3,976 research outputs found

    The Past, Present, and Future(s): Verifying Temporal Software Properties

    Get PDF
    Software systems are increasingly present in every aspect of our society, as their deployment can be witnessed from seemingly trivial applications of light switches, to critical control systems of nuclear facilities. In the context of critical systems, software faults and errors could potentially lead to detrimental consequences, thus more rigorous methodologies beyond the scope of testing need be applied to software systems. Formal verification, the concept of being able to mathematically prove the correctness of an algorithm with respect to a mathematical formal specification, can indeed help us prevent these failures. A popular specification language for these formal specifications is temporal logic, due to its intuitive, yet precise expressions that can be utilized to both specify and verify fundamental properties pertaining to software systems. Temporal logic can express properties pertaining to safety, liveness, termination, non-termination, and more with regards to various systems such as Windows device drivers, kernel APIs, database servers, etc. This dissertation thus presents automated scalable techniques for verifying expressive temporal logic properties of software systems, specifically those beyond the scope of existing techniques. Furthermore, this work considers the temporal sub-logics fair-CTL, CTL*, and CTL*lp, as verifying these more expressive sub-logics has been an outstanding research problem. We begin building our framework by introducing a novel scalable and high-performance CTL verification technique. Our CTL methodology is unique relative to existing techniques in that it facilitates reasoning about more expressive temporal logics. In particular, it allows us to further introduce various methodologies that allow us to verify fair-CTL, CTL*, and CTL*lp. We support the verification of fair-CTL through a reduction to our CTL model checking technique via the use of infinite non-deterministic branching to symbolically partition fair from unfair executions. For CTL∗, we propose a method that uses an internal encoding which facilitates reasoning about the subtle interplay between the nesting of path and state temporal operators that occurs within CTL∗ proofs. A precondition synthesis strategy is then used over a program transformation which trades nondeterminism in the transition relation for nondeterminism explicit in variables predicting future outcomes when necessary. Finally, we propose a linear-past extension to CTL*, that being CTL*lp, in which the past is linear and each moment in time has a unique past. We support this extension through the use of history variables over our CTL∗ technique. We demonstrate the fully automated implementation of our techniques, and report our bench- marks carried out on code fragments from the PostgreSQL database server, Apache web server, Windows OS kernel, as well as smaller programs demonstrating the expressiveness of fair-CTL, CTL*, and CTL*lp specifications. Together, these novel methodologies lead to a new class of fully automated tools capable of proving crucial properties that no tool could previously prove in the infinite-state setting

    Dynamic reconfiguration of GCM components

    Get PDF
    We detail in this report past research and current/future developments in formal specification of Grid component systems by temporal logic and consequent resolution technique, for an automated dynamic reconfiguration of components. It is analysed the specification procedure of GCM (Grid Component Model) components and infrastructure in respect to their state behaviour, and the verification process in a dynamic and reconfigurable distributed system. Furthermore it is demonstrated how an automata based method is used to achieve the specification, as well as how the enrichment of the temporal specification language of Computation Tree Logic CTL with the ability to capture norms, allows to formally define the concept of reconfiguration

    Flow Logic

    Get PDF
    Flow networks have attracted a lot of research in computer science. Indeed, many questions in numerous application areas can be reduced to questions about flow networks. Many of these applications would benefit from a framework in which one can formally reason about properties of flow networks that go beyond their maximal flow. We introduce Flow Logics: modal logics that treat flow functions as explicit first-order objects and enable the specification of rich properties of flow networks. The syntax of our logic BFL* (Branching Flow Logic) is similar to the syntax of the temporal logic CTL*, except that atomic assertions may be flow propositions, like >γ> \gamma or ≥γ\geq \gamma, for γ∈N\gamma \in \mathbb{N}, which refer to the value of the flow in a vertex, and that first-order quantification can be applied both to paths and to flow functions. We present an exhaustive study of the theoretical and practical aspects of BFL*, as well as extensions and fragments of it. Our extensions include flow quantifications that range over non-integral flow functions or over maximal flow functions, path quantification that ranges over paths along which non-zero flow travels, past operators, and first-order quantification of flow values. We focus on the model-checking problem and show that it is PSPACE-complete, as it is for CTL*. Handling of flow quantifiers, however, increases the complexity in terms of the network to PNP{\rm P}^{\rm NP}, even for the LFL and BFL fragments, which are the flow-counterparts of LTL and CTL. We are still able to point to a useful fragment of BFL* for which the model-checking problem can be solved in polynomial time. Finally, we introduce and study the query-checking problem for BFL*, where under-specified BFL* formulas are used for network exploration

    Specification Patterns for Robotic Missions

    Get PDF
    Mobile and general-purpose robots increasingly support our everyday life, requiring dependable robotics control software. Creating such software mainly amounts to implementing their complex behaviors known as missions. Recognizing the need, a large number of domain-specific specification languages has been proposed. These, in addition to traditional logical languages, allow the use of formally specified missions for synthesis, verification, simulation, or guiding the implementation. For instance, the logical language LTL is commonly used by experts to specify missions, as an input for planners, which synthesize the behavior a robot should have. Unfortunately, domain-specific languages are usually tied to specific robot models, while logical languages such as LTL are difficult to use by non-experts. We present a catalog of 22 mission specification patterns for mobile robots, together with tooling for instantiating, composing, and compiling the patterns to create mission specifications. The patterns provide solutions for recurrent specification problems, each of which detailing the usage intent, known uses, relationships to other patterns, and---most importantly---a template mission specification in temporal logic. Our tooling produces specifications expressed in the LTL and CTL temporal logics to be used by planners, simulators, or model checkers. The patterns originate from 245 realistic textual mission requirements extracted from the robotics literature, and they are evaluated upon a total of 441 real-world mission requirements and 1251 mission specifications. Five of these reflect scenarios we defined with two well-known industrial partners developing human-size robots. We validated our patterns' correctness with simulators and two real robots

    On the Complexity of ATL and ATL* Module Checking

    Full text link
    Module checking has been introduced in late 1990s to verify open systems, i.e., systems whose behavior depends on the continuous interaction with the environment. Classically, module checking has been investigated with respect to specifications given as CTL and CTL* formulas. Recently, it has been shown that CTL (resp., CTL*) module checking offers a distinctly different perspective from the better-known problem of ATL (resp., ATL*) model checking. In particular, ATL (resp., ATL*) module checking strictly enhances the expressiveness of both CTL (resp., CTL*) module checking and ATL (resp. ATL*) model checking. In this paper, we provide asymptotically optimal bounds on the computational cost of module checking against ATL and ATL*, whose upper bounds are based on an automata-theoretic approach. We show that module-checking for ATL is EXPTIME-complete, which is the same complexity of module checking against CTL. On the other hand, ATL* module checking turns out to be 3EXPTIME-complete, hence exponentially harder than CTL* module checking.Comment: In Proceedings GandALF 2017, arXiv:1709.0176
    • …
    corecore