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Abstract

Software systems are increasingly present in every aspect of our society, as their deployment

can be witnessed from seemingly trivial applications of light switches, to critical control systems

of nuclear facilities. In the context of critical systems, software faults and errors could poten-

tially lead to detrimental consequences, thus more rigorous methodologies beyond the scope of

testing need be applied to software systems. Formal verification, the concept of being able to

mathematically prove the correctness of an algorithm with respect to a mathematical formal

specification, can indeed help us prevent these failures.

A popular specification language for these formal specifications is temporal logic, due to its

intuitive, yet precise expressions that can be utilized to both specify and verify fundamental

properties pertaining to software systems. Temporal logic can express properties pertaining to

safety, liveness, termination, non-termination, and more with regards to various systems such

as Windows device drivers, kernel APIs, database servers, etc. This dissertation thus presents

automated scalable techniques for verifying expressive temporal logic properties of software

systems, specifically those beyond the scope of existing techniques. Furthermore, this work

considers the temporal sub-logics fair-CTL, CTL∗, and CTL∗lp, as verifying these more expressive

sub-logics has been an outstanding research problem.

We begin building our framework by introducing a novel scalable and high-performance CTL

verification technique. Our CTL methodology is unique relative to existing techniques in that it

facilitates reasoning about more expressive temporal logics. In particular, it allows us to further

introduce various methodologies that allow us to verify fair-CTL, CTL∗, and CTL∗lp. We support

the verification of fair-CTL through a reduction to our CTL model checking technique via the use

of infinite non-deterministic branching to symbolically partition fair from unfair executions. For

CTL∗, we propose a method that uses an internal encoding which facilitates reasoning about the

subtle interplay between the nesting of path and state temporal operators that occurs within

CTL∗ proofs. A precondition synthesis strategy is then used over a program transformation

which trades nondeterminism in the transition relation for nondeterminism explicit in variables

predicting future outcomes when necessary. Finally, we propose a linear-past extension to CTL∗,

that being CTL∗lp, in which the past is linear and each moment in time has a unique past. We

support this extension through the use of history variables over our CTL∗ technique.

We demonstrate the fully automated implementation of our techniques, and report our bench-

marks carried out on code fragments from the PostgreSQL database server, Apache web server,

Windows OS kernel, as well as smaller programs demonstrating the expressiveness of fair-CTL,

CTL∗, and CTL∗lp specifications. Together, these novel methodologies lead to a new class of fully

automated tools capable of proving crucial properties that no tool could previously prove in

the infinite-state setting.
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Impact Statement

Outside Academia: Automated tools with enriched expressiveness capabilities are pivotal in

the role of verifying software systems. The logics supported thus far within the verification

community, that being CTL and LTL, have significantly reduced expressiveness as they restrict

the interplay between temporal operators and path quantifiers, thus disallowing the expression

of many practical properties, for example “along some future an event occurs infinitely often”.

Existing temporal verifiers would thus not be sufficient in allowing a user to exhaustively verify

various properties, as the supported logics simply are not able to express them. Contrarily, our

automated verification techniques for fair-CTL, CTL∗, CTL∗lp allow us to express such properties,

in an even more succinct manner, including properties involving existential system stabilization

and possibility properties. These novel expressive properties have been imperative in verifying

systems such as Windows kernel APIs that acquire resources and APIs that release resources,

as later shown by our experiments.

Our research thus shows potential for industrial applications, as support for increasingly expres-

sive temporal logics is beneficial in industry given that it would pave way for a more exhaustive,

succinct, and complete system analyses. Additionally, given that our techniques are modular

and can be built upon existing CTL model-checkers, including those present within industry,

the low effort of extending CTL verification to fair-CTL, CTL∗, CTL∗lp verification would lead to

a seamless and thus wide-use adoption of our techniques.

Inside Academia: We propose a framework utilizing a novel scalable and high-performance

CTL verification technique to facilitate reasoning about more expressive temporal logics. We

thus demonstrate that one can indeed reduce more expressive temporal properties, via history

and prophecy variables that are to be annotated throughout a software’s code, to existing

well-supported logics. Our methods have been published in top-tier conferences and journals,

and are accompanied by an open-source tool. Of course, such methods lend themselves to

various limitations, however, this dissertation suggests research methods which could mitigate

each of these limitations. We are thus advancing the dialogue of how increasingly expressive

temporal logics can be better supported in the future, through our thorough discussion of our

methodologies, limitations, and potential improvements. Furthermore, our open-source tool

would allow for the adaptation and improvement of our research methodologies by the larger

verification community.
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Chapter 1

Introduction

In recent years, we have witnessed a surge in the interest of formal verification for software

systems, and not without reason. Formal verification, the concept of being able to mathemati-

cally prove the correctness of an algorithm with respect to a mathematical formal specification,

can indeed help us prevent detrimental failures in safety-critical systems and avoid financially

burdening bugs prevalent in software. As Edsger W. Dijkstra has famously claimed “Program

testing can be used to show the presence of bugs, but never to show their absence!” Verification

is thus crucial in that it is exhaustive in its measures to guarantee the absence of incorrect

system behavior. Applications of verification techniques have ranged from aviation control,

to financial systems, and is ever-expanding given this technological era. Yet the burden of

formal proofs lies on the shoulders of those developing software systems, as many techniques

call for the annotation of programs with correctness criteria (e.g. pre and post conditions)

that are then to be formally proven. However, developers are often not versed in the formal

methods of mathematics, thus undermining successful state-of-the-art research into numerous

verification methodologies. Alas, there still exists limited techniques allowing for a uniform,

fully automated scalable tool for proving intuitive specifications of software systems.

In this dissertation, we thus introduce the first known unifying, fully automated verification

system culminating to the verification of a superset logic, known as CTL∗lp, of the widely accepted

specification language of temporal logic. Our efforts are established through introducing novel

model checking methodologies for the verification of sub-logics such as CTL and fair-CTL that

are conducive to a new class of fully-automated tools capable of proving crucial properties

that no tool could previously prove. Temporal logic is a formal system for specifying and

reasoning about propositions qualified in terms of time. It offers a unified approach to program

verification as it applies to both sequential and parallel programs and provides a uniform

framework for describing a system at any level of abstraction. Temporal logic thus allows for

the specification of a crucial class of software properties, those that characterize the behavior of

a system over time. Hence, a number of semi-automated systems have been previously proposed

1



2 Chapter 1. Introduction

to exclusively reason about either Computation-Tree Logic (CTL) or Linear Temporal Logic

(LTL) in the infinite-state setting. However, corresponding verification techniques are neither

scalable nor fully automated, and disallow extensions conducive to the expression of many

practical properties, such as CTL∗lp existential stabilization, i.e., “along some future an event

occurs infinitely often”. Furthermore, until now there have not existed semi-automated, let

alone, fully automated systems that allow for the verification of such expressive CTL∗lp properties

over infinite-state systems. This leaves a significant gap in the realm of formal verification, as

CTL∗lp, the superset of both CTL and LTL, can indeed facilitate the interplay between path-based

and state-based reasoning. CTL∗lp thus exclusively allows for the expressiveness of properties

involving existential system stabilization and “possibility” properties.

This dissertation proposes methods capable of such a task through building novel CTL model

checking techniques capable of supporting more expressive logics such as fair-CTL and CTL∗lp,

thus introducing the first known fully automated tool for symbolically proving CTL∗lp proper-

ties of (infinite-state) software systems. Additionally, this is the first automated verification

system for software systems to consider a linear-past extension to temporal logic in which the

past is linear and each moment in time has a unique past. We initially propose a novel high-

performance and fully automated CTL verification technique, utilizing counterexample-guided

precondition synthesis strategy. This methodology is unique to competing strategies beyond its

scalability in that it allows us to implement an internal encoding that admits reasoning about

the subtle interplay between the nesting of temporal operators and path quantifiers, conducive

to the verification of more expressive logics such as CTL∗lp and fair-CTL. A program transfor-

mation introducing prophecy variables to predict the future outcomes, in addition to history

variables preserving past outcomes, is then employed to synthesize and quantify preconditions

over the transformed program that represent program states that satisfy a CTL∗lp formula. We

further demonstrate the viability of our approach in practice, thus leading to a new class of

fully automated tools capable of proving crucial properties that no tool could previously prove

in the infinite-state setting. Furthermore, we have implemented our approach and report our

benchmarks carried out on case studies ranging from smaller programs to demonstrate the ex-

pressiveness of CTL∗lp specifications, to larger code bases drawn from device drivers and various

industrial examples.

In this chapter, we begin by describing the context under which temporal logic exists within

the realm of formal verification. We then provide a detailed analysis of the expressiveness of

various temporal logics and their applications to software programs, as this is paramount in

discerning the subtle difficulties in verifying each of these logics, and the outstanding research

questions associated with them. Finally, we provide the outline and technical contributions of

this dissertation.
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1.1 Context and Motivation

In [Pnu77], Amir Pnueli introduced the idea of utilizing temporal logic as a unifying approach

to program analysis for both sequential and parallel programs. He suggested that temporal

reasoning, in which propositions are qualified in terms of time, allows for the logical basis of

proving correctness properties of programs. Additionally, temporal logic formalizes the intu-

itive reasoning that a programmer employs in the design and implementation of programs and

systems. This lead to a surge of interest in the use of static analysis techniques to automatically

verify various temporal logics, both for finite-state and infinite-state systems.

The context in which the usage of temporal logic first arose for the analysis of programs was

towards the trend of unifying the basic notions and approaches of program verification for

both sequential and parallel programs. Pnueli came to find that the prevalent notions of what

constitutes the correctness of a program can all be reduced to two main temporal concepts:

invariance and eventuality. In [Lam80], Lamport further refines these concepts as safety and

liveness, respectively. Safety, for example, covers the concepts of partial correctness (some-

thing bad never happens) for sequential programs, mutual exclusion (two processes are not in

their critical sections at the same time), and deadlock-freedom (the program does not reach a

deadlocked state) for concurrent programs. Liveness covers the concepts of total correctness

in addition to the generalization of correct behaviors for programs that contain loops. For ex-

ample, termination (the program eventually does terminate) and starvation-freedom (a process

eventually serves) are liveness properties. Note that the first formal definition of both safety

and liveness properties was not introduced until [AS86]. Alpern and Schneider represent a finite

prefix of an execution as the set of all possible continuations from that point on. This contrasts

to the notions in [Lam80], which only consider infinite executions. This leads to a slightly more

general notion of safety and liveness properties, with liveness properties containing at least one

continuation for every finite prefix.

In addition to supporting correctness properties of programs, temporal logic allows for hierar-

chical specification and reasoning. From a developer’s standpoint, natural languages are very

expressive yet very imprecise. Contrarily, formal languages are not very expressive, but they

are precise. Temporal logic thus bridges the expression and precision gap by providing a single

logical system for describing the program at any level of abstraction, from the highest-level

specification to the programming-language implementation. A statement about the program

at one level is a meaningful statement about any lower level. Thus, hierarchical design meth-

ods are supported directly, with no extra mechanism needed to bridge the different levels of

description.
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1.1.1 Expressiveness of Temporal Logics and Their Applications to

Programs

In order to discern the subtle difficulty in verifying various temporal logics, we must first delve

into the differing temporal sub-logics and their relation to each other. Note that for finite-state

systems, the distinctions between branching-time and linear-time logics are less crucial from an

automation standpoint, as verifying these logics is decidable. However, when considering the

undecidable general class of infinite-state systems (e.g., systems with unbounded arithmetic),

the distinction is a key issue given the unparalleled difficulty of verifying linear-time logics over

branching-time logics.

Expressiveness of CTL and LTL

CTL and LTL are the most well-studied temporal logics given that they each only require a

homogenous approach to reason about computational systems. CTL is a branching-time logic,

which requires reasoning about sets of states, while LTL is a linear-time logic, which requires

reasoning about sets of paths. The two interpretations correspond to two different ways of

viewing time: as a continually branching set of possibilities, or as a single linear sequence

of actual events, respectively. In the branching time approach, all of the possible futures

are equally real and must be considered. Thus, when considering nondeterministic transition

systems (as we do), the present does not determine a unique future, but rather a possibly infinite

set of possible futures given that nondeterminism translates to many possible computations.

Branching-time logic, the most common being CTL, thus requires reasoning about sets of states

within a transition system that satisfy a particular temporal formula. Such reasoning is crucial

to applications including planning, games, security analysis, disproving, environment synthesis,

and many others [GT00, PMT02]. In the linear time approach, at each instance of time there is

only one future that will actually occur. Given that all assertions must be interpreted over one

real future, path quantifiers are thus not required for linear-time logics. Linear-time logic, the

most common being LTL, thus requires reasoning about sets of paths that satisfy a formula. In

order to demonstrate the further nuances between the various temporal logics to be discussed,

we provide an informal description of the temporal operators shared by all temporal logics:

• Next or Xθ : θ has to hold starting from the next position in a path.

• Globally or Gθ : θ has to hold starting from all the positions along a path.

• Eventually or Fθ : θ eventually has to hold.

