32 research outputs found

    Spectral Method and Regularized MLE Are Both Optimal for Top-KK Ranking

    Full text link
    This paper is concerned with the problem of top-KK ranking from pairwise comparisons. Given a collection of nn items and a few pairwise comparisons across them, one wishes to identify the set of KK items that receive the highest ranks. To tackle this problem, we adopt the logistic parametric model --- the Bradley-Terry-Luce model, where each item is assigned a latent preference score, and where the outcome of each pairwise comparison depends solely on the relative scores of the two items involved. Recent works have made significant progress towards characterizing the performance (e.g. the mean square error for estimating the scores) of several classical methods, including the spectral method and the maximum likelihood estimator (MLE). However, where they stand regarding top-KK ranking remains unsettled. We demonstrate that under a natural random sampling model, the spectral method alone, or the regularized MLE alone, is minimax optimal in terms of the sample complexity --- the number of paired comparisons needed to ensure exact top-KK identification, for the fixed dynamic range regime. This is accomplished via optimal control of the entrywise error of the score estimates. We complement our theoretical studies by numerical experiments, confirming that both methods yield low entrywise errors for estimating the underlying scores. Our theory is established via a novel leave-one-out trick, which proves effective for analyzing both iterative and non-iterative procedures. Along the way, we derive an elementary eigenvector perturbation bound for probability transition matrices, which parallels the Davis-Kahan sinΘ\sin\Theta theorem for symmetric matrices. This also allows us to close the gap between the 2\ell_2 error upper bound for the spectral method and the minimax lower limit.Comment: Add discussions on the setting of the general condition numbe

    Principal component analysis for big data

    Full text link
    Big data is transforming our world, revolutionizing operations and analytics everywhere, from financial engineering to biomedical sciences. The complexity of big data often makes dimension reduction techniques necessary before conducting statistical inference. Principal component analysis, commonly referred to as PCA, has become an essential tool for multivariate data analysis and unsupervised dimension reduction, the goal of which is to find a lower dimensional subspace that captures most of the variation in the dataset. This article provides an overview of methodological and theoretical developments of PCA over the last decade, with focus on its applications to big data analytics. We first review the mathematical formulation of PCA and its theoretical development from the view point of perturbation analysis. We then briefly discuss the relationship between PCA and factor analysis as well as its applications to large covariance estimation and multiple testing. PCA also finds important applications in many modern machine learning problems, and we focus on community detection, ranking, mixture model and manifold learning in this paper.Comment: review article, in press with Wiley StatsRe

    Asymmetry Helps: Eigenvalue and Eigenvector Analyses of Asymmetrically Perturbed Low-Rank Matrices

    Full text link
    This paper is concerned with the interplay between statistical asymmetry and spectral methods. Suppose we are interested in estimating a rank-1 and symmetric matrix MRn×n\mathbf{M}^{\star}\in \mathbb{R}^{n\times n}, yet only a randomly perturbed version M\mathbf{M} is observed. The noise matrix MM\mathbf{M}-\mathbf{M}^{\star} is composed of zero-mean independent (but not necessarily homoscedastic) entries and is, therefore, not symmetric in general. This might arise, for example, when we have two independent samples for each entry of M\mathbf{M}^{\star} and arrange them into an {\em asymmetric} data matrix M\mathbf{M}. The aim is to estimate the leading eigenvalue and eigenvector of M\mathbf{M}^{\star}. We demonstrate that the leading eigenvalue of the data matrix M\mathbf{M} can be O(n)O(\sqrt{n}) times more accurate --- up to some log factor --- than its (unadjusted) leading singular value in eigenvalue estimation. Further, the perturbation of any linear form of the leading eigenvector of M\mathbf{M} --- say, entrywise eigenvector perturbation --- is provably well-controlled. This eigen-decomposition approach is fully adaptive to heteroscedasticity of noise without the need of careful bias correction or any prior knowledge about the noise variance. We also provide partial theory for the more general rank-rr case. The takeaway message is this: arranging the data samples in an asymmetric manner and performing eigen-decomposition could sometimes be beneficial.Comment: accepted to Annals of Statistics, 2020. 37 page
    corecore