5 research outputs found

    Spectral characterizations of complex unit gain graphs

    Get PDF
    While eigenvalues of graphs are well studied, spectral analysis of complex unit gain graphs is still in its infancy. This thesis considers gain graphs whose gain groups are gradually less and less restricted, with the ultimate goal of classifying gain graphs that are characterized by their spectra. In such cases, the eigenvalues of a gain graph contain sufficient structural information that it might be uniquely (up to certain equivalence relations) constructed when only given its spectrum. First, the first infinite family of directed graphs that is – up to isomorphism – determined by its Hermitian spectrum is obtained. Since the entries of the Hermitian adjacency matrix are complex units, these objects may be thought of as gain graphs with a restricted gain group. It is shown that directed graphs with the desired property are extremely rare. Thereafter, the perspective is generalized to include signs on the edges. By encoding the various edge-vertex incidence relations with sixth roots of unity, the above perspective can again be taken. With an interesting mix of algebraic and combinatorial techniques, all signed directed graphs with degree at most 4 or least multiplicity at most 3 are determined. Subsequently, these characterizations are used to obtain signed directed graphs that are determined by their spectra. Finally, an extensive discussion of complex unit gain graphs in their most general form is offered. After exploring their various notions of symmetry and many interesting ties to complex geometries, gain graphs with exactly two distinct eigenvalues are classified

    Graph Coverings with Few Eigenvalues or No Short Cycles

    Get PDF
    This thesis addresses the extent of the covering graph construction. How much must a cover X resemble the graph Y that it covers? How much can X deviate from Y? The main statistics of X and Y which we will measure are their regularity, the spectra of their adjacency matrices, and the length of their shortest cycles. These statistics are highly interdependent and the main contribution of this thesis is to advance our understanding of this interdependence. We will see theorems that characterize the regularity of certain covering graphs in terms of the number of distinct eigenvalues of their adjacency matrices. We will see old examples of covers whose lack of short cycles is equivalent to the concentration of their spectra on few points, and new examples that indicate certain limits to this equivalence in a more general setting. We will see connections to many combinatorial objects such as regular maps, symmetric and divisible designs, equiangular lines, distance-regular graphs, perfect codes, and more. Our main tools will come from algebraic graph theory and representation theory. Additional motivation will come from topological graph theory, finite geometry, and algebraic topology
    corecore