• Strong Until or θ1 U θ2 : θ1 has to hold starting from all positions until at some position

θ2 starts to hold. θ2 must be verified in the future.



1.1. Context and Motivation 5

• Weak Until or θ1 W θ2 : θ1 has to hold starting from all positions until at some position

θ2 starts to hold. Unlike the strong until, θ2 does not have to be verified and, if such is

the case, then θ1 has to hold forever.

We now consider various CTL properties crucial to the verification of software programs, that

being infinite-state systems:

• AG Good: Safety, entailing that Good will be true for all states on all paths, that is,

something bad will never happen.

• AF Good: Liveness or termination, entailing that Good will eventually become true for

some state on every path, that is, something good will eventually happen. Subsequently,

AF can also express termination.

• EG Good: Nontermination, entailing that there exists an execution that will never halt

in which Good will forever continue to hold for.

• AGEF Reset: From every state, it is possible to get to the reset state along some path.

We further discuss the applications and expressiveness of LTL in Sections 1.1.2 and 1.1.3 below.

Despite their discrepancies, the expressiveness of CTL and LTL are incomparable given that

they simply provide differing interpretations of time. However, the restriction these two logics

impose on the interplay between linear-time operators and path quantifiers disallows a great

deal of properties vital to appropriately expressing the correctness of a system. For example,

although CTL can express a system’s interaction with inputs and nondeterminism, a capability

in which linear-time temporal logics (LTL) is inadequate to express, it cannot model trace-based

assumptions about the environment in sequential and concurrent settings (e.g. schedulers) that

LTL can express.

1.1.2 Expressiveness of Fair-CTL

Some of these deficiencies can be mitigated by considering fairness for branching-time logic

(fair-CTL). Additionally, despite LTL being more intuitive than CTL, there exists significantly

more tools capable of verifying CTL instead of LTL. This is due to the fact that LTL properties

are computationally harder to prove than CTL properties in both the finite-state and infinite-

state settings. Fair-CTL thus allows us to specify some interaction of linear-time reasoning

within branching-time reasoning, but only in specifying fairness assumptions pertaining to a

system’s environment. These properties are often imperative to verifying the liveness of systems

such as Windows kernel APIs that acquire resources and APIs that release resources. Below
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are properties which can be expressed in fair-CTL, but neither CTL nor LTL. We write these

properties in CTL∗, the superset of both CTL and LTL to be discussed in the next section. For

brevity, we write Ω for the LTL property GFp ⇒ GFq, where p and q are subsets of program

states, constituting our fairness requirement (infinitely often p implies infinitely often q). We

note that we define and discuss fairness further in Chapter 4.

The property E[Ω ∧ Gϕ] generalizes fair non-termination, that is, there exists an infinite fair

computation all of whose states satisfy the property ϕ. The property A
[
Ω ⇒ G[ϕ1 ⇒ A(Ω ⇒

Fϕ2)]
]

indicates that on every fair path, every ϕ1 state is later followed by a ϕ2 state. We

will later verify this property for a Windows Device Driver, indicating that a lock will always

eventually be released in the case that a call to a lock occurs, provided that whenever we

continue to call a Windows API repeatedly, it will eventually return a desired value (fairness).

Similarly, A
[
Ω⇒ G[ϕ1 ⇒ A(Ω⇒ FE(Ω∧Gϕ2))]

]
dictates that on every fair path whenever a ϕ1

state is reached, on all possible futures there is a state from which there is a possible fair future

and ϕ2 is always satisfied. For example, one may wish to verify that there will be a possible

active fair continuation of a server, and that it will continue to effectively serve if sockets are

successfully opened. Note that later on our definition of fair-CTL considers finite paths. Thus,

all path quantifications above range over finite paths as well.

Fairness is also crucial to the verification of concurrent programs, as well-established tech-

niques such as [GCPV09] reduce concurrent liveness verification to a sequential verification

task. Thread-modular reductions of concurrent to sequential programs often require a con-

cept of fairness when the resulting sequential proof obligation is a progress property such as

wait-freedom, lock-freedom, or obstruction-freedom. Moreover, obstruction freedom cannot be

expressed in LTL without additional assumptions. With our technique we can build tools for

automatically proving these sequential reductions using fair-CTL model checking.

Unfortunately, fair-CTL still cannot be generalized to model all trace-based properties in LTL.

It still does not fully mitigate the significantly reduced expressiveness of CTL and LTL, as recall

that they only reason about either states or paths, but not the junction of both. Contrarily,

CTL∗, a superset of LTL, CTL, and fair-CTL can facilitate the interplay between state-based

and path-based reasoning.

1.1.3 Expressiveness of CTL∗

This restriction on the interplay between linear-time and branching-time operators causes var-

ious crucial properties to be inexpressible. Consider a property involving the assertion “along

some future an event occurs infinitely often”. This property cannot be expressed in either LTL,

CTL, or fair-CTL, yet is crucial when expressing the existence of fair paths spawning from every

reachable state in an infinite-state system. However, this property is expressible in CTL∗. In
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the section below, we provide further examples of properties exclusive to CTL∗ in addition to

an analysis of the crucial application of CTL∗ properties in the infinite-state setting.

First, we briefly give an informal description of CTL∗ syntax to allow the reader to more

intuitively understand the provided examples. CTL∗ formulae are made up of path quantifiers

and temporal operators. Two types of path quantifiers exist, as previously demonstrated: All,

written as Aψ, indicates that ψ has to hold on all paths starting from a state. Exists, written

as Eψ indicates that there exists at least one path starting from a state where ψ holds. For

both A and E, ψ denotes a temporal formula, however in CTL∗, not every temporal operator

has to be preceded by a path quantifier.

The linear-time logic LTL is a fragment of CTL∗ that only allows formulae of the form Aψ, where

A is the only occurrence of a path quantifier within ψ. When taking LTL as a subset of CTL∗,

LTL formulae are implicitly prefixed with the universal path quantifier A. For example, the LTL

formula FG x asserts that for every trace of the system, variable x will eventually become true

and stay true forever. The branching-time logic CTL is a restricted subset of CTL∗ in which a

temporal operator is always directly preceded by a path quantifier. Thus, CTL sub-formulae are

always composed of pairs containing a path quantifier and a temporal operator. For example,

the CTL formula EF x is true in states from which there exists a path where eventually there

is a state in which x holds. Note that CTL∗ allows the unrestricted nesting of path quantifiers

and temporal operators.

CTL∗ thus allows us to express properties involving existential system stabilization, stating that

an event can eventually become true and stay true from every reachable state. Additionally,

it can express “possibility” properties, such as the viability of a system, stating that every

reachable state can spawn a fair computation. Below are properties that can only be afforded

by the extra expressive power of CTL∗. These properties are often imperative to verifying

systems such as Windows kernel APIs that acquire resources and APIs that release resources,

as later shown by our experiments.

The property EGF x asserts that there exists some path such that x holds infinitely often along

the path. This property is not expressible in CTL nor in LTL, yet is crucial when expressing the

existence of fair paths spawning from every reachable state in a system. The CTL approximation

EGAF x differs subtly in that it requires that there exists a path such that from all states along

the path, x will eventually be reached for all futures. In LTL one can try to approximate a

solution by trying to disprove FG ¬x. However, this approach only goes so far, e.g. we cannot

nest the property within another path quantifier, further stressing the expressive deficiency of

LTL.

The property EFG(¬x ∧ (EGF x)), results from nesting the property EGF(x) inside a larger

formula, and conveys the divergence of paths. That is, there is a path in which a system



8 Chapter 1. Introduction

stabilizes to ¬x, but every point on said path has a diverging path in which x holds infinitely

often. This property is expressible neither in CTL nor in LTL, yet is crucial when expressing

the existence of fair paths spawning from every reachable state in a system. In CTL, one can

only examine sets of states, disallowing us to convey properties regarding paths. The CTL

approximation EFAG(¬x ∧ (EGAF x)) differs in that it requires that there is a state such that

from all states along the path, a system stabilizes to ¬x, yet from every point on said path, all

states have a diverging path in which x holds infinitely often, thus inducing a property that is

unsatisfiable. The slightly weaker EFEG(¬x ∧ (EGAF x)) is also unsatisfiable. The CTL under

approximation EFEG(¬x∧ (EGEF x)) does indeed entail that there is a path in which a system

stabilizes to ¬x, yet from every point on said path there exists a state in which x holds at

least once. This under approximation is thus not sufficient given that it cannot satisfy that x

must hold infinitely often in the diverging path. In LTL, one cannot approximate a solution by

trying to disprove either FG ¬x or GF x, as one cannot characterize these proofs within a path

quantifier.

Another CTL∗ property AG
[
(EG ¬x) ∨ (EFG y)

]
dictates that from every state of a program,

there exists either a computation in which x never holds or a computation in which y eventually

always holds. The linear time property G(Fx→ FG y) is significantly stricter as it requires that

on every computation either the first disjunct or the second disjunct hold. Finally, the property

EFG
[
(x∨ (AF ¬y))

]
asserts that there exists a computation in which whenever x does not hold,

all possible futures of a system lead to the falsification of y. This assertion is impossible to

express in LTL.

1.1.4 Expressiveness of CTL∗lp

In the philosophical context of which they were developed [Kam68, Pri57], temporal logics

have always provided temporal connectives that refer to both the past and the future. Yet in

the context of system verification, past connectives have been often cast aside for the sake of

minimality since they add no expressive power to linear temporal logics given that a compu-

tation always has a definite starting time and a unique past [GPSS80]. However, specifying

temporal formulae can often become overly convoluted when specifying a system’s correctness

properties, thus rendering the intuitiveness and preciseness of temporal logic obsolete. Extend-

ing CTL∗ to admit past-time connectives thus allows for exponentially more succinct temporal

formulae [KPV12]. Furthermore, past-time connectives are known to make the formulation of

specifications more intuitive [LPZ85].

As with future sub-logics, there exist two interpretations corresponding to two possible views

regarding the nature of the past. In branching-time past (CTL∗bp), past is branching and each

moment in time may have several possible futures and several possible pasts. In linear-time past
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(CTL∗lp), past is linear and each moment in time may have several possible futures and a unique

past. Both views assume that past is finite. Extensions to branching-past connectives have been

extensively studied [KPV12]. The effect of adding such connectives on the expressiveness and

computational complexity of CTL∗ differs from the linear-past results. Branching-past adds

expressive power to CTL∗ (CTL∗bp), while model checking finite-state systems for CTL∗bp is in

PSPACE, and its satisfiability is in 2EXPTIME [KPV12]. These are the same known complex-

ities as of CTL∗’s. Unfortunately, the logic CTL∗bp is beyond the scope of this dissertation, thus

we consider the linear-past extension CTL∗lp for infinite-state systems in which the past is linear

and each moment in time has a unique past. Specifically, we consider a fragment of CTL∗lp in

which the addition of linear-past connectives to CTL∗ (CTL∗lp) does not increase the complexity

of the satisfiability result for finite-state systems [KPV12]. Yet supporting linear-past connec-

tives is still sufficiently beneficial given that it enriches temporal logics with more intuitive and

succinct specifications. Automata-theoretic algorithms for the verification of CTL∗lp properties

over finite-state systems have been introduced in [Boz08, KPV12], however we are not aware of

implementations of these techniques. Additionally, we are not aware of any tools that consider

past temporal operators in model checking for infinite-state programs.

An example of how CTL∗lp can allow us to succinctly and intuitively express properties concerns

the verification of a Windows device driver taken from [BBC+06], where a property requires

that drivers mark an I/O request packet as pending (using IoMarkIrpPending) before queuing

it, that is:

AG(Queue(Irp)⇒ X−1 (¬Queue(Irp) U−1 IoMarkIrpPending(Irp)))

Where the past-connective X−1 indicates an event that occurs in the previous state, while the

past-connective θ1U
−1θ2 indicates that θ1 has occurred since θ2. However, the property written

solely in future-connectives would be:

¬Queue(Irp) W IoMarkIrpPending(Irp) ∧

G(Queue(Irp)→ X(¬Queue(Irp) W IoMarkIrpPending(Irp)))

Note that we would be required to keep track of every queuing action, denoted by Queue(Irp),

and ensure a queuing call cannot be made until a call to IoMarkIrpPending(Irp) has been

made. If a queuing call has indeed been made, then we must ensure that future queuing

calls cannot be additionally made until additional calls to IoMarkIrpPending(Irp) have been

made. A future-connective formulation is thus less intuitive and succinct when compared to

its past-connective alternative. Using past connectives, we simply ensure that if we encounter

a queuing call, then the I/O request packet has been previously marked as pending, with no

other queuing calls in between.
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1.2 Objectives and Contributions

We are interested in the static analysis technique of automated model checking, which aims to

determine whether or not a formula is true in a given model. That is, given a model of a system,

we exhaustively and automatically check whether this model meets a given specification. More

concisely, we seek to automatically verify temporal specifications for the undecidable general

class of infinite-state programs supporting both control-sensitive and integer properties. Fully

automated verification of temporal specifications have generally proven to be difficult over the

years.

