF(T0)

ACF(0)
) 

Spectral Energy in bands 0-250Hz, 0-650Hz, 250- 650Hz, 1-4kHz 25%, 50 %, 

75%, 90% roll-off point, centroid, flux, and rel. pos. of spectrum max. 

and min. 

Mel-spectrum Band 1-26 

Cepstral MFCC 0-12 

 

Table 5-2 Functionals and their regressions coefficient applied to the LLD contour 

Functionals # 

Respective rel. position of max./min. value 2 

Range (max.-min.) 1 

Max. - arithmetic mean and Min. - arithmetic mean 2 

Arithmetic mean, quadratic mean 2 

Number of non-zero values 1 

Geometric, and quadratic mean of non-zero values 2 

Mean of absolute values, mean of non-zero abs. values 2 

Quartiles and inter-quartile ranges 6 

95 % and 98 % percentile 2 

Std. deviation, variance, kurtosis, skewness 4 

Centroid 1 

Zero-crossing rate 1 

# of peaks, mean dist. btwn. peaks, arth. mean of peaks, arth. mean of peaks - 

overall arth. Mean 

4 

Linear regression coefficients and corresp. approximation error 4 

Quadratic regression coefficients and corresp. approximation error 5 
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5.3 The Support Vector Machine (SVM) Classifier. 

The Support vector machine (SVM) is a well-known and commonly used supervised 

classifier. Given any training dataset of labelled samples of n-dimensional feature vectors, 

the learning process of SVM aims to find an optimal separating hyper-plane of the 

different classes of the training set. Optimality of the output SVM hyper-plane means that 

it has the maximum distance to the nearest training data samples on either side. The 

samples that are nearest to the SVM hyperplane are called the Support Vectors. Therefore, 

SVM maximize the width of the margin between the separating hyper-plane and support 

vectors. Such maximization assumes the existence of a unique solution for the problem 

which is expected to yield a better classification performance on the testing set.  

Given a set of 2D-points 𝑋 = { 𝑥1,𝑥2, … , 𝑥𝑚 } which consists of two linearly separable 

classes say class1 and class2, and let 𝑌 = { 𝑦1,𝑦2, … , 𝑦𝑚 } with 𝑦𝑖 ∈ {+1,−1} to stand 

for the class label of 𝑥𝑖. Figure 5-2, below, illustrates the SVM challenge of selecting the 

optimal hyperplane among all the possible class separating lines.  
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Figure 5-2 Separating hyper-planes 

There may exist infinitely many lines separating the samples of the two classes. Some of 

the lines are very close to the training samples from one class or both, and the SVM 

classifier aims to find the line that lies as far as possible from the support vectors in the 

two classes as shown in figure 5-3. 
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Figure 5-3 Optimal Separating Hyper-plane using SVM 

Formally, a separating hyper-plane (decision boundary) can be determined by the unit 

vector 𝑤 that is normal to the hyper-plane which determines the orientation and a scalar 

𝑏 (bias) which controls the displacement from origin, the equation of the hyper-plane can 

be written as follows: 

𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏 = 0 

where 𝑥 is any point in the hyperplane. In 2-dimensional space, this linear equation 

represents a line, it represents a plane in 3-dimensional space, and a hyper-plane in higher 

dimensional spaces. Also, the margin is represented by another two hyper-planes, and 

vectors on both sides of the hyperplane either belong to class1 or class2 depending 

weather, 

𝑤𝑇𝑥 + 𝑏 = 1     𝑜𝑟     𝑤𝑇𝑥 + 𝑏 = −1 

So, the distance between a support vector and the separating hyper-plane is (
1

‖𝑤‖
) and the 

width of the margin is twice of this distance, 

𝑀 =
2

‖𝑤‖
 

In the optimization problem, we aim to maximize the width of the margin and this happen 

when the length of the normal vector 𝑤 is minimized. We have two constraints for this 

optimization problem: 
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𝑤𝑇𝑥 + 𝑏 ≥ 1     ∀ 𝑥 ∈ 𝑐𝑙𝑎𝑠𝑠1 

𝑤𝑇𝑥 + 𝑏 ≤ −1     ∀ 𝑥 ∈ 𝑐𝑙𝑎𝑠𝑠2 

Equivalently, we can express the optimization problem in a simple way as follows: 

min {
1

2
‖𝑤‖} 

Subject to 

𝑦𝑖(𝑤
𝑇𝑥 + 𝑏) ≥ 1     𝑓𝑜𝑟 𝑖 = 1,2,⋯𝑚 

This problem is known as Lagrangian optimization which can be solved using Lagrange 

multipliers to compute the weighting vector 𝑤 and the bias 𝑏 of the optimal hyper-plane, 

for more details see (Hastie et al., 2009). 

5.4 Database used 

In order to test the performance of our dictionaries within the adopted SER, and in line 

with any pattern recognition application, we need to use a benchmark database in the 

experiments we conducted to test the performance of the various dictionaries, we opted 

to use the very popular FAU-Aibo database. It was used in (Steidl, 2009), and consists of 

51 children’s sound samples  while they interact with the Sony’s pet robot Aibo. The 

children cohort at the time of recording were aged from 10 to 13.  The dataset is divided 

into two parts ‘OHM’ and ‘Mont’ based on the data collection place and the number of 

speakers is 25 and 26 for each part respectively. In this database, there are five class of 

emotions that label the different samples: Anger, Neutral, Positive, Emphatic and rest.  

This database is of the non-prompted type, i.e. is recorded so that the participants are not 

aware of being monitored and are not instructed to express a specific emotion, but are 

expected to get into an emotional state, and then the produced emotion is recorded without 

their knowledge. The children believed that the robot is responding to their instruction. 

