88,711 research outputs found

    Single-shot ultrafast optical imaging

    Get PDF
    Single-shot ultrafast optical imaging can capture two-dimensional transient scenes in the optical spectral range at ≥100 million frames per second. This rapidly evolving field surpasses conventional pump-probe methods by possessing real-time imaging capability, which is indispensable for recording nonrepeatable and difficult-to-reproduce events and for understanding physical, chemical, and biological mechanisms. In this mini-review, we survey state-of-the-art single-shot ultrafast optical imaging comprehensively. Based on the illumination requirement, we categorized the field into active-detection and passive-detection domains. Depending on the specific image acquisition and reconstruction strategies, these two categories are further divided into a total of six subcategories. Under each subcategory, we describe operating principles, present representative cutting-edge techniques, with a particular emphasis on their methodology and applications, and discuss their advantages and challenges. Finally, we envision prospects for technical advancement in this field

    Single-shot ultrafast optical imaging

    Get PDF
    Single-shot ultrafast optical imaging can capture two-dimensional transient scenes in the optical spectral range at ≥100 million frames per second. This rapidly evolving field surpasses conventional pump-probe methods by possessing real-time imaging capability, which is indispensable for recording nonrepeatable and difficult-to-reproduce events and for understanding physical, chemical, and biological mechanisms. In this mini-review, we survey state-of-the-art single-shot ultrafast optical imaging comprehensively. Based on the illumination requirement, we categorized the field into active-detection and passive-detection domains. Depending on the specific image acquisition and reconstruction strategies, these two categories are further divided into a total of six subcategories. Under each subcategory, we describe operating principles, present representative cutting-edge techniques, with a particular emphasis on their methodology and applications, and discuss their advantages and challenges. Finally, we envision prospects for technical advancement in this field

    Single-shot compressed ultrafast photography: a review

    Get PDF
    Compressed ultrafast photography (CUP) is a burgeoning single-shot computational imaging technique that provides an imaging speed as high as 10 trillion frames per second and a sequence depth of up to a few hundred frames. This technique synergizes compressed sensing and the streak camera technique to capture nonrepeatable ultrafast transient events with a single shot. With recent unprecedented technical developments and extensions of this methodology, it has been widely used in ultrafast optical imaging and metrology, ultrafast electron diffraction and microscopy, and information security protection. We review the basic principles of CUP, its recent advances in data acquisition and image reconstruction, its fusions with other modalities, and its unique applications in multiple research fields

    Advances in Optical Coherence Tomography

    Get PDF
    Traditionally applied to imaging the eye, optical coherence tomography (OCT) is now being extended to fields outside ophthalmology and optometry. The tremendous increase in acquisition speed of the spectral domain OCT technology in the last decade has enabled the OCT community to contemplate real time volume display, has opened the field of no-dye angiography and that of fast interrogation of deformation patterns in elastography. The presentation will review the OCT applications in ophthalmology and endoscopy as well as the dynamic field of broadband and fast tunable optical sources for OCT. Current research in Kent combined spectral domain and time domain OCT principles into a new method, Master/Slave OCT, that delivers fast display of any number of en-face OCT images. The Master/Slave method simplifies the OCT technology, the signal processing as well as gives parallel, direct access to information from multiple depths in the tissue. A review is presented on the advances of OCT that make the technology useful for numerous directions in medical imaging and for non-destructive testing

    Methods of visualisation

    Get PDF

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided
    • …
    corecore