14 research outputs found

    Performance Analysis of Spectral Clustering on Compressed, Incomplete and Inaccurate Measurements

    Full text link
    Spectral clustering is one of the most widely used techniques for extracting the underlying global structure of a data set. Compressed sensing and matrix completion have emerged as prevailing methods for efficiently recovering sparse and partially observed signals respectively. We combine the distance preserving measurements of compressed sensing and matrix completion with the power of robust spectral clustering. Our analysis provides rigorous bounds on how small errors in the affinity matrix can affect the spectral coordinates and clusterability. This work generalizes the current perturbation results of two-class spectral clustering to incorporate multi-class clustering with k eigenvectors. We thoroughly track how small perturbation from using compressed sensing and matrix completion affect the affinity matrix and in succession the spectral coordinates. These perturbation results for multi-class clustering require an eigengap between the kth and (k+1)th eigenvalues of the affinity matrix, which naturally occurs in data with k well-defined clusters. Our theoretical guarantees are complemented with numerical results along with a number of examples of the unsupervised organization and clustering of image data

    Second order accurate distributed eigenvector computation for extremely large matrices

    Full text link
    We propose a second-order accurate method to estimate the eigenvectors of extremely large matrices thereby addressing a problem of relevance to statisticians working in the analysis of very large datasets. More specifically, we show that averaging eigenvectors of randomly subsampled matrices efficiently approximates the true eigenvectors of the original matrix under certain conditions on the incoherence of the spectral decomposition. This incoherence assumption is typically milder than those made in matrix completion and allows eigenvectors to be sparse. We discuss applications to spectral methods in dimensionality reduction and information retrieval.Comment: Complete proofs are included on averaging performanc

    Spectral Clustering: An Empirical Study of Approximation Algorithms and its Application to the Attrition Problem

    Get PDF
    Clustering is the problem of separating a set of objects into groups (called clusters) so that objects within the same cluster are more similar to each other than to those in different clusters. Spectral clustering is a now well-known method for clustering which utilizes the spectrum of the data similarity matrix to perform this separation. Since the method relies on solving an eigenvector problem, it is computationally expensive for large datasets. To overcome this constraint, approximation methods have been developed which aim to reduce running time while maintaining accurate classification. In this article, we summarize and experimentally evaluate several approximation methods for spectral clustering. From an applications standpoint, we employ spectral clustering to solve the so-called attrition problem, where one aims to identify from a set of employees those who are likely to voluntarily leave the company from those who are not. Our study sheds light on the empirical performance of existing approximate spectral clustering methods and shows the applicability of these methods in an important business optimization related problem
    corecore