Five experts independently labelled each uttered word in the database with the emotion 

type. Unlike acted databases, this database present the most difficult challenge for 

automatic recognition. This is probably due to the fact that the way children express 

emotion is yet to mature or to control. This was a good reason for our choice to test the 

performance of our DR schemes, beside the fact that it has been used widely as a 

benchmark testing database. 
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5.5 Implementation and Experimental Setup 

Speaker independent based experiment has been conducted using the ‘OHM’ part of the 

database to train the system while the ‘MONT’ part is used for testing. Linear kernel 

Support Vector Machine (SVM) and Sequential Minimal Optimization (SMO) method is 

adopted. It is well-known that SVM is more suitable than other classifiers for very high 

dimensional data applications and it was the natural choice for the SER application (Al-

Talabani, 2015). Since SVM is a binary classifier i.e. it cannot classify more than two 

classes, methods to deal with multiclass data need to be adopted. In this work, we adopt 

1 versus 1 class approach, i.e. an SVM is designed for each pair of emotions. And the 

final decision is made based on a majority voting among all the SVMs. The experiments 

conducted here are aimed at comparing the emotion recognition accuracy for the various 

SER schemes that only differ from each other in their dimension reduction steps. These 

schemes are therefore, are obtained by applying the differently constructed Hadamard 

submatrices and the PCA for DR. Recall that the feature vectors representing the dataset 

post extracting the emotion-relevant speech features (obtained from the speech samples 

using openEAR software) are of very high dimension 6552 and the number of available 

samples is 𝑛 = 9959. In this case, dimensionality reduction is meant to be “preserving” 

pairwise distances, with respect to a tolerance error 𝜖,  but the success depends on the 

data sample density which in turn depend on the number of available samples. To boost 

the efficiency of the classifier and probably improve the recognition rate we need to set a 

sufficiently small value for 𝜖. As a result, there will be a lower bound on the reduced 

dimension. In these experiments, we set 𝜖 = 0.5, and according to the 𝑘 ≥
24

∈2(3−2∈)
ln(𝑛), 

we need our dictionaries to reduce dimension not lower than 442. The dimension of the 

data set is reduced from 6552 to only 442 dimensions which is a significant reduction. 

5.6 Results 

To test the performance of our projection matrices as a DR tool, we first constructed the 

various types of overcomplete dictionaries that reduce the dimension from 6552 to 442 

in all the cases. For the PCA scheme, we also selected the 442 most significant 

eigenvectors. The results are shown in figure 5-4. In the case of using no dimension 

reduction, the recognition accuracy is 38.2% while PCA with only 442 dimensions 

provides marginally higher accuracy of 38.5%. Differently constructed projection 

matrices provide different accuracy rate but with one exception (the WP-SRD-50-442) 

all outperform the PCA. The accuracy rate for SH-RD is 39% which is slightly higher 
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compare to original dimensions. All other WP-SRD projection matrices provide accuracy 

ranged from 38% - 40%, and the highest recognition accuracy of 41.1% is achieved by 

WP-SD. Note that all the features in the WP-SD are captured by first 442 rows at the top 

of the Full Walsh Paley Hadamard matrix, and this means that the top energy in the signal 

is captured by this dictionary which seem to explain its superior performance compare to 

other schemes. 

 

Figure 5-4 Performance of different overcomplete Hadamard Dictionaries over the FAU-Aibo 

database 

The superior performance of the WP-SD, raises the question whether this can be 

improved by changing the tolerance error level 𝜖. The set of experiments have been 

designed to use the WP-SD as a projection matrix and reduce the dimension of our dataset 

into different number of dimensions, by selecting different values of 0 < 𝜖 < 1. Taking 

into account some different values for 𝜖, the corresponding lower bounds 𝑘 for the 

reduced dimension will change accordingly as indicated in the set {(𝜖, 𝑘) =

(0.4,628), (0.5,442), (0.6,341), (0.7,282), (0.8,247), (0.9,228)}, from this set we can 

see that: by reducing the tolerance error level 𝜖, the number of dimensions increases and 

vice versa, for (𝜖, 𝑘) = (0.4,628), the number of required dimensions is 628 which is the 

highest dimension that we tested as lower 𝜖 requires higher dimension and the reduced 

dimension will be very high. Also, the lowest dimension is 228 corresponding 𝜖 = 0.9, 

furthermore, we reduced the dimension further to 25, 50, 75, 100, 221 without considering 

the lower bound.  The results shown in Figure 5-5 reveal that reducing dimension to only 

25-dimensions results in reduced accuracy to 40.3% than the above case when 𝜖 =

0.5 𝑎𝑛𝑑 𝑚 = 442. However, all other schemes outperform the 𝜖 = 0.5 scheme by a 

minimum of 1.2% and the best performing is the scheme corresponds to (𝜖,𝑚) =

Baseline-
6552

PCA-442 SH-RD-442
WP-SRD-
50-442

WP-SRD-
100-442

WP-SRD-
200-442

WP-SD-
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Series1 38.2% 38.5% 39.0% 38.1% 40.2% 39.6% 41.1%

35.0%

36.0%

37.0%
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39.0%
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(0.9 , 228) which achieve accuracy of 43.4%, i.e. an increase of 2.3% over the (0.5, 442) 

scheme.  The two previous experiments demonstrate that there is a direct relation between 

the combination pair (𝜖,𝑚), and the selected type of Hadamard dictionary but the Walsh 

Paley construction and the choice of the top rows can produce the best performance. In 

the next set of experiments, we shall investigate a rather innovative way of reducing effect 

of low density ratio of samples to feature vector dimension. 