Despite the existence of semi-automated verification tools for CTL and LTL for general integer

manipulating programs [BPR13, CGP+07, CK11, CK13], these tools are not conducive for the

verification of CTL∗. Beyond these tools’ stagnation in both high-performance and automation,

an additional key problem is that CTL∗ formulae cannot merely be partitioned into isolated CTL

and LTL sub-formulae, as such a partition fails to treat the intricate dependence between state-

based and path-based reasoning. Finding a way that allows us to symbolically move between

representations of sets of states for branching-time, and sets of paths for linear-time in a way

that is conducive to automatic analysis has thus been an outstanding problem in automatic

program verification. Moreover, existing techniques for model checking CTL properties cannot

even provide support for the verification of the fair-CTL subset, further excluding a large set of

branching-time liveness properties necessitating fairness.

Furthermore, no unifying, fully automatic CTL∗ system, encompassing CTL∗lp, CTL, LTL, and

fair-CTL, for verifying the undecidable general class of infinite-state systems has been known. It

is well-known that CTL∗ model checking for infinite-state systems generalizes termination and

co-termination and is undecidable. A decision procedure exploring the structure of finite-state

ω-automata was first introduced to determine the satisfaction of a CTL∗ formula over binary

relations in [ES84], and later extended in [EJ99]. Manual proof systems for the verification of

temporal logic, first introduced by [EH86, Lam80], have been well-studied. A complete and

sound axiomatization of propositional CTL∗ then followed in [Rey01], which inspired the first

sound and relatively complete deductive proof system for the verification of CTL∗ properties

over possibly infinite-state systems [KP05]. Proof rules for verifying CTL∗ properties of infinite-

state systems were implemented in STeP [BBC+00]. However, the STeP system is only semi-

automated, as it still requires users to construct auxiliary assertions and participate in the

search for a proof. In this dissertation, we thus introduce the first known unifying temporal

logic verification system capable of automatically verifying CTL, LTL, fair-CTL, CTL∗, and

CTL∗lp formulae for software, or infinite-state transition systems. We provide preliminaries,

notation, and further technical background utilized throughout the dissertation in Chapter 2.

Our verification system builds upon a novel scalable and high-performance CTL verification

technique introduced in Chapter 3. Our CTL methodology is unique beyond its scalability, in
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that it is conducive in allowing us to verify fair-CTL in Chapter 4, and further on CTL∗ and

CTL∗lp in Chapters 5 and 6. We thus define and outline our contributions as follows:

• Chapter 3: We introduce our aforementioned novel CTL verification technique which

all other Chapters are to be built on. Given a CTL property ϕ and a program P ,

we recursively compute quantifier-free preconditions ℘ for all sub-formulae of ϕ. We

then proceed to verify the formulae obtained from ϕ by replacing the sub-formulae with

their corresponding preconditions. Preconditions for a property ϕ are computed using

a counterexample-guided precondition synthesis strategy where several preconditions for

each location can be computed simultaneously through the natural decomposition of the

counterexample’s state space. The main contributions are summarized in the table below:

Chapter 3: CTL Verification of Infinite-State Systems

Reducing CTL to Safety and Liveness Algorithm 3

Verifying CTL via Weakest-Precondition Algorithm 2

Proof of Soundness Proposition 3.2

An experimental evaluation in Chapter 7 using examples from the benchmark suites of

the competing tools (which are drawn from industrial benchmarks) demonstrates orders-

of-magnitude performance improvements in many cases. This work was initially produced

and published in [CKP14].

• Chapter 4: As discussed, although CTL can express a system’s interaction with inputs

and nondeterminism, it cannot model trace-based assumptions about the environment

in sequential and concurrent settings (e.g. schedulers) that LTL can express. We thus

introduce a novel methodology that reduces Fair-CTL to fairness-free CTL model checking

in Chapter 3. Given a CTL property ϕ and fairness constraint Ω = (p, q), entailing that

if p occurs infinitely often, then so must q, we modify each transition relation by adding

prophecy variables [AL91] to encode a partition of fair from unfair paths. We thus proceed

to verify our CTL properties on paths that are deemed as fair. This work was initially

produced and published in [CKP15a], and the main contributions are summarized in the

table below:

Chapter 4: Fair-CTL Verification of Infinite-State Systems

Reduction of fair-CTL to CTL Figure 4.1

Proof of Soundness of Figure 4.1 Theorem 4.1

Fair-CTL Model-Checking Algorithm 8

Proof of Soundness and Relative Completeness Theorem 4.2

• Chapter 5: We introduce the first fully automated tool for symbolically proving CTL∗

properties of infinite-state transition systems. We introduce a solution that admits the
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arbitrary nesting of state-based reasoning within path-based reasoning, and vice versa.

Given our strategic CTL technique, we formulate a strategy allowing us to symbolically

move between representations of sets of states and sets of paths, thus leading to the

first known fully automatic method capable of proving CTL∗ properties of infinite-state

programs. A precondition synthesis strategy is used with a program transformation that

trades nondeterminism in the transition relation for nondeterminism explicit in variables

predicting future outcomes when necessary. The main contributions are summarized in

the table below:

Chapter 5: CTL∗ Verification of Infinite-State Systems

Verifying CTL∗ via Determinization and Approximation Algorithm 13

Proof of Soundness Theorem 5.3

Discussion on Incompleteness of Determinization Section 5.4

We note that for properties expressible in Fair-CTL, our Fair-CTL technique is relatively

complete (to our safety and termination sub-procedures), whereas our CTL∗ prover is

incomplete. We will thus further emphasize that fair-CTL would additionally allow us to

employ the automata-theoretic technique for LTL verification [VW94], thus allowing us

to prove relatively completely trace-based properties. This work was initially produced

and published in [CKP15b].

• Chapter 6: We discuss the support of a fragment of CTL∗lp using history variables, and

provide further examples of its usage. The fragment we tackle merely restricts that the

newly introduced past formulae be immediately followed by either an additional past

formula, or a state formula. That is, we disallow referring to the future of a path within

a past formula. We note that this does not affect the nesting of state formulae or the

further nesting of past formulae within a CTL∗lp property. We discuss the reasons for such

a limitation in further sections. An invited submission to the Journal of ACM includes

the CTL∗lp extension to our CTL∗ algorithm in [CKP17]. The main contributions are

summarized in the table below:

Chapter 6: Extending CTL∗ to CTL∗lp Verification

Verifying CTL∗lp via History Variables Algorithm 15

Proof of Soundness Theorem 6.3

Case Study Section 6.3.1

• Chapter 7: We conclude this dissertation with a demonstration of our open-source tool T2,

upon which all of our implementations have been made from Chapters 3–6. We demon-

strate how T2 has been implemented to support the verification of CTL, LTL, fair-CTL,

CTL∗, and CTL∗lp directly from C programs. We discuss T2’s architecture, its underly-

ing techniques, and conclude with an experimental illustration of its competitiveness and
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directions for future extensions. The full demonstration and release of T2 was initially

published in [BCI+16].



Chapter 2

Preliminaries and Background

We define all mathematical notation and semantics to henceforth be used in the remaining

Chapters of this thesis. This chapter thus aims to guide the reader in understanding the

technical contributions to be demonstrated in Chapters 3–6. In Section 2.1 we introduce basic

mathematical notation. In Section 2.2 we define software programs and their representation

as both control flow graphs and infinite-state transition systems. Given that all contributions

in this thesis operate over infinite-state systems, we additionally provide a brief comparison

between infinite-state and finite-state verification. Finally, in the remaining sections, we provide

the semantics of all temporal logics we are to address and verify in this thesis.

2.1 Basic Notation

2.1.1 Sets

A set is a finite or infinite collection of objects in which order has no significance. Members of

a set are known as elements and the notation a ∈ A denotes that a is an element of a set A.

There are various ways of describing members of a set. In the case of a finite set of elements,

one often encloses the list of members in curly brackets as follows:

A = {a, b, c}

Similar notation is used for infinite sets, with an addition of ellipses to indicate infiniteness:

B = {1, 2, 3, . . .}

14
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A more general form of this is set-builder notation which describe sets that are defined by a

predicate, rather than explicitly enumerated as previously demonstrated. For example:

{x ∈ R. x > 0}

is the set of all strictly positive real numbers, which can be written in interval notation as

(0,∞). In our notation, note that the period (“.”) means “such that”. Further below we

elaborate on the notation R.

If every member of set A is also a member of set B, then A is said to be a subset of B, written

A ⊆ B. You can additionally write this statement as B ⊇ A, read as B is a superset of A.

Other symbols used to operate on sets include intersection
⋂

(“and” or intersection of sets),

and union
⋃

(“or” or union of sets). The symbol ∅ is used to denote the set containing no

elements, called the empty set. A Cartesian product is an operation that returns a set from

multiple sets. That is, for sets A and B, the Cartesian product A×B is the set of all ordered

pairs (a, b) where a ∈ A and b ∈ B. Products can be specified using set-builder notation as

follows:

A×B = { (a, b) | a ∈ A ∧ b ∈ B }.

Finally we define some sets that hold significant mathematical importance, and have acquired

specific naming conventions to identify them:

• N, denoting the set of all natural numbers: N = {0, 1, 2, 3, . . .}.

• Z, denoting the set of all integers (whether positive, negative or zero):

Z = {...,−2,−1, 0, 1, 2, . . .}.

• R, denoting the set of all real numbers. This set includes all rational numbers, together

with all irrational numbers.

2.1.2 Functions

A function f from A to B is a subset of the Cartesian product A×B in which every element of

A is the first component of one and only one ordered pair in the subset. That is, a function is a

many-to-one or a one-to-one relation that uniquely associates every a ∈ A with an object f(a)

in B. The set of values of which a function is defined over is called its domain, and the set of

values that the function can produce is called its range, this is denoted by f : domain→ range.

We denote a general function acting upon a particular domain, and returning a specific range

using 7→, e.g. domain 7→ range.
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2.1.3 Propositional Logic and First-Order Logic

The syntax of propositional logic formulae are defined as follows:

formula : α | formula connective formula | ¬formula

α : p(term, . . . , term)

connective :⇒ | ∧ | ∨ | ⇐⇒

where p is an n-place predicate symbol (an operator which returns true or false) denoting an

atomic condition, and formula1 ⇒ formula2 is defined as formula1 ∨ ¬formula2. Note that

finding solutions to propositional logic formulae is an NP-complete problem. We assume that

the reader is familiar with propositional logic, and choose to provide more detail with regards

to first-order logic(FOL), a generalization of propositional logic.

The basic components of first-order logic are called terms. A term is a variable, constant, or

the result of acting on variables and constants by function symbols. The syntax for first-order

logic and the set of terms and atoms belonging to it are defined as follows:

formula : α | formula connective formula |

quantifier V ariable formula | ¬formula

α : p(term, . . . , term)

term : f(term, . . . , term) | Constant | V ariable

connective :⇒ | ∧ | ∨ | ⇐⇒

quantifier : ∀ | ∃

where f is an n-place function symbol. Consider the formula ∀x. F and ∃x. F , where F is

a formula, the ∀ operator is the universal quantifier, i.e.,“for all”, and ∃ is the existential

quantifier, i.e., “there exists”. F denotes the scope of the associated quantifier, and when a

variable x occurs in the scope of a quantifier, then it is bound by the closest ∀x or ∃x. The

variable x is considered free in the formula F if one of its occurrences in F is not bound by any

quantifier within the scope of F .
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2.1.4 Linear Arithmetic

As previously discussed, the contributions covered in this thesis are in principle applicable to

every class of programs (see Section 2.2). However, our implementation (Chapter 7), which

depends on existing model-checker technology, constrains our domain of programs to those

of which can be directly translated to linear arithmetic. We thus define linear arithmetic as

follows [KS08]:

formula : formula ∧ formula | (formula) | atomic

atomic : sum op sum

op : = | ≤ | <

sum : term | sum+ term

term : f(term, . . . , term) | Constant | V ariable

Constant : Z | R

Note that the operators ≥ and > are indeed supported, as they can be expressed by ≤ and <

if the coefficients are negated, or if the order of the formula is reversed. Similarly, the binary

minus operator (“-”) can be expressed by x+−1y.

Linear arithmetic only considers both the rational and integer number domains. For the former

domain, solving for formulae is polynomial, while for the latter, the problem is NP-complete.

The underlying technology utilized by our algorithm indeed only supports the integer domain,

henceforth when using the term “linear arithmetic” throughout the thesis, we are indeed only

referring to the fragment which only considers the integer domain. Additionally, all conditional

formulae and assertions considered will henceforth be assumed to fall under the integer domain

of linear arithmetic.

The following is an example of a linear arithmetic formula:

(3x1 + 2x2 ≤ 5x3) ∧ (2x1 − 2x2 = 0)

Satisfiability and Validity: A formula is satisfiable if there exists at least one interpretation that

makes the formula true. A formula is said to be valid if all interpretations make the formula

true. Conversely, a formula is unsatisfiable if there exists no interpretations that make the

formula true, and invalid if some such interpretations makes the formula false. As an example,

a satisfying assignment to the formula above would be x1 = 2, x2 = x1, x3 = 2. Not all solutions

are satisfiable, hence this formula is not valid.

