3,585 research outputs found

    Two-flavor lattice QCD in the epsilon-regime and chiral Random Matrix Theory

    Full text link
    The low-lying eigenvalue spectrum of the QCD Dirac operator in the epsilon-regime is expected to match with that of chiral Random Matrix Theory (ChRMT). We study this correspondence for the case including sea quarks by performing two-flavor QCD simulations on the lattice. Using the overlap fermion formulation, which preserves exact chiral symmetry at finite lattice spacings, we push the sea quark mass down to \sim 3 MeV on a 16^3\times 32 lattice at a lattice spacing a \simeq 0.11 fm. We compare the low-lying eigenvalue distributions and find a good agreement with the analytical predictions of ChRMT. By matching the lowest-lying eigenvalue we extract the chiral condensate, \Sigma(2 GeV)[MSbar] = [251(7)(11) MeV]^3, where errors represent statistical and higher order effects in the epsilon expansion. We also calculate the eigenvalue distributions on the lattices with heavier sea quarks at two lattice spacings. Although the epsilon expansion is not applied for those sea quarks, we find a reasonable agreement of the Dirac operator spectrum with ChRMT. The value of Sigma, after extrapolating to the chiral limit, is consistent with the estimate in the epsilon-regime.Comment: 28pages, 12figures, accepted versio

    Quantum Graphs: A simple model for Chaotic Scattering

    Full text link
    We connect quantum graphs with infinite leads, and turn them to scattering systems. We show that they display all the features which characterize quantum scattering systems with an underlying classical chaotic dynamics: typical poles, delay time and conductance distributions, Ericson fluctuations, and when considered statistically, the ensemble of scattering matrices reproduce quite well the predictions of appropriately defined Random Matrix ensembles. The underlying classical dynamics can be defined, and it provides important parameters which are needed for the quantum theory. In particular, we derive exact expressions for the scattering matrix, and an exact trace formula for the density of resonances, in terms of classical orbits, analogous to the semiclassical theory of chaotic scattering. We use this in order to investigate the origin of the connection between Random Matrix Theory and the underlying classical chaotic dynamics. Being an exact theory, and due to its relative simplicity, it offers new insights into this problem which is at the fore-front of the research in chaotic scattering and related fields.Comment: 28 pages, 13 figures, submitted to J. Phys. A Special Issue -- Random Matrix Theor

    The fractality of the relaxation modes in deterministic reaction-diffusion systems

    Full text link
    In chaotic reaction-diffusion systems with two degrees of freedom, the modes governing the exponential relaxation to the thermodynamic equilibrium present a fractal structure which can be characterized by a Hausdorff dimension. For long wavelength modes, this dimension is related to the Lyapunov exponent and to a reactive diffusion coefficient. This relationship is tested numerically on a reactive multibaker model and on a two-dimensional periodic reactive Lorentz gas. The agreement with the theory is excellent

    Semiclassical Accuracy in Phase Space for Regular and Chaotic Dynamics

    Full text link
    A phase-space semiclassical approximation valid to O()O(\hbar) at short times is used to compare semiclassical accuracy for long-time and stationary observables in chaotic, stable, and mixed systems. Given the same level of semiclassical accuracy for the short time behavior, the squared semiclassical error in the chaotic system grows linearly in time, in contrast with quadratic growth in the classically stable system. In the chaotic system, the relative squared error at the Heisenberg time scales linearly with eff\hbar_{\rm eff}, allowing for unambiguous semiclassical determination of the eigenvalues and wave functions in the high-energy limit, while in the stable case the eigenvalue error always remains of the order of a mean level spacing. For a mixed classical phase space, eigenvalues associated with the chaotic sea can be semiclassically computed with greater accuracy than the ones associated with stable islands.Comment: 9 pages, 6 figures; to appear in Physical Review
    corecore