 

Figure 5-5 Recognition rate for FAU-Aibo database, post WP-SD Dictionaries for DR 

5.7 Statistical-Based Feature Block (FB) 

For any high dimensional data set, dimension reduction by data-dependent schemes is 

adversely impacted by the lack of density ratio of available samples to the dimension. In 

such cases one would ask whether all the individual, or groups, of features are emotion 

relevant in the same way. This often leads to considering feature selection or even to give 

different weight for different features. However, in some pattern recognition schemes, the 

feature vectors representing the objects of interest are made of several groups/blocks of 

different types. This is certainly the case with the SER because the 6552 coordinates 

represent feature groups of different types.  In fact, the 6552-dimensional feature vector 

is made up of 39 statistical functionals of 56 acoustic LLD and their corresponding first 

and second ordered delta regression coefficients. 

Here we propose feature-block approach to dimensionality reduction. Simply, it is a 

process of dividing features/dimensions into some blocks, which can be partitioned either 

randomly or based on some common properties of the features. Then, instead of 

processing the high dimensional data set, the blocks will be processed individually which 

have a lower dimension and higher sample density without discarding any dimension or 
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block. In this way, for each block the density ration increases dramatically when there are 

many different blocks. 

We shall now conduct experiments to test the effectiveness of FB approach for the SER 

application. We first create 39 statistical-based feature block from FAU-Aibo database, 

each block contains only one statistical parameter, from each of sound frames, resulting 

in 168-dimensional vector for each of these parameters. Note that each statistical property 

repeated 168 times but of course not all the time for the same feature group. In these 

experiments, the dimension of FAU-Aibo database is reduced by constructing 39 feature 

blocks, instead of randomly constructing some blocks, we put all statistical parameters of 

the same type together in a block. Having reduced the dimension of each block to 168, 

the density ratio of the samples is increased by a factor of 39. 

We now test the performance of our WP-SD schemes when the dimension of each block 

is further reduced to 100, 75, 50, 25 and compare with that of using entire 168-dimension. 

The results as shown in table 5-3. It can be clearly seen that; different feature block 

provides different accuracy rate due to fact that each statistical parameter contains 

different information of the data set. The recognition of a few blocks is between 30% - 

40% and a fewer blocks under 30%. Interestingly, nearly half of the blocks provide a 

good recognition accuracy about 40% and above that. The maximum accuracy rate is 

achieved with the fifth block (minameandist) 44% with 168-dimensions. This rate 

provides a good improvement about 6% compare to accuracy of using the baseline 

features. 

In the rightmost four columns of table 5-3, the dimension of the feature-blocks is reduced 

more. In general, the accuracy remains nearly the same or slightly lower, again, it shows 

that our dictionaries provide a very proper lower dimensional approximation and they 

fairly preserve the structure of high dimensional data in the transformed space. The 

maximum recognition accuracy is 44% with the feature-block (stddev) with only 100 

dimensions, the same feature block provides the maximum accuracy 43% and 44% at 75 

and 50 dimensions respectively which is significant compare to the case of using the 

6552-baseline features. 43% accuracy as the maximum rate can be achieved with the 

(nzabsmean) feature-block with only 25 dimensions. 

These experiments, not only demonstrate the effectiveness of the FB approach and opens 

the way to using sophisticated multi-blocks fusion schemes as well as ensemble of 

multiple classifiers for improved accuracy. However, this is outside the remit of this thesis 

but can be done in the future. 
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Table 5-3 Accuracy rates of Statistical-based Feature Blocks using WP-SD schemes for the FAU-

Aibo database. 

 
Statistical Functionals, 

etc. 

168 Dimensions WP-SD-100 WP-SD-75 WP-SD-50 WP-SD-25 

1 Range 41% 41% 41% 43% 41% 

2 maxPos 29% 30% 29% 29% 27% 

3 minPos 28% 28% 27% 27% 25% 

4 maxameandist 41% 40% 40% 42% 41% 

5 minameandist 44% 43% 42% 42% 40% 

6 linregc1 35% 35% 35% 34% 30% 

7 linregc2 40% 39% 38% 38% 37% 

8 linregerrA 43% 42% 42% 42% 42% 

9 linregerrQ 42% 42% 42% 41% 41% 

10 qregc1 31% 30% 29% 32% 29% 

11 qregc2 36% 35% 34% 34% 33% 

12 qregc3 36% 35% 34% 33% 33% 

13 qregerrA 42% 41% 41% 42% 42% 

14 qregerrQ 41% 40% 42% 42% 41% 

15 Centroid 31% 30% 30% 30% 27% 

16 Variance 42% 42% 42% 42% 41% 

17 Stddev 43% 44% 43% 44% 43% 

18 Skewness 38% 36% 35% 34% 32% 

19 Kurtosis 35% 33% 32% 31% 31% 

20 quartile1 36% 35% 34% 31% 32% 

21 quartile2 34% 32% 32% 29% 30% 

22 quartile3 38% 37% 38% 38% 37% 

23 iqr1-2 35% 33% 31% 27% 28% 

24 iqr2-3 37% 37% 37% 37% 36% 

25 iqr1-3 39% 37% 38% 38% 36% 

26 percentile95.0 43% 42% 43% 42% 41% 

27 percentile98.0 43% 41% 42% 42% 42% 

28 Zcr 32% 33% 33% 34% 33% 

29 numPeaks 34% 33% 34% 34% 32% 

30 meanPeakDist 31% 32% 31% 32% 30% 

31 PeakMean 41% 43% 42% 42% 42% 

32 peakMeanMeanDist 42% 41% 42% 41% 41% 

33 Amean 41% 41% 40% 39% 38% 

34 Absmean 43% 43% 43% 42% 42% 

35 Qmean 44% 41% 42% 41% 41% 

36 Nzabsmean 43% 43% 43% 43% 43% 

37 Nzqmean 43% 42% 42% 42% 42% 

38 Nzgmean 39% 37% 37% 36% 37% 

39 Nnz 30% 31% 30% 30% 30% 
 

Maximum Accuracy for 

each column 

Minameandist Stddev Stddev Stddev Nzabsmean 
 

44% 44% 43% 44% 43% 
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5.8 Conclusion 