There exists a considerable amount of code that is expressible within the linear arithmetic

framework, especially code written in C. In Chapter 7, we provide further details on how C
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code can indeed be translated to linear arithmetic formulae.

Fourier-Motzkin Elimination: In the context of linear arithmetic, it is often necessary to find

the satisfiability of a given conjunction of linear constraints over real or integer variables. One

particular strategy to solve for these linear constraints is Fourier-Motzkin elimination, based

on variable elimination. That is, the elimination of a set of variables Vars from a formula F

of linear inequalities leads to another formula F ′ without the variables in Vars, such that both

systems have the same solutions over the remaining variables. Fourier-Motzkin elimination is

a widely used strategy towards deciding the satisfiability of a conjunction of linear constraints

over the reals and integers [Mon10].

Now we define Quantifier Elimination, that is for every quantified formula F there exists a

quantifier-free formula F ′ in such that F is equivalent to F ′. That is, consider a formula F

containing the variables x and y, with regards to ∃x. F (x, y), Quantifier Elimination would

thus result in a formula F ′(y) such that for every possible value y, F ′(y) is true if and only

if ∃x. F (x, y) is also true. Recall that a variable is called free in a given formula if at least

one of its occurrences is not bound by any quantifier. We assume that F contains both free

variables, and variables bound by quantifiers. Under quantifier elimination, it is always possible

to eliminate the quantified variables and get an equivalent formula with only free variables. If

all variables in F are bound by quantifiers, then for every quantified formula F there exists

a quantifier-free formula F ′ in such that F ′ is valid if and only if F is valid. That is, every

validity checking algorithm can reduce the formula to either true or false. Additionally, if all

variables are eliminated from a system of linear inequalities, then the resulting system is one of

exclusive constant inequalities. It thus becomes trivial to decide whether the resulting system

is satisfiable or not. One can thus eliminate all variables within a system of linear inequalities

to determine whether it has a solution(s) or not. For the purpose of our contributions, we note

that quantifier elimination is indeed closed under linear-integer arithmetic, but not non-linear

integer arithmetic.

In general, we require a quantifier elimination algorithm which transforms a quantified formula

into an equivalent formula without quantifiers. Due to its nature, Fourier-Motzkin elimination

thus consequentially performs quantifier elimination given its elimination of variable in Vars

to which an existential quantifier refers. Thus let us consider the Fourier-Motzkin elimination

method, where in order to eliminate a variable xn from a formula with variables x1, . . . , xn, for

every two constraints of the form

n−1∑
i=1

a′i · xi < xn <
n−1∑
i=1

ai · xi
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Where for i ∈ {1, . . . , n− 1}, ai and a′i are constants, we generate a new constraint

n−1∑
i=1

a′i · xi <
n−1∑
i=1

ai · xi

After generating all such constraints for xn, we remove all constraints that involve xn from

the formula. Fourier-Motzkin elimination is thus equivalent to performing existential quanti-

fier elimination, one variable at a time. A universal quantification ∀xn.G(x) is equivalent to

¬∃xn.¬G(x).

2.2 Programs and Transition Systems

In this section, we demonstrate how programs are considered and formalized in the context of

our verification framework.

2.2.1 Control Flow Graphs

As is standard [MP95], we treat programs as control flow graphs. A control flow graph (CFG)

is a directed graph representing all paths that might be traversed through a program during

its execution. In a CFG, each node in the graph represents a basic block of code without any

jumps or jump targets; jump targets start a block, and jumps end a block. That is, a program

is a triple P = (L, E,Vars), where

• L : A finite set of vertices containing one location for each basic block in the program.

• Vars : A set of variables(identifiers) ranging over the domain Vals, that is all permissible

values allowed by the program.

• E: A set of labeled edges/transitions where each edge (`, ρ, `′) in E, and `, `′ ∈ L. The

assertion ρ is a linear arithmetic expression over Vars and Vars′ (a primed copy of Vars,

where constants range over Vals), specifying possible transitions in the program.

In general, Vars refers to the values of variables before an update and Vars′ refers to the values

of variables after an update. We use a similar notation for conditions, i.e., if a is a condition

over Vars, a′ is the same condition where every reference to a variable v is replaced by reference

to v′. For example, if a is x = 5 then a′ would be x′ = 5. Recall that we assume our conditions

use linear constraints over variables in the program.
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int nondet();

int main() {
int y = 0;

int k = nondet();

int x = nondet();

if (k > 0)

while (x > 0)

x = x - k;

return 0; }

`1

`2

`3

ρ1 : y′ = 0

ρ2 : k > 0
k′ = k
x′ = x

ρ3 : k ≤ 0
k′ = k
x′ = x

ρ4 : x > 0
x′ = x− k
k′ = k

ρ5 : x ≤ 0
k′ = k
x′ = x

Figure 2.1: A C example program (left) with its corresponding CFG representation (right).

The set of locations L includes the first location `
I
, which has no incoming transitions from other

program locations. That is, for every (`, ρ, `′) ∈ E we have `′ 6= `
I
. Transitions exiting `

I
have

their conditions expressed in terms of Vars′. Locations with incoming transitions from `
I

are

initial locations. This allows us to encode more complex initial conditions. When demonstrating

figures, we omit `
I

and merely display the edges to locations with incoming transitions from `
I
.

Nondeterminism: In a program, there may exist various alternatives for a program flow

from a certain branching location. However, unlike an if-then statement, the method of choice

between these alternatives is not directly specified by the programmer; the program at run

time indeed decides between theses alternatives, e.g., a loop condition that may depend upon

user-input. That is, the output cannot be predicted at a branching location. The program thus

offers alternate control flows, but must ultimately decide between them upon execution. CFGs

naturally represent nondeterminism when two valid edges stemming from the same program

location exist. With regards to a program’s CFG P , nondeterministic assignments to variables

are denoted by the absence of an update to said primed program variables. We demonstrate

all concepts described above with an example below.

Consider Fig. 2.1, where a C program is represented with its corresponding CFG. In Chapter 7

we fully describe our procedure to translate C programs to CFGs, however, for the purpose of

clarity, we provide an example to illustrate our concepts further. Note that since we statically

verify programs, we choose to symbolically represent nondeterministic run-time behavior as

nondeterministic decisions within a C program denoted by the function nondet(). In this

program the integer variable y is initialized to 0, while x and k are given nondeterministic

assignments. Note how in transition ρ1 of the CFG the variables x and k are absent, indicating

their nondeterministic assignments. The nondeterministic value of k thus determines if the “if”

branch is indeed to be taken in the case that k > 0. Note the assignments k′ = k and x′ = x in
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ρ2 of the CFG, indicating that the values of these variables are remaining the same. If indeed

the branching condition k > 0 is taken, we arrive at a loop with a condition relying on the

yet another nondeterministic variable x. If the loop is entered, indicating that indeed x > 0,

then x is decremented by the value of k until x ≤ 0. Finally, note that `3 in the CFG is a final

location, that is, a location without any outgoing edges. Recall that each node or location in

the graph represents a basic block of code without any jumps or jump targets, thus we indeed

did not specify a new node for each C program location. For example, ρ4 contains both the

program commands x > 0 and x′ = x− k.

2.2.2 Infinite-State Transition Systems

Ultimately, P gives rise to an infinite-state transition system. Informally, a transition system is

used to describe the potential behavior of discrete systems. It consists of states and transitions

between states. If the reader is familiar with finite-state automata, transition systems differ

from automata in several ways:

• The set of states is not necessarily finite, or even countable.

• The set of transitions is not necessarily finite, or even countable, and an infinite number

of transitions could stem from a single state.

• There exists no singular initial state or final state.

Given that we constrain our programs over the linear arithmetic domain, our set of states are

indeed countable, but infinite. We thus define a transition system T = (S, S0, R, L), where

• S is the set of program states of the form S = (L − {`
I
})× (Vars→ Vals).

• S0 is the set of initial program states. We provide a more detailed definition of initial

states in “Transitions” below.

• R is the set of program transitions of the form R ⊆ S × S.

• L : S → 2AP a labeling function associating a set of atomic predicates with every state

s ∈ S. We note that transition systems arise from programs, where a program state

is characterized by a program location and a valuation over the program variables (as

discussed further below). Predicates expressed in linear arithmetic over program variables

thus serve the role of atomic propositions, as their truth value is utilized to label the

intended program states.
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States

A program state s is a pair (`, f) where ` 6= `
I

and f is a valuation, i.e., a function from

program variables to values. That is, a state of a program is described by a certain location

in the control flow graph and a variable valuation. For example, `1 ∧ x = 5 is an assertion

describing all states in which the program is in `1 and the value of variable x is 5. Recall that

for a program’s CFG P that the a transitions’ assertion ρ indeed does not include locations.

Thus we note that logical assertions can represent sets of program states by relating variables to

their values through linear arithmetic expressions, in addition to dictating updates to program

variables. Furthermore, assertions can treat locations as boolean values, and could refer to

locations and hence, by extension, assertions can also represent sets of transitions.

With regards to locations, a primed location indicates that it is the target of a transition.

Similarly, with regards to states, we may use a primed state to denote the next target state

within a transition system.

Transitions

To define transitions, we first consider the relation between two states. We define a valuation

(f1, f2) as a function from Vars ∪ Vars′ to Vals such that for every v ∈ Vars, (f1, f2)(v) = f1(v)

and (f1, f2)(v′) = f2(v). Now consider a program’s transitions R, a program can transition from

a state (`, f1) to state (`′, f2) if there exists a transition (`, ρ, `′) ∈ E such that (f1, f2) |= ρ,

where “|=” denotes semantic implication. For succinctness, we denote this as (s = (`, f1), s′ =

(`′, f2)) ∈ R. An initial state s0 = (`, f) is considered initial if and only if there is a transition

(`
I
, ρ, `) such that (f−1, f) |= ρ, where f−1 is some arbitrary valuation. Note that in this case

ρ is expressed in terms of Vars′ and hence the valuation f−1 does not affect the satisfaction of

ρ. Given V ⊆ Vars, the valuation obtained from f by restricting the valuation to variables in

V is denoted by f⇓V .

Paths

A trace or a path π in P is either a finite or infinite sequence of states such that for a finite path

π = 〈s0 = (`0, f0)〉, 〈s1 = (`1, f1)〉, . . . , 〈sn = (`n, fn)〉 where ∀ 0 ≤ i ≤ n. (si, si+1) ∈ R and

∀ 0 ≤ i ≤ n + 1. (sn, sn+1) /∈ R, or for an infinite path π = 〈s0 = (`0, f0)〉, 〈s1 = (`1, f1)〉, . . .,
where ∀i ≥ 0. (si, si+1) ∈ R. That is, for every i ≥ 0, there exists some (`, ρ, `′) ∈ E where

(fi, fi+1) |= ρ. We denote the above path π as an (`, f)-path. The set of infinite traces

starting at s ∈ S, denoted by Π∞(s), is the set of sequences (s0, s1, . . .) such that s0 = s and

∀i ≥ 0. (si, si+1) ∈ R. The set of finite traces starting at s ∈ S, denoted by Πf (s), is the set of

sequences (s0, s1, . . . , sj) such that s0 = s, j ≥ 0, ∀i < j. (si, si+1) ∈ R, and ∀s ∈ S. (sj, s) /∈ R.
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Finally, the set of maximal traces starting at s, denoted by Πm(s), is the set Π∞(s) ∪ Πf (s).

For a path π, we denote the length of said path by |π|, which is ω in case that π is infinite.

Given a program P , a location `, and a valuation f , we denote the set of (`, f)-paths in P by

Path(P, `, f). We say that π is a computation in P if for π = 〈(`0, f0)〉, 〈(`1, f1)〉, . . ., (`0, f0)

is an initial state. A state si is reachable if (`, fi) appears in some computation. Similarly, a

location ` is reachable if there exists some state si such that (`, fi) appears in some computation

The restriction of states of the form (`, f) and paths in the program is denoted by π⇓V .

