971 research outputs found

    Magnetic moment non-conservation in magnetohydrodynamic turbulence models

    Full text link
    The fundamental assumptions of the adiabatic theory do not apply in presence of sharp field gradients as well as in presence of well developed magnetohydrodynamic turbulence. For this reason in such conditions the magnetic moment μ\mu is no longer expected to be constant. This can influence particle acceleration and have considerable implications in many astrophysical problems. Starting with the resonant interaction between ions and a single parallel propagating electromagnetic wave, we derive expressions for the magnetic moment trapping width Δμ\Delta \mu (defined as the half peak-to-peak difference in the particle magnetic moment) and the bounce frequency ωb\omega_b. We perform test-particle simulations to investigate magnetic moment behavior when resonances overlapping occurs and during the interaction of a ring-beam particle distribution with a broad-band slab spectrum. We find that magnetic moment dynamics is strictly related to pitch angle α\alpha for a low level of magnetic fluctuation, δB/B0=(103,102)\delta B/B_0 = (10^{-3}, \, 10^{-2}), where B0B_0 is the constant and uniform background magnetic field. Stochasticity arises for intermediate fluctuation values and its effect on pitch angle is the isotropization of the distribution function f(α)f(\alpha). This is a transient regime during which magnetic moment distribution f(μ)f(\mu) exhibits a characteristic one-sided long tail and starts to be influenced by the onset of spatial parallel diffusion, i.e., the variance grows linearly in time as in normal diffusion. With strong fluctuations f(α)f(\alpha) isotropizes completely, spatial diffusion sets in and f(μ)f(\mu) behavior is closely related to the sampling of the varying magnetic field associated with that spatial diffusion.Comment: 13 pages, 10 figures, submitted to PR

    Perpendicular momentum injection by lower hybrid wave in a tokamak

    Full text link
    The injection of lower hybrid waves for current drive into a tokamak affects the profile of intrinsic rotation. In this article, the momentum deposition by the lower hybrid wave on the electrons is studied. Due to the increase in the poloidal momentum of the wave as it propagates into the tokamak, the parallel momentum of the wave increases considerably. The change of the perpendicular momentum of the wave is such that the toroidal angular momentum of the wave is conserved. If the perpendicular momentum transfer via electron Landau damping is ignored, the transfer of the toroidal angular momentum to the plasma will be larger than the injected toroidal angular momentum. A proper quasilinear treatment proves that both perpendicular and parallel momentum are transferred to the electrons. The toroidal angular momentum of the electrons is then transferred to the ions via different mechanisms for the parallel and perpendicular momentum. The perpendicular momentum is transferred to ions through an outward radial electron pinch, while the parallel momentum is transferred through collisions.Comment: 22 pages, 4 figure

    The p-Laplace equation in domains with multiple crack section via pencil operators

    Get PDF
    The p-Laplace equation \n \cdot (|\n u|^n \n u)=0 \whereA n>0, in a bounded domain \O \subset \re^2, with inhomogeneous Dirichlet conditions on the smooth boundary \p \O is considered. In addition, there is a finite collection of curves \Gamma = \Gamma_1\cup...\cup\Gamma_m \subset \O, \quad \{on which we assume homogeneous Dirichlet boundary conditions} \quad u=0, modeling a multiple crack formation, focusing at the origin 0 \in \O. This makes the above quasilinear elliptic problem overdetermined. Possible types of the behaviour of solution u(x,y)u(x,y) at the tip 0 of such admissible multiple cracks, being a "singularity" point, are described, on the basis of blow-up scaling techniques and a "nonlinear eigenvalue problem". Typical types of admissible cracks are shown to be governed by nodal sets of a countable family of nonlinear eigenfunctions, which are obtained via branching from harmonic polynomials that occur for n=0n=0. Using a combination of analytic and numerical methods, saddle-node bifurcations in nn are shown to occur for those nonlinear eigenvalues/eigenfunctions.Comment: arXiv admin note: substantial text overlap with arXiv:1310.065

    The Cauchy problem for a tenth-order thin film equation II. Oscillatory source-type and fundamental similarity solutions

    Get PDF
    Fundamental global similarity solutions of the standard form u_\g(x,t)=t^{-\a_\g} f_\g(y), with the rescaled variable y= x/{t^{\b_\g}}, \b_\g= \frac {1-n \a_\g}{10}, where \a_\g>0 are real nonlinear eigenvalues (\g is a multiindex in R^N) of the tenth-order thin film equation (TFE-10) u_{t} = \nabla \cdot(|u|^{n} \n \D^4 u) in R^N \times R_+, n>0, are studied. The present paper continues the study began by the authors in the previous paper P. Alvarez-Caudevilla, J.D.Evans, and V.A. Galaktionov, The Cauchy problem for a tenth-order thin film equation I. Bifurcation of self-similar oscillatory fundamental solutions, Mediterranean Journal of Mathematics, No. 4, Vol. 10 (2013), 1759-1790. Thus, the following questions are also under scrutiny: (I) Further study of the limit n \to 0, where the behaviour of finite interfaces and solutions as y \to infinity are described. In particular, for N=1, the interfaces are shown to diverge as follows: |x_0(t)| \sim 10 \left( \frac{1}{n}\sec\left( \frac{4\pi}{9} \right) \right)^{\frac 9{10}} t^{\frac 1{10}} \to \infty as n \to 0^+. (II) For a fixed n \in (0, \frac 98), oscillatory structures of solutions near interfaces. (III) Again, for a fixed n \in (0, \frac 98), global structures of some nonlinear eigenfunctions \{f_\g\}_{|\g| \ge 0} by a combination of numerical and analytical methods
    corecore