In this chapter, we investigated the performance of various Hadamard based dictionaries 

for DR within the SER pattern recognition application. The experimental results 

demonstrated that these data-independent DR schemes, and with very few exceptions they 

outperform the PCA schemes not only using the same number of reduced dimension but 

with significantly lower dimensions. Among the various Hadamard based dictionaries, 

the WP-SD scheme, which uses the Walsh-Paley Hadamard construction and then select 

from the top rows only in their order, as the best performing scheme. We also proposed 

the Feature-Block based dimension reduction technique as an innovative solution to 

overcome the problem of low density ratio of samples to dimension. We have 

demonstrated the success of this approach in significantly increasing accuracy rates for 

the SER application with significant dimension reduction. Not only this approach can be 

extended to other pattern recognition schemes, where features can be naturally split into 

different groups, but opens the way for different approaches to fusion with promising 

results. 
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6 CHAPTER SIX: CASE STUDY 2: GAIT-BASED GENDER 

CLASSIFICATION (GBGC) 

6.1 Introduction 

Human Gait biometric refers to the profile of the way human walk, that may be detected 

unobtrusively from a distance with or without cooperation. It is not only useful for 

recognising a person from his/her style of walking but it could help classifying the gender, 

age group, and state of health of the person as well as in determining whether the person 

is carrying items/bags or wearing certain items of clothing. Gait analysis is one of the 

main challenging areas of biometric research that has an important role in authentication 

applications (access control) and in particular for security surveillance due to its 

efficiency and effectiveness. 

Gait-Based Gender Classification (GBGC) as a special case of human gait analysis has 

many interesting applications: in smart surveillance and other recognition applications, it 

can be used as a pre-classification in human gait recognition to improve the recognition 

accuracy by restricting searching process on one gender. Demographic studies use such 

application for collecting gender based statistical information to support/improve 

customer service in stores(Sabir et al., 2014). 

Like most other biometrics, dimension reduction may become a necessary step, in 

automatic gait recognition/classification. This case study is devoted to automatic gait-

based gender classification only. The main aims of the experimental work, in this chapter, 

is similar to those followed in chapter 5 for the SER case study, is to conduct a 

comparative analysis the performance of the various data-independent DR Hadamard 

based dictionaries as well as the PCA scheme. Here,  we shall use motion-based data 

features to represent human gait profile that was proposed in (Mawlood, 2016) and in 

particular we adopt the various feature vectors that were investigated intensively by Dr. 

Azhin Sabir in his DPhil thesis (Sabir, 2015) done at Buckingham University. I 

acknowledge and highly appreciate his guidance and valuable advice throughout this case 

study investigation as well as the experimental work. 

6.2 Pre-processing and Feature Extraction 

The process of GBGC like any other pattern recognition/classification system can be 

divided into three steps (see the description of this process given in the section (5.1). The 
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first step is pre-processing aims to segment the video frames, and subtract the background 

from the foreground (image of the person), and estimate the gait cycle (Sabir, 2015). The 

background subtraction generates a binary image/frame where 0 representing the 

background and 1 representing the foreground which refers to the person’s silhouette. 

Variation in silhouettes size may significantly affect the recognition accuracy. The 

silhouette images are determined with respect to the size of a bounding box, and therefore 

some normalization will be done to make all the silhouettes have the same size. 

Necessarily, the silhouettes need to be horizontally aligned to be in the centre of the 

bounding boxes of all the frames. The final pre-processing step is gait cycle estimation, 

for more details see (Mawlood, 2016). Pre-processing may also include data/image 

quality improvement procedures to avoid undesired image distortion. 

The pre-processing step is followed by human gait feature extraction. For our experiments 

on  GBGC system, we use a gait feature called Gait Entropy Energy Image (GEnEI) 

proposed in (Mawlood, 2016). It is constructed using the two most widely used human 

gait features in the literature due to their effectiveness and simplicity known as Gait 

Energy Image (GEI) and Gait Entropy Image (GEnI). These three feature vectors are 

defined as follows: 

𝐺𝐸𝐼(𝑥, 𝑦) =
1

𝑇
 ∑𝐵(𝑥, 𝑦, 𝑡)

𝑇

𝑡=1

 

Where t is the frame number and T is the total number of frames in a complete cycle in a 

sequence, x and y are coordinate values of the pixel (x,y) in the 2D image. B(x,y,t) stands 

for  the pixel value (x,y) in frame t. 

𝐺𝐸𝑛𝐼(𝑥, 𝑦) = −∑𝑝𝑟 (𝑥, 𝑦)

𝑅

𝑟=1

𝑙𝑜𝑔2 𝑝𝑟 (𝑥, 𝑦) 

Again x and y are coordinate values of the pixel (x,y) and 𝑝𝑟 (𝑥, 𝑦) is the probability that 

the pixel (x,y) takes on the 𝑟𝑡ℎ value along the whole frames. In this case, the silhouettes 

are binary images (1 or 0) and thus R = 2. 

In order to provide a better human gate feature performance, GEnEI is defined as follows: 

𝐺𝐸𝑛𝐸𝐼(𝑥, 𝑦) = {
𝐺𝐸𝐼(𝑥, 𝑦)               𝑖𝑓  𝐺𝐸𝐼(𝑥, 𝑦) > 0 𝑎𝑛𝑑 < 0.5

𝐺𝐸𝑛𝐼(𝑥, 𝑦)                                             𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} 
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In our experiments, Gait Entropy Energy Image feature (GEnEI) is used as a gait feature 

which is constructed based on Gait Energy Image (GEI) and Gait Entropy Image (GEnI). 