2.3 CTL∗ Semantics

Given that CTL and Fair-CTL are both subsets of CTL∗, we begin by formally defining full

computation tree logic [Lam80, EH86], followed by said subsets. The syntax of CTL∗ (written

in negation normal form) includes state formulae ϕ, that are interpreted over states, and path

formulae ψ, that are interpreted over paths. Atomic predicates (ranged over by α) are expressed

in some underlying theory, e.g. linear arithmetic, over variables and constants. State formulae

(ϕ) and path formulae (ψ) are co-defined as follows:

ϕ ::= α | ¬α | ϕ ∧ ϕ | ϕ ∨ ϕ | Aψ | Eψ
ψ ::= ϕ | ψ ∧ ψ | ψ ∨ ψ | Gψ | Fψ | Xψ | [ψWψ] | [ψUψ]

Traditionally, CTL∗ is defined only over infinite paths, thus note that our semantics alternatively

ranges over maximal paths, as defined in 2.2.2. For a program P and a CTL∗ state formula ϕ,

we say that ϕ holds at a state s in P , denoted by P, s |= ϕ if:

• If ϕ = α, then P, s |= α iff s |= α

• If ϕ = ¬α, then P, s |= ¬α iff s 6|= α

• If ϕ = ϕ1 ∨ ϕ2, then P, s |= ϕ1 ∨ ϕ2 iff s |= ϕ1 or s |= ϕ2

• If ϕ = ϕ1 ∧ ϕ2, then P, s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2

• If ϕ = Aψ, then P, s |= Aψ iff ∀π = (s, ...) ∈ Πm(s). P, π |= ψ

• If ϕ = Eψ, then P, s |= Eψ iff ∃π = (s, ...) ∈ Πm(s). P, π |= ψ

Path formulae are interpreted over paths. For a program P and a CTL∗ path formula ψ, we

say that ψ holds on a path π = (s0, s1, . . .) ∈ Πm(s0) in P for location i ∈ [0, |π|), denoted by

P, π, i |= ψ if:

• If ψ = ϕ is a state formula, then P, π, i |= ϕ iff P, si |= ϕ.

• If ψ = ψ1 ∨ ψ2, then P, π, i |= ψ1 ∨ ψ2 iff P, π, i |= ψ1 or P, π, i |= ψ2

• If ψ = ψ1 ∧ ψ2, then P, π, i |= ψ1 ∧ ψ2 iff P, π, i |= ψ1 and P, π, i |= ψ2

• If ψ = Xψ1, then P, π, i |= Xψ1 iff P, π, i+ 1 |= ψ1
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• If ψ = Fψ1, then P, π, i |= Fψ1 iff ∃j ∈ [i, |π|). P, π, j |= ψ1

• If ψ = Gψ1, then P, π, i |= Gψ1 iff ∀j ∈ [i, |π|). P, π, j |= ψ1

• If ψ = ψ1Wψ2, then P, π, i |= ψ1Wψ2 iff either ∃k ∈ [i, |π|). P, π, k |= ψ2 and ∀ ∈
[i, k). P, π, j |= ψ1 or ∀j ∈ [i, |π|). P, π, j |= ψ1

• If ψ = ψ1Uψ2, then P, π, i |= ψ1Uψ2 iff ∃k ∈ [i, |π|). P, π, k |= ψ2 and ∀j ∈ [i, k). P, π, j |=
ψ1

A path formula ψ holds in a path π, denoted by P, π |= ψ, if P, π, 0 |= ψ. For a state formula

ϕ, ϕ holds on P , denoted by P |= ϕ, if for every initial state s we have P, s |= ϕ. When the

program P is clear from the context, we may write s |= ϕ for a state formula ϕ or π, i |= ψ for

a path formula ψ.

To give some intuition to the semantics of CTL∗, P, s |= EGFα asserts that for a program P ,

there exists some execution π starting from every initial state s such that α occurs along π

infinitely often. The formula EFϕ is an example of a “state” formula where P, s |= EFϕ if there

is a state s′ reachable from s where ϕ holds. The formula FGα is an example of a“Path” formula

where P, π |= FGα if on a path π, predicate α will eventually become true and stay true.

Although in our formalization negation can be applied only to atomic predicates, we use nega-

tion in higher level by using the de-Morgan rules as well as the equalities, where θ indicates

either ϕ or ψ:

¬Eθ ≡A¬θ

¬Fθ ≡G¬θ

¬[θUθ′] ≡[¬θ′W(¬θ′ ∧ ¬θ)]

2.3.1 CTL and LTL Semantics

The branching-time logic CTL [CE81] is a restricted subset of CTL∗ in which temporal operators

cannot be nested. That is, the only path formulae allowed are Gϕ1, Fϕ1, Xϕ1, ϕ1Uϕ2, and

ϕ1Wϕ2 for state formulae ϕ1 and ϕ2. CTL is thus of the form:

ϕ ::= α | ¬α | ϕ ∧ ϕ | ϕ ∨ ϕ | AGϕ | AFϕ | A[ϕWϕ] | A[ϕUϕ]

| EFϕ | EGϕ | E[ϕUϕ] | E[ϕWϕ]

where α is an atomic predicate (e.g. x < y).

To give intuition behind the semantics of CTL, here P, s |= AFϕ asserts that in program P and

in all possible executions starting from s the property ϕ will eventually hold in some future

state reachable from s, whereas P, s |= EFϕ asserts that there is a state in which ϕ holds
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and that it can be reached from s. The formula AGϕ asserts that ϕ must hold throughout all

possible executions, while EGϕ asserts that there exists an execution such that ϕ would be true

throughout. Aϕ1Wϕ2 asserts that for all executions, ϕ1 has to hold until ϕ2 holds, signifying

that ϕ2 does not necessarily have to hold as long as ϕ1 holds. Contrarily, Eϕ1Uϕ2 asserts that

there exists an execution in which ϕ1 has to hold at least until at some position ϕ2 holds. We

denote a formula as an ACTL formula if the only path quantifiers used are universal, i.e., AX,

AW, AF, AU, or AG.

The linear-time logic LTL is a fragment of CTL∗ that only allows formulae of the form Aψ,

where A is the only occurrence of a path quantifier within ψ. When taking LTL as subset of

CTL∗, LTL formulae are implicitly prefixed with the universal path quantifier A. The LTL subset

is thus of the form:

ψ ::= α | ψ ∧ ψ | ψ ∨ ψ | Gψ | Fψ | Xψ | [ψWψ] | [ψUψ]

Note that in this thesis we do not cover exclusive LTL verification methodologies as we do

for CTL. Our CTL∗ techniques solely rely on CTL verification methods, and given that CTL∗

is a superset of LTL, our CTL∗ verification algorithm is thus indeed sufficient to verify LTL

properties.

Counterexamples: In our setting counterexamples are produced by an underlying safety prover

(discussed in more detail in Chapter 7). Generally speaking, a path that does not satisfy an

LTL property is called a counterexample. Similarly, a path that contains a state which does not

satisfy a CTL property is also a counterxample. Due to the recursive nature of our procedure

discussed in Chapter 3, it is only necessary to handle counterexamples to CTL formulae with

a single path quantifier. For example, Aϕ, where ϕ is a path formula that includes no nesting

of additional operators, or α1 ∨ α2, where α1 and α2 are assertions. A counterexample for an

atomic predicate α is a state in which α does not hold. A counterexample for a conjunction

ϕ1∧ϕ2 is a state where either ϕ1 or ϕ2 does not hold. A counter example for disjunction ϕ1∨ϕ2

is a state where both sub-formulae do not hold. A counterexample to an AGϕ property is a

path to a place where ϕ does not hold. A counterexample to an AFϕ property is a “lasso”: a

stem path to a particular program location, then a (not necessarily simple) cycle which returns

to the same program location, and the property ϕ does not hold along the stem and the cycle.

Finally, a counterexample to A[ϕ1Wϕ2] is a path to a place where there is a sub-counterexample

to ϕ1 as well as one to ϕ2. A counterexample to E[ϕ1Uϕ2] can be of the same form as that of

A[ϕ1Wϕ2], as well as one where ϕ1 holds while ϕ2 does not hold anywhere along the path.
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Fair-CTL Semantics

To support fair-CTL, we modify our transition system P to include a fairness condition Ω =

(p, q), where p, q ⊆ S. When fairness is part of the transition system we denote it as P =

(S, S0, R, L,Ω). That is, p and q are assertions, as recall that assertions can indeed correspond

to sets of program states. We still include Ω as a separate component in transformations and

algorithms for emphasis. An infinite path π is unfair under Ω if states from p occur infinitely

often along π but states from q occur finitely often. Otherwise, π is fair. We elaborate on the

concept of fairness further in Chapter 4. Equivalently, π is fair if it satisfies a path formula

π |= (GFp⇒ GFq). For a transition system P = (S, S0, R, L,Ω), an infinite path π, we denote

P, π |= Ω if π is fair [EL86].

2.3.2 CTL∗lp and CTLlp Semantics

Below, we define the fragment of CTL∗lp that we support in this thesis, where CTL∗lp stands for

CTL∗ with linear-past. To avoid introducing further names, we henceforth use CTL∗lp to refer

to this fragment. When necessary we stress that we are referring to full CTL∗lp. As with CTL∗,

the syntax of CTL∗lp includes state formulae ϕ and path formulae ψ. Here, path formulae are

partitioned to pure-past formulae τ , and general path formulae ψ. Additionally, just as how

CTL is a subset of CTL∗, CTLlp is a subset of our fragment of CTL∗lp. Note that when referring

to CTLlp, we are indeed referring to full CTLlp, despite it being a subset of a fragment of CTL∗lp.

The inclusion of the past modifies the semantics of formulae to distinguish between distinct

occurrences of the same state with differing histories. Hence, the models of state formulae

become histories of computations that end in a certain state, and not just a state itself. We

thus define histories as a non-empty finite sequence of states s0, s1, . . . , sn such that for every

i < n, we have (si, si+1) ∈ R and s0 is initial. For a history σ we denote by |σ| the length

of σ, i.e., the number of states in σ. Given that histories are prefixes of computations, for

a path π = (s0, s1, . . .), we let π|i denote the ith prefix of π, that is, the history s0 . . . si for

i ≥ 0. Similarly, for σ = s0, . . . , sn we denote by σ|i the ith prefix of σ for i ≤ n. We use σ

to denote histories and write Π(σ) to denote the set of all computations starting with σ. A

history σ = s0 . . . sn thus represents a current state, sn, of a computation still in progress, with

the additional information that the past has been σ|n−1. State formulae (ϕ), past formulae (τ),

and path formulae (ψ) are co-defined as follows:

ϕ ::= α | ¬α | ϕ ∧ ϕ | ϕ ∨ ϕ | Aψ | Eψ
τ ::= ϕ | τ ∧ τ | τ ∨ τ | G−1τ | F−1τ | X−1τ | [τW−1τ ] | [τU−1τ ]

ψ ::= τ | ψ ∧ ψ | ψ ∨ ψ | Gψ | Fψ | Xψ | [ψWψ] | [ψUψ]

When discussing temporal operators, we denote future connectives by ◦ and past connectives
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by ◦−1. When addressing both future and past connectives we utilize ◦±. Note that other

literature may use the notation Y (yesterday) for X−1, P (past) for F−1, H (historically) for G−1,

S (since) for U−1, and B (before) for W−1.

For a program P and a CTL∗lp state formula ϕ, we say that ϕ holds at a history σ = s0 . . . sn in

P , denoted by P, σ |= ϕ if:

• If ϕ = α, then P, σ |= α iff sn |= α

• If ϕ = ¬α, then P, σ |= ¬α iff sn 6|= α

• If ϕ = ϕ1 ∨ ϕ2, then P, σ |= ϕ1 ∨ ϕ2 iff σ |= ϕ1 or σ |= ϕ2

• If ϕ = ϕ1 ∧ ϕ2, then P, σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2

• If ϕ = Aψ, then P, σm |= Aψ iff ∀π ∈ Πm(σ). P, π, |σ| − 1 |= ψ

• If ϕ = Eψ, then P, σm |= Eψ iff ∃π ∈ Πm(σ). P, π, |σ| − 1 |= ψ

Path formulae (τ and ψ) are interpreted over computations. Assume the inclusion of future-

connectives as specified in Section 2.3. For a program P and a CTL∗ path formula ψ, we say

that ψ holds on a computation π = (s0, s1, . . .) ∈ Πm(s0) in P for location i ∈ [0, |π|), denoted

by P, π, i |= ψ if:

• If ψ = X−1ψ1, then P, π, i |= X−1ψ1 iff i > 0 and P, π, i− 1 |= ψ1

• If ψ = F−1ψ1, then P, π, i |= F−1ψ1 iff ∃j ≤ i. P, π, j |= ψ1

• If ψ = G−1ψ1, then P, π, i |= G−1ψ1 iff ∀j ≤ i. P, π, j |= ψ1

• If ψ = ψ1W
−1ψ2, then P, π, i |= ψ1W

−1ψ2 iff either ∃k ≤ i. P, π, k |= ψ2 and ∀k < j ≤
i. P, π, j |= ψ1 or ∀j ≤ i. P, π, j |= ψ1

• If ψ = ψ1U
−1ψ2, then P, π, i |= ψ1U

−1ψ2 iff ∃k ≤ i. P, π, k |= ψ2 and ∀k < j ≤ i. P, π, j |=
ψ1

As before, a path formula ψ holds in a computation π, denoted by P, π |= ψ, if P, π, 0 |= ψ.

For a state formula ϕ, ϕ holds on P , denoted by P |= ϕ, if for every initial state s we have

P, s |= ϕ, where s stands for the history with one state in it. When the program P is clear

from the context, we may write σ |= ϕ for a state formula ϕ or π, i |= ψ for a path formula ψ.

As with CTL, CTLlp is a restricted subset of CTL∗lp in which temporal operators cannot be

nested within one another. CTLlp is thus of the form:

ϕ ::=α | ¬α | ϕ ∧ ϕ | ϕ ∨ ϕ

| AGϕ | AFϕ | A[ϕWϕ] | A[ϕUϕ] | AG−1ϕ | AF−1ϕ | A[ϕW−1ϕ] | A[ϕU−1ϕ]

| EFϕ | EGϕ | E[ϕUϕ] | E[ϕWϕ] | EF−1ϕ | EG−1ϕ | E[ϕU−1ϕ] | E[ϕW−1ϕ]
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2.4 Further Terminology

2.4.1 Ranking functions

Recall that temporal logic subsumes liveness properties, ensuring progress properties such as

termination, deadlock-freedom, and freedom of starvation. It is thus required in our analysis of

these logics to find ranking functions that demonstrate progress towards a bound during each

transition of a system. Although a thorough discussion on finding ranking functions is beyond

the scope of this thesis, our techniques indeed rely on an existing model-checker possessing a

ranking function generator [CSZ13, BCF13]. For a state space S, we thus define a ranking

function γ as a total map from S to a well-ordered set with ordering relation ≺. Ranking

functions are used to measure progress on a potentially terminating process in a program. A

linear ranking function is of the form rixi + ri+1xi+1 + . . . + rnxn where xi denotes a program

variable. Given the our programs are constrained to the domain of linear arithmetic, our linear

ranking functions thus range over the well-ordered set of the natural numbers with the relation

≤. We thus substitute the ordering relation ≺ with ≤ Given a ranking function γ, we define

its ranking relation as

Tγ = {s, s′.γ(s) > γ(s′) ∧ γ(s) ≥ 0}

That is, all pairs of states over which γ decreases and is bound by 0. Transitions in the ranking

relation contribute to the progress of γ. Similarly, we define a ranking function’s un-affecting

relation as

Uγ = {s, s′.γ(s) ≥ γ(s′)}

That is, all pairs of states over which γ does not increase. Note that transitions in Uγ do

not hinder the progress of γ. For a condition ρ over the state space S, we say that a ranking

function γ is unaffected by ρ if ρ ⊆ Uγ. A relation R ⊆ S ×S is considered well-founded if and

only if there exists a ranking function γ such that ∀(s, s′) ∈ R. γ(s′) < γ(s). We denote a finite

set of ranking functions (or measures) as M. Note that the existence of a non-empty set of

ranking functions for a relation R is equivalent to containment of R+ within a finite union of

well-founded relations, where R+ is the transitive closure of the transition relation R [PR04b].

That is, a set of ranking functions {γ1, . . . , γn} denotes the disjunctively well-founded relation

{(s, s′).γ1(s′) < γ1(s) ∨ . . . ∨ γn(s′) < γn(s)}.

2.4.2 Recurrence Sets

A transition system T = (S, S0, R, L) is considered non-terminating if and only if there exists

an infinite transition sequence π = 〈s0 = (`0, f0)〉, 〈s1 = (`1, f1)〉, . . .. Non-termination is char-
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acterized over a transition relation R by the existence of a recurrence set, that is, a non-empty

set of states N such that for each s ∈ N there exists a transition to some s′ ∈ N [GHM+08].

A transition system T has a recurrence set of states N if and only if

∃s. s ∈ N ∧ s ∈ S0

∀s∃s′. s ∈ N ⇒ (s, s′) ∈ R ∧ s′ ∈ N

A transition system T is thus only considered non-terminating if and only if it has a recurring

set of states.

2.4.3 Calculating pre-images

In Chapter 4, we describe a symbolic model checking procedure for CTL verification of infinite-

state systems that synthesizes preconditions asserting the satisfaction of CTL sub-formulae. We

thus define pre-images over paths for the purpose of utilization by our CTL technique. Note that

techniques in both Chapters 5 and 6 additionally depend on the aforementioned CTL procedure.

Let π = 〈s0 = (`0, f0)〉, 〈s1 = (`1, f1)〉, . . . , 〈sn = (`n, fn)〉 be a finite path. We compute a pre-

image for every possible suffix of π. We denote pren+1 = S and prei = pre(si = (`i, fi), . . . , sn =

(`n, fn)) as the set of states such that for si, si+1 ∈ prei+1 then ∀ 0 ≤ i ≤ n. (si, si+1) ∈ R, that

is, there exists some (`, ρ, `′) ∈ E where (fi, fi+1) |= ρ. Generally speaking, given an assertion

α (in terms of Vars) representing prei+1, and an assertion ρ, we must compute an assertion

representing prei. We thus consider ∃ Vars′. α′ ∧ ρ where we practically utilize Fourier-Motzkin

for performing quantifier elimination on such formulae.

2.4.4 Utilizing Strongly Connected Subgraphs

`1 `2 `3 `4
ρ1 ρ2 ρ3

ρ4ρ5ρ6

ρ7

ρ8

Figure 2.2: A control-flow graph with multiple possible partitions of SCSs.

We provide some notation regarding strongly-connected subgraphs below. For a program P

and n ≥ 1, we denote an ordered sequence of locations `0, ..., `n as a cycle c if `n = `0 and for

every i ≥ 0 there exists some (`i, ρi, `i+1) ∈ E. Let C be the set of program locations such that

` ∈ L appears in some cycle c. That is, C = {` | ∃c. ` ∈ c}. For a program P and the set
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of locations C, we identify SCS(P,C) as some maximal set of non-trivial strongly-connected

subgraphs (SCSs) of P such that every two subgraphs G1, G2 ∈ SCS(P,C) are either disjoint or

one is contained in the other and for every ` ∈ C, there exists at least one G ∈ SCS(P,C) such

that ` ∈ G. The details regarding the identification of C and SCS(P,C) are standard and thus

omitted here (see, e.g., [CSRL01]). We denote the minimal SCS in SCS(P,C) that contains a

location ` ∈ L by MinSCS(P,C, `). This is well defined as every two SCSs in SCS(P,C) are

either disjoint or one is contained in the other.

For example, consider the control-flow graph in Figure 2.2. One possible segmentation is

{`1, `2}, {`1, `2, `3}, and {`1, . . . , `4}. The minimal SCS containing `1 is {`1, `2} and the min-

imal SCS containing `3 is {`1, `2, `3}. An alternative segmentation is {`1, `4}, {`2, `3}, and

{`1, . . . , `4}. According to this segment, the minimal SCS containing `3 is {`2, `3}. Given the

numerous ways in which an SCS can be segmented, one might anticipate that a particular choice

may impact the behaviours and the results of the algorithms utilizing this strategy. Although

this may be the case theoretically, we note that such is not the case in practice. Due to the

nature of the procedural programs that we analyze, only one choice will ever be identified.
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Faster Temporal Reasoning for

Infinite-State Programs

In this chapter, we describe a symbolic model checking procedure for the CTL verification

of infinite-state programs. The introduced procedure exploits the natural decomposition of

the state space given by the control flow graph in combination with the nesting of temporal

operators to optimize reasoning performed during symbolic model checking.

3.1 Introduction

As previously emphasized, state-based temporal logics such as CTL allow us to reason about

a system’s interaction with inputs and nondeterminism in a way that path-based temporal

logics such as LTL do not. Such reasoning is crucial to applications including planning, games,

security analysis, disproving, environment synthesis, and many others [GT00, PMT02]. Unfor-

tunately, the search for scalable and high-performance temporal-logic proof tools for infinite-

state programs remains an open problem, as a shortcoming of existing tools is that performance

is hindered by redundant reasoning performed in the presence of nested temporal operators.

For example, tools supporting the state-based temporal logic CTL [CCG+02, CCG+05, CE81,

CK13, BPR13] invariably recurse over the structure of an input property and redundantly rea-

son over the same sets of system states with regards to each sub-formula. Thus in this chapter,

we propose a symbolic CTL model-checker which gains orders-of-magnitude performance speed

improvement over the verification of infinite-state programs. In later chapters, we additionally

demonstrate how our CTL methodology can used as the basis for proving higher-performance

logics such as CTL∗.

We leverage the well-known sound and relatively complete deductive proof system for the

31
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verification of CTL∗ proposed by [KP05] towards the automated CTL verification over infinite-

state systems. That is, a CTL formula is recursively decomposed into its constituent sub-

formulae, with each temporal sub-formula then being subsequently replaced by a precondition.

The key insight to our approach is the exploitation of the natural decomposition of the state

space given by the control flow graph. That is, using a counterexample-guided precondition

synthesis strategy, we compute program location specific preconditions. Our model checker

drastically improves performance by reducing the amount of redundant and irrelevant reasoning

performed through information sharing extracted from reachability analysis. That is, several

preconditions for each program location can be computed simultaneously. Take for example the

fact that the set of states respecting a property such as EFy < z before a program command

is very often the same or nearly the same as the set of states respecting EFy < z after the

command. In comparison to existing tools (e.g. [CK13, BPR13]), we reduce the amount of

reasoning performed as part of the procedure. We can infer whether a command is likely to

affect the truth of EFy < z. So, sequential locality implies that the precondition of a location

is easily computed if the preconditions of its successors are known.

This approach gives way to compositional reasoning. For instance, given a program and a

desired property, we can, in parallel, synthesize preconditions, desired environments, and plans

of individual procedures of a program with the goal of composing the found preconditions into

a proof of the whole program. The advantage to this approach is that the program verification

tools never have to examine the program as a whole, but instead find a modular proof using

compositional reasoning. Recent success in this style of reasoning can be found in areas such

as proving correctness of non-blocking algorithms [GCPV09], and the analysis of biological

models [CFKP11]. We also suggest a new method of treating existential path quantification in

the infinite-state setting. Existential formulae are handled by considering their universal dual,

allowing counterexamples of said duals to serve as a witness asserting the satisfaction of the

existential CTL formula.

An experimental evaluation using examples from the benchmark suites of the competing tools

(which are drawn from industrial benchmarks) demonstrates orders-of-magnitude performance

improvements in many cases. This evaluation is discussed in Chapter 7.

3.1.1 Related work

In this work we are aiming to prove CTL properties with all syntactically valid nested com-

binations of existential and universal path quantifiers of programs that are expressible in the

linear arithmetic framework. A number of CTL model checking tools for programs do not meet

these criteria. For example, SMV (and in general BDD based tools) are restricted to finite-state

programs [CCG+02]. Song & Touili [ST12] perform a coarse one-time abstraction that takes
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programs and produces pushdown automata, however the abstraction produced is imprecise

and leads to significant information loss. Gurfinkel et al. [GWC06] do not reliably support all

possible CTL syntactic formulations of nested universal and existential path quantifiers.

Tools with a more relevant feature set to our setting include Cook & Koskinen [CK13] and

Beyene et al. [BPR13]. Cook & Koskinen utilize an incremental reduction to other existing

program analysis techniques, as we do. However, their symbolic determinization is based on the

counterexample-guided refinement of generated tree counterexamples, or counterexamples with

branching paths. That is, [CK13] produce a semantics-preserving transformation that encodes

the structure of the nested CTL formulae within the state space, allowing for the generation of

tree counterexamples. This leads to an exponential state explosion, instigated by the recursive

nesting of the verification of each CTL sub-formula within the program state-space. Contrary

to our procedure, such a method causes precondition generation for a property’s sub-formulae

to be no longer possible. Finally, our novel approach to the treatment of existential path

quantification based on dualization contrasts to that of Cook & Koskinen, which attempts to

find a non-trivial restriction on the state-space such that AF can be used to reason about EF,

or AG can be used to reason about EG. Note that this technique is only applicable to systems

with one initial state, while our procedure is suitable for systems with every number of initial

states.

Beyene et al. [BPR13] implement the the Kesten and Pnueli [KP05] deductive proof system

using a reduction to Horn-clause reasoning. Our approach also contrasts to the tool of Beyene

et al. [BPR13], as their tool requires a manual instantiation of the structure of assertions,

characterizing CTL formulae, that are to be found by their tool. Neither Cook & Koskinen nor

Beyene et al. make use of the locality in programs as we do. Effectively, these tools carry out

unnecessary computation in their analysis.

We note that our CTL verification procedure leverages recent techniques for proving safety,

termination, and nontermination of programs [GHM+08, CSZ13, BCF13, McM06] to syn-

thesize preconditions asserting the satisfaction of CTL sub-formulae of an input property.

Counterexample-guided refinement is a very common technique utilized in the model-checking

of both finite and infinite-state systems. However, we note that techniques in [CGJ+00, HHP13]

differ from our contribution as they seek to find the right abstraction of a program for a given

correctness property. Contrarily, we seek to refine a precondition, entailing the satisfaction of

a temporal formula.

3.1.2 Limitations

We do not support programs with heap, nor do we support recursion or concurrency. The heap-

based programs we consider during our experimental evaluation have been abstracted using the
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over-approximation from the technique of Magill et al. [MBCC07]. Note that this abstraction

can lead to unsoundness when we use the existential subset of CTL. Our comparison to existing

tools remains fair, as each of the previous tools uses the same abstraction. Effective techniques

for proving temporal properties of programs with heap remains an open research question.