Then, three feature vector is constructed from GEnEI using wavelet transform at second 

level of decomposition. AGEnEI is the 1st feature vector based on Approximation 

coefficient LL sub-band, while VGEnEI is the 2nd feature vector based on Vertical 

coefficient sub-band. Due to the fact that when a person walks, his/her upper body part 

changes in a different way to the lower body part. We follow the approach taken by (Sabir, 

2015), where the two parts of the human body are considered separately and determined 

according to the so-called golden ratio proportion (0.62 for the upper part and 0.38 for 

the lower part). Consequently, the 3rd type of feature vector model of Gait biometric 

template is the AVGEnEI which consists of two sub-vectors:  the VGEnEI extracted from 

the upper body part and the AGEnEI from the lower body part. Each of these three feature 

vectors have dimension of 1500, and in our experiments, we shall test the performance of 

the various DR schemes using each separately. 

6.3 k-Nearest Neighbours (kNN) Classifier 

The k-Nearest Neighbour is a simple and efficient classification algorithm that classifies 

patterns/objects based on a similarity/distance function. The kNN  store the feature vector 

templates of samples of the enrolled members each labelled with the class identity of the 

owner, and whenever a fresh sample is presented, kNN assigns a class label to it based 

on the majority vote of its k-Nearest Neighbours, (Theodoridis and Koutroumbas, 2003). 

In the case of k=1, the object is classified to the class of the nearest neighbour, and this 

would more useful when only one template per class is stored. In general, it is better to 

choose an odd value for k and more generally, k is better to be a value different from 

multiples of class numbers to avoid ties. 

There are various distance functions to measure the similarities and the most widely used 

functions are Euclidean and City Block distance function. For any two vectors 𝐴 =

{𝑎1, 𝑎2, ⋯ , 𝑎𝑛} and 𝐵 = {𝑏1, 𝑏2, ⋯ , 𝑏𝑛} in ℝ𝑛, the Euclidean and City Block Distance 

between 𝐴 𝑎𝑛𝑑 𝐵 are defined as follows respectively: 

𝐸(𝐴, 𝐵) = √∑(𝑎𝑖 − 𝑏𝑖)2

𝑛

𝑖=1

 

𝐶𝐵(𝐴, 𝐵) = ∑|𝑎𝑖 − 𝑏𝑖|

𝑛

𝑖=1
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In our experiments, City Block distance function is adopted. In reality, there are some 

inequalities relating these two different distance functions and their influence on accuracy 

for kNN is expected to be marginal, i.e. our choice does not have limiting effects on 

conclusions. 

6.4 Database used 

To test the performance of our DR schemes within the overall Gait-based Gender 

classification task, we use the well-known CASIA Gait Database, Dataset B, of videos. 

The videos were captured in an indoor environment with a simple background in order to 

facilitate the efficient detection and  segmentation of the walking person’s silhouette (Yu 

et al., 2006). There are three different recoding conditions covered in this database: 

Normal, clothing and carrying condition. In total, 124 people participated, 31 females and 

93 males. There were 11 cameras with different view angle. For each view angle, each 

person has 10 gait video sequences; 6 normal, 2 with a coat, and 2 with a bag. In total, 

there are 124×10×11 = 13640 gait sequences. Each video records an individual 

walking with one of the conditions (Normal, Coat wearing, Carrying bag) in a certain 

direction. Figure 6-1 shows example of different view angles, clothing and carrying 

conditions. 

(a) Normal walking sequences

(b) Walking Normally                 (c) Walking with a coat             (d) Walking with a bag  

 

Figure 6-1 CASIA Gait Database, Dataset B 
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6.5 Implementation and Experimental Setup 

In this case study, we select the normal walking scenario (Where the person does not wear 

a coat or carry a bag) with only 90o view angle between the camera and the line of 

walking. This scenario provides more dynamic information compare to other view angles. 

The restriction of the experiments to this scenario is due to the fact these tests are basically 

aimed as proof of concept. The CASIA-dataset B contains 31 females and 93 males which 

is imbalanced from the gender point of view and using all the samples for testing may 

raise doubts about the testing performance. Therefore, we select two random subsets of 

25 female and 25 male participants from the normal gait sequences. For each of the 50 

individuals, the dataset includes 6 normal gait sequences in the 90o view angle. In total, 

there are 50×6×1=300 samples each represented by three feature vectors of dimensions 

1500 each as discussed above. According to the 𝑘 ≥
24

∈2(3−2∈)
ln(𝑛) lower bound 

condition, setting 𝜖 = 0.5, sets the lower bound of 274 on the reduced dimension k for 

the three extracted feature vectors when using random, semi-random, and structured 

Hadamard submatrices and PCA to test and evaluate the performance of our differently 

constructed projection matrices in dimensionality reduction and compare it to the 

performance of using all the 1500 features. 

The original experimental work conducted by Dr. Azhin on GBGC used kNN as the most 

common classifier used by the Gait Recognition community (Sabir, 2015). Consequently, 

in these experiments, k-Nearest Neighbour is used as classification method. It has been 

shown in (Mawlood, 2016) that for this proposed method, k=1 provides better results 

compare to k=3 or 5. So we test our system with only  k=1 and adopt the 10-Fold Cross 

Validation protocol to determine the accuracy result for each of three feature vectors and 

the DR scheme. 

6.6 Results 

Figure 6-2 presents the performance in terms of the recognition accuracy rates for all 

combinations of feature vector and DR scheme. In the case of using no dimension 

reduction, the recognition accuracy is almost optimal for all the three feature vectors. For 

the AGEnEI feature vector, only the PCA with 274 dimensions matches accuracy of the 

full dimension, while all the Hadamard projection matrices provide nearly 96%. For the 

second VGEnEI feature vector, the full dimension scheme outperforms all but one of the 

DR reduction schemes. Only WP-SD scheme matches the performance of full dimension 

at 96%. The performance of the PCA is degraded by absolute 3% and SH-RD by absolute 
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7%, while the remaining schemes are also degraded but by lower percentages. For the 

AVGEnEI feature vector, PCA provides 96% accuracy and in the case of SH-RD the 

accuracy 95%. The performance of the WP-SRD schemes increases proportionally to the 

number of rows from the top, and in fact when all the top 274 rows are selected the 

resulting WP-SD scheme outperform the full dimension scheme by attaining accuracy of 

98%. 

 

Figure 6-2 Gender accuracy rates for PCA and Hadamard sub-matrices schemes for DR. 

Due to the relatively excellent performance of the WP-SD compared to all the other DR 

schemes, we conducted a new set of experiments to test the performance of the WP-SD 

with different number of lower dimensions, by selecting different values of 0 < 𝜖 <

1.The corresponding  lower bounds for the reduced dimension will change accordingly 

as indicated in the set {(𝜖, 𝑘) = (0.3,634), (0.4,389), (0.5,274), (0.6,212), (0.7,175),

(0.8,153), (0.9,141)}, from this set we can see that: by reducing the tolerance error level 

𝜖, the number of dimensions increases and vice versa, for (𝜖, 𝑘) = (0.3,634), the number 

of required dimensions is 634 which is the highest dimension that we tested as lower 𝜖 

requires higher dimension and the reduced dimension will be very high. Also, the lowest 

dimension is 141 corresponding 𝜖 = 0.9, furthermore, we reduced the dimension further 

to 25, 50, 75, 100, 137 without considering the lower bound. The results shown in Figure 

6-3 reveal that reducing dimension to only 25 results in the lowest accuracy across the 3 

different feature vectors.  But as the number of reduced dimension increases the very few 

exceptions the performance across the 3 feature vectors improves and the WP-SD 634 

outperform or matched the performance of the full dimension schemes. 

Baseline -
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PCA-274 SH-RD-274
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75%

80%
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90%

95%

100%

AGEnEI VGEnEI AVGEnEI
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Figure 6-3 Classification accuracy when using WP-SD for DR with different reduced dimension 

6.7 Conclusion 

In this second case study, we investigated the performance of various Hadamard based 

dictionaries for DR for GBGC problem. The experimental results demonstrated that the 

data-independent DR schemes perform very well with WP-SD schemes outperforming 

all other DR schemes. This performance may be attributed to the fact that the rows at the 

top of these dictionaries capture the highest energy in the input sample. 
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7 CHAPTER SEVEN: CONCLUSION AND FUTURE WORK 

7.1 Review of the thesis 

Curse of Dimension is challenging obstacle that occurs in an increasing number of 

pattern/object recognition/classification applications whereby the raw or pre-processed 

digital model of the patterns/objects are represented by vectors in linear high dimensional 

vector spaces. It has long been recognised that applying dimension reduction (DR) linear 

transformations to project the pattern/object vectors onto a significantly reduced subspace 

can provide mechanisms to deal with the adverse effects of curse of dimension without 

significant loss of information. Since recognition/classification of objects rely strongly 

on similarity/distance functions defined on the domains and codomains vector spaces of 

the deployed DR transformation, then loss of information is associated with the effect of 

the transform on the adopted similarity/distance between patterns/objects before and after 

transformation. The main aim of this thesis is to study and investigate various types of 

dimension reduction schemes that have been used, or suitable for use, to support efficient 

and reliable pattern recognition/classification applications.  Naturally, we found that the 

most commonly practiced DR techniques for recognition/classification were obtained by 

a training process that works with a dataset of pattern/object samples that together hold 

most of the necessary variations to ensure a good performance. However, search for DR 

matrices as well as compressive sensing dictionaries have also been investigated by 

mathematicians who proposed useful random schemes that are independent of any 

training process. Accordingly, the work in this thesis was focused on investigating 

different data-independent DR schemes in contrast to data-dependent schemes. 

In the first chapter, we described curse of dimension as the general reference to challenges 

associated with high extrinsic dimensionality of the modelled patterns/objects of interest 

in pattern recognition/classification applications. These challenges are mostly related to 

the efficiency of retrieval, analysis, and verifying/classifying the pattern/object of 

interest. Dimension reduction is a process of transforming the extrinsic high dimensional 

digital models into an intrinsic (much lower) dimensional subspace without losing 

relevant information. We noted that in the case of data-dependent DR, the adverse 

consequences of the “curse of dimension” intensify in the applications where the density 

ratio of available samples to the dimension of the feature space get smaller. This is most 

likely to be due to the difficulty in ensuring that the training data samples could form 

sufficient representation of the objects/patterns in the extrinsic (high) dimensional spaces. 
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In the second chapter, we studied some basic background concepts in Linear Algebra as 

the background of DR schemes, that are essential for developing data-dependent DR 

techniques as linear transformations (Change of basis) that transform a high dimensional 

dataset into a much lower subspace (coordinate system), in which the most 

recognition/classification related information hidden in a sample dataset are preserved 

with a sufficiently small tolerance error that is determined by the objectives of the 

application. We also presented the JL theorem, as the mathematical theory that underpins 

the existence of linear DR and determines the conditions that govern the relationship 

between the value of the reduced dimension and the tolerance error.  Recognition/ 

classification relevant information relates to the extent of preservation of the distances 

between pairs of object digital samples before and after the DR transformation.  The JL 

theorem ensures the existence of a function that maps any give dataset of high 

dimensional vectors into a much lower dimensional subspace without distorting pairwise 

distances significantly. We also discuss the classification of linear DR schemes into data-

dependent and data-independent ones. 