As our technique heavily relies on calculating pre-images, it is important that fragments of

the underlying program logic are closed under pre-images, e.g., integer linear arithmetic, a

fragment of integer arithmetic. Thus we note that weakest preconditions are indeed closed

under integer linear arithmetic, but not non-linear integer arithmetic. In general, our procedure

is not complete as we use a series of incomplete subroutines.

3.2 Illustration and Example

We first informally explain our technique and demonstrate it with an example.

The idea of our procedure is to find for each sub-formula ϕ within a given CTL property a pre-

condition ℘〈ϕ〉 that ensures its satisfaction. To utilize sequential locality of a counterexample’s

control flow graph further on, a precondition ℘〈ϕ〉 is thus further partitioned into ℘〈`i, ϕ〉 for

every location `i in the program. Thus, ℘〈ϕ〉 takes the form
∧
`i

(pc = `i ⇒ ℘〈`i, ϕ〉). Here

pc = `i is used to assert that the state is at location `i in the program’s control-flow graph.

We find preconditions by iteratively recursing over the given CTL formula. That is, we start

by finding the precondition of the innermost sub-formula followed by search for the precondi-

tions of the outer sub-formulae dependent on it. We note that the precondition of an atomic

predicate is the predicate itself, hence from this point on, we shall treat the precondition of an

atomic predicate and the atomic predicate itself synonymously.

Consider a universal CTL formula. Initially, we approximate its precondition as True. We

then search for counterexamples from every possible reachable program location. Produced

counterexamples will result in the strengthening of the precondition through adding the nega-

tion of the pre-image of the discovered counterexample, as discussed in 2.4. We use the control

flow graph of a counterexample to simultaneously synthesize preconditions of multiple loca-

tions. That is, a counterexample that consists of multiple program locations can be utilized to

update the precondition of each contained program location. This is done by iterating along

the counterexample path, and for each suffix computing a pre-image from a program location

onwards. Each counterexample found further strengthens a precondition, we thus eliminate

said counterexample and search for other proof failures for the given CTL property. Eventually,

the precondition will imply the correctness of the sub-formula when no further counterexamples

are returned.

Existential sub-formulae are handled by considering their universal dual. We thus seek a set of
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`1 `2

ρ1 : y′ = 0

ρ2 : x ≤ 0
x′ = x+ 1
y′ = y

ρ3 : x ≤ 0
y′ = y
x′ = x

ρ4 : x > 0
y′ = y
x′ = x

ρ5 : y′ = 1
x′ = x

Figure 3.1: The control-flow graph of an example program for which we wish to prove the CTL
property AGEF y = 1.

counterexamples generated from the property’s universal dual to serve as an existential witness.

Hence we begin with an initial precondition approximation False. More directly, pre-images of

counterexamples to the negation of the sub-formula serve as a witnesses to the satisfaction of our

existential formula. Counterexamples are similarly treated in the existential case, we iteratively

calculate their pre-images followed by their elimination until no more counterexamples are

generated. As before, we utilize a counterexample’s control flow graph to simultaneously update

preconditions of multiple locations.

3.2.1 Example

Consider the program in Fig. 3.1 and the property ϕ ≡ AGEF y = 1, which states that for all

states, it is always possible that eventually y = 1. The approach followed by nearly all tools

supporting CTL would be to find, in this instance, a set of states ℘ such that AG℘ holds, and

such that ℘ |= EF y = 1 holds. In this chapter, we suggest a strategy based on precondition

synthesis.

Consider the sub-formula ϕEF ≡ EF y = 1. For the predicate y = 1, for every program

location `i we have ℘〈`i, y = 1〉 , y = 1. In order to support existential path formulae (e.g.

EF), we use a strategy that synthesizes preconditions through the negation of the existential

property (i.e. a universal dual). That is, we prove ℘ |= EF y = 1 via negation: we attempt

to prove ℘ 6|= AG y 6= 1. We now attempt to prove that ℘ 6|= AG y 6= 1 given that AG is

EF’s universal dual. We start with ℘〈ϕEF〉 , False as only failures to proving AG y 6= 1 can

necessitate that there exists a witness such that EF y = 1. Failures to the proof attempt will

result in refinements to ℘ through the iterative calculation of the pre-image of each discovered

counterexample. Recall that we are interested in counterexamples starting from all program

locations:
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`1 `2

ERR

ρ1 : y′ = 0

ρ2 : x ≤ 0

y 6= 1

x′ = x+ 1
y′ = y

ρ3 : x ≤ 0

y 6= 1

y′ = y
x′ = x

ρ6 : y = 1

y′ = y
x′ = x

ρ4 : x > 0

y 6= 1

y′ = y
x′ = x ρ5 : y 6= 1

y′ = 1
x′ = x

ρ7 : y = 1

y′ = y
x′ = x

Figure 3.2: The transformation of the program from Fig. 3.1 for the property EF y = 1 using
its dual AG y 6= 1.

`1 `2

ERR

ρ1 : x′ = 0
y′ = 0

ρ2 : x ≤ 0

y = 0

x′ = x+ 1
y′ = y

ρ3 : x ≤ 0

y = 0

x′ = x

ρ6 : y 6= 0

y′ = y
x′ = x

ρ4 : x > 0
y′ = y
x′ = x ρ5 : x > 0

y′ = 1
x′ = x

ρ7 : x ≤ 0

y′ = y
x′ = x

Figure 3.3: The transformation of the program from Fig. 3.1 for the sub-property AGEF y = 1
to be utilized in the verification algorithm. The nested property EF y = 1 is substituted with
its precondition resulting in a transformation for AG ((pc = `1 ⇒ y = 0) ∨ (pc = `2 ⇒ x > 0))
instead.
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℘〈ϕEF〉 , (pc = `1 ⇒ ℘〈`1, ϕEF〉) ∧ (pc = `2 ⇒ ℘〈`2, ϕEF〉).

We begin with `1. To check AG y 6= 1 we use a source-to-source transformation that reduces

checking of universal CTL properties to safety [CK13]. In further sections below, we demonstrate

how a CTL model checking problem is indeed reduced to a safety problem. The transformation

returns the program in Fig. 3.2 (new conditions outlined), on which we use a safety prover

to check reachability of ERR. We get counterexample CEX1: 〈`0, ρ1, `1〉, 〈`1, ρ3, `1〉, 〈`1, ρ2, `1〉,
〈`1, ρ4, `2〉, 〈`2, ρ5, `2〉, 〈`2, ρ7, ERR〉.

We then calculate the pre-image of CEX1 for multiple locations along the counterexample. We

do so by iterating along the counterexample path, and for every reachable location ` ∈ L
in CEX1, we compute a pre-image utilizing the suffix of CEX1 from ` onwards. Thus we can

avoid redundant reasoning by utilizing sequential locality based upon the program’s control-

flow graph to compute a refinement for `2 from a counterexample generated for `1. In this case,

we compute ℘ , (pc = `1 ⇒ y = 0) ∧ (pc = `2 ⇒ x > 0)

One existential witness may not be sufficient to find all states that satisfy ϕEF in the respective

locations, we thus rule out CEX1 by adding ¬℘〈`i, ϕEF〉 to each transition from `i to the error

state. We re-run our safety checker and find that we do not generate anymore counterexamples,

thus completing our precondition synthesis for EF y = 1.

Note that the technique used by Cook & Koskinen [CK13] imposes that they spend time com-

puting both ℘〈`1, ϕEF〉, ℘〈`2, ϕEF〉 separately while the technique used by Beyene et al. [BPR13]

solves a constraint based on an entire path when it’s only necessary to reason about a single

state.

We now modify ϕ by using ℘〈ϕEF〉 and get ϕ′ = AG ((pc = `1 ⇒ y = 0) ∧ (pc = `2 ⇒ x > 0)).

The constructed transformation reducing the property ϕ′ to safety can be seen in Fig. 3.3. Note

that in this particular transformation, the outlined instrumented conditions correspond to each

of the location preconditions generated for EF y = 1. As ϕ′ is universal, we begin with the

initial precondition ℘〈ϕ〉 , True. Failures to the proof attempt will result in strengthening

the precondition by adding negated pre-images of discovered counterexamples. In this case no

counterexamples are returned and we get ℘〈ϕ〉 , True. This proves that AGEF y = 1 holds.

3.3 Procedure

In this section we describe the details of our CTL model checking procedure.

Algorithm 1 depicts Verify, which wraps our main procedure TemporalWP in Algorithm 2

by passing two parameters to TemporalWP, a program and a CTL formula to be verified.
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ALGORITHM 1: Procedure Verify, which wraps TemporalWP and then checks all initial states.

1 Let Verify(ϕ, P ) : bool =
2 (L, E,Vars) = P
3 ℘ = TemporalWP(ϕ, P )
4 return ∀(`I , ρ, `) ∈ E ∀f : Vars→ Vals . (f−1, f) |= ρ implies (`, f) |= ℘〈`, ϕ〉

Other subroutines used in TemporalWP are in Algorithms 3–5. In our approach, the table ℘

is the key data structure that maps pairs of program locations and sub-formulae to assertions

which represent the current candidate precondition that would guarantee the sub-formulae at

a respective location. Thus TemporalWP is to return to Verify with a precondition map

℘ of the outermost sub-property ϕ, that is then checked as a satisfying condition against all

the initial states of the program. In particular, a precondition ℘〈`, ϕ〉 should be a sufficient

and most general precondition to prove that ϕ holds at location `. Hence in Verify, the

precondition ℘〈`, ϕ〉 produced from ℘ is checked against ` ∈ P . If indeed ℘〈`, ϕ〉 is a satisfying

condition, then we can conclude that the property ϕ holds for P . After a short description

of TemporalWP and a brief description of each of its subroutines, we give an in depth

explanation of how TemporalWP produces ℘.

TemporalWP performs both a recursive and a refinement-based computation to construct ℘.

In TemporalWP, each precondition synthesized substitutes its temporal sub-property in the

original formula, and we then continue with the next most outer formula. It starts by initializ-

ing the map of preconditions using procedure InitializeMap (Algorithm 5) and then calling

itself recursively for each sub-formula. Transform (Algorithm 3) and Refine (Algorithm 4)

are part of the model checking procedure for the current sub-formula while Propagate (Algo-

rithm 6) updates the map ℘ by synthesizing the pre-images given a counterexample. We then

reduce the amount of redundant and irrelevant reasoning performed through information shar-

ing extracted from reachability information. That is, several preconditions for each program

location can be computed simultaneously.

Refine uses a safety prover [McM06, HB12a, KGC16], to obtain counterexamples from the

newly transformed transition system, if a counterexample exists.

Transform implements the reduction of CTL model checking to safety and liveness checking,

inspired by the procedure from [CK13]. Our transformation is adapted to handle one CTL

sub-formula at a time, with any further nested sub-formulae to have synthesized preconditions

ensuring their satisfaction. This contrasts [CK13], where each subsequent CTL sub-formulae

transformations are recursively nested within one another. The transformation utilizes the map

℘, which would have mapped the preconditions synthesized to the corresponding previous sub-

properties. The program is then transformed according to the CTL sub-property by modifying
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the program from a given program location k ∈ L. The reduction is only applied from a location

k onwards , that is, we only wish to verify the sub-property starting from transitions stemming

from k. The program is transformed in a way such that if ϕ does not hold for a location `, a

new reachable transition to an error location ERR is added.

As mentioned, existential path quantifiers are handled by considering their universal dual.

For both existential and universal properties, our mapping function is also updated with the

precondition for the negation of the property in TemporalWP and Propagate. This allows

us to conveniently access the negation of the property when encoding existential properties as

their universal duals. Recall that the precondition of a counterexample to a universal property

corresponds to a witness of its existential dual. This will be discussed more extensively further

below.

3.3.1 Computing ℘ for CTL

We now discuss our procedures in more detail, starting with our main algorithm TemporalWP

that synthesizes our key data structure ℘. In order to synthesize a precondition for a temporal

property ϕ, we first recursively decompose a CTL formula and accumulate the preconditions

generated when considering its sub-formulae at lines 8, 13, and 14 in TemporalWP. The base

case, α, is trivially computed as the precondition of an atomic predicate is the atomic predicate

itself. For the sake of clarity, we omit the descriptions of the utilization of both CyclePoints

and the use of sequential locality in Propagate till later, as we solely wish to describe the

fundamental procedure underlying our precondition synthesis for each temporal sub-property.

We will then discuss how these sub-procedures provide the key to making use of the program’s

control-flow graph to construct multiple preconditions.

Given the omission of CyclePoints, assume C is the set of all locations in a program P ,

that is L. We wish to synthesize a precondition for each ` ∈ L such that the precondition

asserts the satisfaction of ϕ. Hence, we iterate over these locations (line 16) and generate a

transformed program per each location using the subroutine Transform at line 19. Recall that

Transform allows us to reduce the checking of temporal properties to a program analysis task

from a given program location. We now describe Transform prior to explaining the remaining

steps in TemporalWP.