In the third chapter, we began by critically investigating the PCA and LDA as the most 

two widely used data-dependent DR schemes in pattern recognition/classification 

applications. PCA is the technique that project a high dimensional dataset on a subspace 

that captures almost all the variation present in the dataset while LDA provide a lower 

subspace that is optimal for class discrimination. We also covered SVD as a matrix 

decomposition technique and data compression/dimension reduction as one of its 

applications. These techniques successfully reduce the dimension of high dimensional 

datasets with a good accuracy, however, they are computationally high demanding as the 

system need to be trained on a suitable training set to extract the projection matrix (lower 

subspace). Furthermore, for any pattern recognition/classification application with data-

dependent dimension reduction schemes, a sufficiently large number of training samples 

maybe required to model a robust system. Ideally the training set must include a wide 

range of possible variants of the pattern of interest and the scheme is ideally adaptive to 

the most relevant variation in capturing/recording samples. However, in most applications 

the available dataset is often small and for supervised learning schemes need to be divided 

into training and testing which makes the available training set even smaller and it leads 

to overfitting and biasness. 

The most common characteristics of all these data-dependent linear DR schemes, is their 

reliance on the theory of matrix factorisation as well as their relevance to the question of 
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data/image compression. Despite their successes for many applications, we know that 

these schemes are not designed in accordance to the JL theory.  Instead of preserving the 

information between every pair of objects, within tolerable errors, the investigated data-

dependent linear DR methods minimise the global loss of information hidden in all the 

samples of a chosen training dataset, rather than each pair of samples in the training set. 

Moreover, the reduced dimension in these schemes are to set in accordance to the 

performance of the corresponding recognition scheme on a fixed testing dataset.  This is 

the reason that the performance of these methods is influenced by the process of selecting 

the training set and scalability maybe in doubt, i.e. when the objects population increases 

significantly the scheme performance deteriorates. Consequently, removing dependence 

on observed samples is desirable in controlling the errors in the distances between any 

pair of samples within a chosen/fixed error tolerance. This is the main incentive to 

investigate data-independent DR schemes the existence of which are guaranteed by the 

JL condition. 

In the fourth chapter, we first presented DWT as a well-known data-independent linear 

transformation of signals/images such that each sub-band of the transformed data is a 

linearly reduced dimensional representation of the original data. We then extended the 

investigation to giver a variety of RPs. Such schemes, unlike data-dependent schemes, 

are computationally very cheap and it costs just a matrix multiplication as the projection 

matrix is constructed independently of the dataset. Influenced by the JL theorem, we were 

focused on designing dimension reducing projections that maintain distances between 

pairs of vectors within acceptable error tolerance before and after transformation. Having 

noted the relevance of JL condition to the recent emerging paradigm of compressive 

sensing (CS), we observed that the wealth of research conducted in the area of CS for 

designing a variety of CS dictionaries that facilitate significant reduction in the number 

of attributes (often referred to as meta-features) needed to model objects of interest in 

most interesting pattern recognition applications. Compliance of overcomplete 

dictionaries with the CS paradigm is dependent on a modified version of the JL condition. 

Instead of preserving distance between any pair of vectors, CS compliance is based on 

satisfying the Restricted   Isometry Property (RIP) whereby the distance between sparsely 

represented vectors. We exploited these facts and investigated different classes of JL 

compliant DR matrices that are linked to over-complete CS dictionaries. These included 

various well investigated random matrices such as Gaussian and Bernoulli overcomplete 

dictionaries. We extended the pool of RP schemes by using randomly constructed 
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overcomplete submatrices of Hadamard matrices which are known to be orthogonal. We 

attempted to adhere to the condition of JL theory in order to reduce the dimension of high 

dimensional data while maintain pairwise distances with high probability. The attraction 

of Hadamard matrices comes from the fact that they can be generated using different 

recursive procedures (Sylvester, Walsh, and Walsh-Paley). We also investigated the use 

of overcomplete circulant matrices that are known to satisfy RIP condition.  Accordingly, 

we constructed pure random, semi-random, and structured random projections from well-

known Hadamard matrices and circulant matrices. We have tested the compatibility of 

Hadamard-based overcomplete sub-matrices with the RIP conditions, and the results 

show that WP-SD is the only dictionary that satisfy RIP conditions with high probability. 

Such investigation motivated us to test the performance of these differently constructed 

Hadamard submatrices for the DR step in different biometric recognition as case studies. 

In the fifth and sixth chapters, we have tested the performance of overcomplete Hadamard 

sub-matrices in two case studies SER and GBGC. In these two case studies, we first 

reduced the dimension of the corresponding original data models using differently 

constructed Hadamard submatrices. We then tested and compared the performances of 

the corresponding classification schemes over a well-known benchmark databases, see 

figure 5-4, 6-2. 

7.2 Main findings of the study 

The experimental results in the case studies show that among the various Hadamard based 

dictionaries, the WP-SD scheme, which selects rows from the top rows only of the Walsh-

Paley Hadamard construction in their appearing order, is a very effective scheme as it 

outperforms semi-random and random schemes. In fact, the same pattern of performance 

of different Hadamard-based DR schemes was repeated for both case studies, i.e. the 

Walsh-Paley structured dictionary (WP-SD) outperforms all other random and semi-

random dictionaries. These results are consistent with the results in Chapter four section 

(4.6) which showed that the WP-SD matrix is the only dictionary that satisfies RIP 

condition as a special case of JL condition. 

The ease with which Hadamard based random projections can be constructed, provided 

an opportunity to  investigate and develop a strategy to reduce the effect of low density 

ratio of available training samples to the dimension. We investigated and developed a 

novel Feature-Block based dimension reduction technique to overcome this problem by 

what might be considered as a feature selection approach. It works by splitting the features 
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into groups and applying usual dimension reduction on each group separately. Ideally 

these groups consist of similar data types and measure similar aspects of the signal. This 

approach results in increasing the samples to dimension ratio and reducing the effect of 

low density ratio problem especially if the original dimension can be subdivided naturally 

into a relatively large number of similar groups.  The SER case study provided a perfect 

candidate to test this strategy, since the extracted feature vector consisted of 39 different 

types of features each is extracted from the different speech windows. We tested 

performance of this strategy for the SER application and we only confined the test to the 

use of the Walsh-Paley structured dictionary (WP-SD) for dimension reduction due to the 

fact that WP-SD was the best performing DR. The experimental work demonstrated the 

success of this strategy by the significant increase of accuracy rates for the SER 

application with significant dimension reduction.  In some way this strategy can be seen 

as a hybrid of dimension reduction and dimension selection to deal with the curse of 

dimension.  

The experimental work carried out for the two case studies confirmed some expected 

observation regarding the conditions, imposed by the JL theory, that govern the relation 

between the lower bound of the reduced dimension and the impact on performance of the 

resulting DR scheme and the recognition tasks. We know that the lower bound of the 

reduced dimension is dependent of the tolerance error, but we know that increasing the 

tolerance error increases false acceptances which means reduced accuracy.  Consider the 

results in figure 5-5, which show the performance of SER when using of WP-SD for DR 

at different choices of reduced dimension. We observe that when the number of reduced 

dimension increases from 25 to 228, which represent lower bounds for decreased 

tolerance error, the SER accuracy increases reaching a peak at 228 after which the 

performance is significantly lower.  In the GBGC case study, the results in figure 6-3 

show that, for the first two feature vector GEI and GEnI increasing the number of 

dimensions from 25 all the way to 634 results in a marginal increase in the accuracy and 

peaking at 634, while for the third feature vector (GEnEI) the highest accuracy is achieved 

with 141-dimension and further increasing the dimensions does not help improve 

accuracy. These observations are pretty normal in most pattern recognition/classification 

since there is a direct link between classification performance and the reduced number of 

dimension, but the interest is in determining the optimal choice of reduced dimension. 

Finally, we conclude that: Data-independent DR schemes perform as well, if not better, 

as data-dependent schemes, furthermore, among differently constructed Hadamard based 
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RPs, structured RP matrices deliver a better performance in terms of classification/ 

recognition accuracy than complete random and semi-random matrices. Interestingly, 

such schemes are very cheap and efficient compare to other schemes and they are not 

adaptive to any training set as adaptive schemes may lead to overfitting and biasness. In 

general, data-independent DR schemes are less sensitive to fresh samples in the 

classification/recognition systems. In fact, unlike the Data-dependent schemes, the data-

independent DR schemes do not suffer from the scalability problem but could benefit 

from increased population size. 

7.3 Future Work 

Dimension reduction and especially for pattern recognition applications is an active area 

of research. Our investigations throughout this thesis revealed several areas that require 

more efforts. Here we only highlight few directions for our future work. 

(1) In the future, the use of the feature-block strategy can be extended to other pattern 

recognition schemes, whenever features can be naturally split into different groups. 

This may also open the way for different approaches to fusion with promising 

results. 

(2) In the last two chapters, we discovered that overcomplete Hadamard submatrices is 

a very rich pool for data-independent RPs for DR. We constructed three different 

types: SH-RD from Sylvester-type Hadamard matrices, WP-SRD, and WP-SD 

from Walsh Paley matrices, but we did not use the Walsh recursive constructions. 

Our work can naturally be extended to Walsh-based construction as well as other 

types of Hadamard matrices with a particular interest in constructing matrices that 

comply with CS requirements (i.e. RIP condition).  

(3) The various Hadamard based random projection matrices, studied in this thesis, can 

be used and investigated in other pattern recognition/classification applications. 

Moreover, those satisfying the RIP condition (e.g. WP-SD dictionary) can be used 

as a good candidate in Compressive sensing applications. We also need to consider 

other biometrics to determine among other things if the observed pattern of 

performance by the different dictionaries in the two-case study are effected by the 

characteristics of recognition problem or not. 

(4) In this thesis, we focused on comparing the different DR schemes by comparing the 

performance of pattern recognition schemes that deploy them as their DR step. In 

recent years, a new sophisticated approach to pattern and data analysis has emerged 

that argue for complementing the linear algebra aspects of the problem with 
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topological aspects. The emerging area of Topological Data Analysis (TDA) is 

based on taking into account the topology of the simplicial complexes of the digital 

high dimensional vector models of the object/pattern of interest. Rieck and Leitte, 

in (Rieck and Leitte, 2015), present a novel TDA-based evaluation scheme for DR 

techniques using the so-called Persistent Homology (from computational topology) 

which represent a well-known invariant of the sequence of simplicial complexes of 

the investigated dataset of high dimensional vectors. This invariant studies 

topological features of the given dataset in terms of the number of connected 

components, of the constructed simplicial complexes when one increases the 

connectivity distance threshold increases.  They used this invariant to compare the 

quality of some data-dependent dimension reduction schemes. Such TDA approach 

can be expanded to assess data-independent DR techniques, and in particular it 

would be useful in providing a topological evaluation of the performance of our 

differently constructed Hadamard based overcomplete dictionaries. 
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