CTL Reduction to Safety and Liveness

We demonstrate how each CTL formula can be reduced to a safety or liveness model checking

problem, as carried out in Algorithm 3. As previously noted, we recursively partition a CTL

formula, and for each nested sub-formula synthesize a precondition that ensures its satisfaction.
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ALGORITHM 2: Two parameters are given to procedure TemporalWP: a program and a

sub-property. The procedure returns a function that maps sub-properties to their synthesized pre-

conditions. A precondition of a CTL sub-property is automatically synthesized from counterexamples

and then is successively replaced by a condition over program states.

1 Let TemporalWP(ϕ, P ) : map =
2 ℘ = InitializeMap(ϕ, P )
3 M = ∅
4 κ = [ ]
5 (L, E,Vars) = P
6 if ϕ = α ∈ AP then
7 foreach `. (`, ρ, `′) ∈ E do
8 ℘〈`, ϕ〉 = α
9 ℘〈`,¬ϕ〉 = ¬α

10 else
11 match (ϕ) with
12 ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1Uϕ2 | ϕ1Wϕ2 →
13 ℘ = ℘ ∪TemporalWP(ϕ1, P ) ∪TemporalWP(ϕ2, P )
14 AFϕ1 | AGϕ1 | ¬ϕ1 → ℘ = ℘ ∪TemporalWP(ϕ1, P )

15 C = CyclePoints(P )
16 foreach (`, ρ, `′) ∈ E do
17 G = MinSCS(P,C, `) ∈ SCS(P,C)
18 if G 6= ∅ then
19 P ′ = Transform(〈`, ϕ〉,M, P, ℘)
20 CEX,M = Refine(P ′, ϕ, ℘,M)
21 while CEX 6= ∅ do
22 ℘, P ′ = Propagate(CEX, P ′, κ, ϕ, `, ℘)
23 κ = CEX :: κ
24 CEX,M = Refine(P ′, 〈`, ϕ〉, ℘,M)

25 return ℘
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ALGORITHM 3: Reduction of model checking of temporal properties to safety and ranking function

synthesis.

1 Let Transform(〈k, ϕ〉,M, P, ℘) : Program =
2 (L, E,Vars) = P
3 match (ϕ) with
4 ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | A[ϕ1Wϕ2]→
5 α1 = ℘〈k, ϕ1〉
6 α2 = ℘〈k, ϕ2〉
7 AFϕ1 | AGϕ1

8 α1 = ℘〈k, ϕ1〉
9 match (ϕ) with

10 ϕ ∧ ϕ′ →
11 E = E ∪ (k,¬α1 ∨ ¬α2, ERR)
12 ϕ ∨ ϕ′ →
13 E = E ∪ (k,¬α1 ∧ ¬α2, ERR)
14 A[ϕ1Wϕ2]→
15 foreach (`, ρ, `′) ∈ E reachable from k do
16 ρ = ρ ∧ α1 ∧ ¬α2

17 E = E ∪ (`,¬α1 ∧ ¬α2, ERR)

18 E[ϕ1Uϕ2]→ P = Transform(〈k,A[¬ϕ2W(¬ϕ1 ∧ ¬ϕ2)]〉,M, P, ℘)
19 AFϕ1 →
20 foreach (`, ρ, `′) ∈ E do
21 ρ = ρ ∧ dup = False
22 if (`, ρ, `′) ∈ E reachable from k then
23 ρ = (ρ ∧ ¬α1) ∨ (ρ ∧ ¬dup ∧¬α1∧ dup’ = True ∧(′s = (`, f))
24 c = dup ∧¬α1 ∧ ¬(∃f ∈M. f(s) ≺ f(′s))
25 E = E ∪ (`, c, ERR)

26 EGϕ1 → P = Transform(〈k,AF¬ϕ1〉,M, P, ℘)
27 AGϕ1 →
28 foreach (`, ρ, `′) ∈ E reachable from k do
29 ρ = ρ ∧ α1

30 E = E ∪ (`,¬α1, ERR)

31 EFϕ1 → P = Transform(〈k,AG¬ϕ1〉,M, P, ℘)
32 AXϕ1 →
33 foreach (k, ρ, `′) ∈ E do
34 α1 = ℘〈`′, ϕ1〉
35 E = E ∪ (k, ρ ∧ ¬α, ERR)
36 ρ = ρ ∧ α1

37 return P
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The provided map ℘ precisely provides the mapping from the most immediate CTL sub-formula

to its new-found precondition. Thus, on lines 3–8 the CTL formula is further partitioned into

its sub-formulae, ϕ1 and ϕ2 (if applicable) and we retrieve the preconditions for our nested

sub-properties through α1 and α2, respectively.

• We begin with ∧ and ∨ on lines 10–13. Note how for a location k, we utilize the negation

of the preconditions for ϕ1 and ϕ2. This is due to the fact that P is to be modified on

lines 11 and 13 to include a new transition to the error location ERR if the CTL formula is

violated. The negation of assertions α1 and α2 denote the violations to the preconditions

of ϕ1 and ϕ2, respectively. In the case of ∧, the property is considered violated if either

ϕ1 or ϕ2 does not hold at a location k. In the case of ∨, the property is violated if both

ϕ1 or ϕ2 do not hold at a location k.

• For the case that our CTL property is of the format A[ϕ1Wϕ2], starting line 15 we tra-

verse all locations reachable from k to instrument a transition to the error location, as

the property could be violated from k onwards. Then for each transition (`, ρ, `′) ∈ E

reachable from location k, ρ is modified to ρ = ρ ∧ α1 ∧ ¬α2. This imposes a further

restriction on the transition relation denoting that the transition cannot proceed unless

ϕ1 holds while ϕ2 does not. In the case that ϕ2 does hold, the program does not need to

proceed as the property has indeed been satisfied. In the case that both ϕ1 and ϕ2 are

violated, a new transition to the error location ERR is instrumented in P at location `, as

shown on line 17.

• For the CTL property E[ϕ1Uϕ2], note that we call Transform again, but instead with

its universal CTL dual A[¬ϕ2W(¬ϕ1 ∧ ¬ϕ2)] as we are indeed seeking counterexamples

to serve as witnesses to the property holding. That is, a counterexample to the negated

property denotes that the property does indeed hold on some paths. The same is done

for all other ECTL properties in Transform.

• In the case that ϕ = AFϕ1, we prove liveness with regards to ϕ1, and thus require ad-

ditional instrumentation as originally proposed by [CPR06] on lines 21–26 in order to

generate the appropriate ranking functions. New variables are introduced to record the

state before the unrolling of the loop, where the variable “dup” indicates whether the

first unrolling of the loop has occurred. The statement on line 24 checks whether the

termination argument (which may initially be ∅) always holds between the current state

and the recorded state. If the statement can be invalidated, ERR is then reachable due to

the new instrumented transition to the error location on line 25. If ERR is unreachable,

we have proved the validity of an existing termination argument, as the instrumentation

forces the reachability checker to consider all possible loop unrollings. Our procedure

Refine utilizes this transformation to capture liveness counterexamples on line 20 in
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TemporalWP. The produced counterexample to a liveness property (such as AF) gen-

erated from our instrumentation contains a lasso fragment, we then attempt to find an

accompanying set of ranking functions M that will show that the counterexample is not

valid. We thus attempt to enlarge the set of ranking functions M using the method

introduced in [CSZ13]. Otherwise, the absence of a set of ranking function would indicate

the possible existence of a recurrence set. A recurrence set denotes the presence of a

non-terminating path, indicating that the liveness property indeed does not hold. When

verifying EG, the dual of AF, we indeed require the synthesis of a non-empty recurrence set

as the precondition for the property [GHM+08]. A detailed flowchart of the termination

proving procedure can be found in Chapter 7 Fig. 7.1.

ALGORITHM 4: Procedure Refine accepts a program, a program location, a temporal property,

a map from locations and temporal properties to assertions, and a set of ranking functions. Refine

proceeds to return a counterexample and a (possibly) larger set of ranking functions.

1 Let Refine(P, 〈`, ϕ〉, ℘,M) : counterexample, ranking functions =
2 CEX = Reachable(P ,ERR)
3 while P can reach ERR do
4 if CEX contains stem and lasso then
5 if ∃ witness f showing CEX′ w.f. then
6 M =M∪ {f}
7 else
8 return CEX,M

9 else
10 return CEX,M
11 CEX = Reachable((Transform(〈`, ϕ〉,M,P, ℘), `0,ERR)

12 return CEX,M

• In the case that ϕ = AGϕ1, we again iterate every transition (`, ρ, `′) ∈ E reachable from

k where each transition ρ is further restricted such that the precondition α1 of ϕ1 holds.

In the case the α1 does not hold, we again add a new transition to the error location ERR

in P at location `, as shown on line 30. That is, AG can simply be reduced to a safety

property in which ϕ1 must always hold.

• In the case that ϕ = AXϕ1, we iterate every transition (k, ρ, `′) ∈ E, that is every

transition originating from k, where α1 is then assigned to the precondition of `′. The

transition ρ is then restricted such that the precondition α1 of ϕ1 at location `′ holds.

Hence, at location k, we are indeed verifying that the property ϕ1 holds at the “next”

state.

• The property A[ϕ1Uϕ2] and its dual E[ϕ1Wϕ2] do not necessarily need to be explicitly

supported, as they can be seen as syntactic sugar. That is, A[ϕ1Uϕ2] can ultimately be

written as AFϕ2 ∧ A[ϕ1Wϕ2].
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Each transformed program P ′ produced from Transform on line 19 in TemporalWP is

then verified through the subroutine Refine (line 20). A counterexample-guided precondition

refinement loop then begins at line 21, where we iteratively refine a precondition for ` ∈ L until

no more counterexamples are found. We note that the procedure Reachable in Refine is

a placeholder for any existing reachability checker [McM06, HB12b, KGC14]. We now discuss

the refinement process for each type of path quantifier in TemporalWP separately below.

ALGORITHM 5: Initializing the map from program locations and sub-formulae to assertions.

Preconditions of universal CTL formulae are initialized to True as counterexamples are utilized to

strengthen the initial condition. Given that existential formulae are handled by considering their

universal dual, counterexamples serve as a witness thus weakening the initial condition of False.

1 Let InitializeMap(ϕ, P ) : map =
2 ℘ = ∅
3 (L, E,Vars) = P
4 if ϕ = Eψ′ then
5 foreach ` ∈ L do
6 ℘〈`, ϕ〉 = False
7 ℘〈`,¬ϕ〉 = True

8 else
9 foreach ` ∈ L do

10 ℘〈`, ϕ〉 = True
11 ℘〈`,¬ϕ〉 = False

12 return ℘

Universal precondition synthesis

For a universal CTL sub-property ϕ = Aϕ1, a precondition ℘〈`, ϕ〉 for a program location `

is initialized to True (Algorithm 5 line 10). If Refine returns a counterexample on line

20, we indeed refine ℘〈`, ϕ〉 by passing said counterexample to Propagate on line 22. Now

consider Algorithm 6 Propagate, and how given a CEX and a location `, we compute the

pre-image pre` as defined in Section 2.4, on line 8. Given our temporary omission of the

sequential locality description in Propagate, consider that we are only handling the current

`. To strengthen the precondition of a property ϕ and location `, i.e. ℘〈`, ϕ〉, we first negate

the pre-image of the returned counterexample at line 13. The precondition thus becomes

℘〈`, ϕ〉 = ℘〈`, ϕ〉∧¬pre`(CEX). This denotes that the precondition has now been strengthened

as to ensure that the path CEX, which violates the sup-property ϕ cannot occur. We then

rule out the aforementioned counterexample from occurring again by adding the assumption

¬℘(`, ϕ) to each ingoing transition to the error location on the counterexample path, as shown

on lines 15 and 16 in Propagate. We then continue to iterate the loop in TemporalWP

whenever a new counterexample is discovered while refining ℘〈`, ϕ〉, resulting in a universal

CTL formula precondition to be of the form
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ALGORITHM 6: Procedure Propagate receives a counterexample, a program, a list of previous

counterexamples and their corresponding locations, and a map of previously discovered preconditions.

It returns an updated map and updated program. The map of preconditions is updated by adding the

weakest preconditions of the current counterexample. The program is updated by eliminating handled

counterexamples from reaching the ERR location again.

1 Let Propagate(CEX,P, κ, ϕ,n,℘) : map, Program =
2 α = True
3 (L, E,Vars) = P
4 foreach (`, ρ, `′) ∈ CEX do
5 if CEX ∈ κ ∧ ` = n then
6 α = Strengthen(pre`(CEX),CEX)

7 else
8 α = pre`(CEX)

9 if ϕ = Eϕ′ then
10 ℘〈`, ϕ〉 = ℘〈`, ϕ〉 ∨ α
11 ℘〈`,¬ϕ〉 = ℘〈`,¬ϕ〉 ∧ ¬α
12 else
13 ℘〈`, ϕ〉 = ℘〈`, ϕ〉 ∧ ¬α
14 ℘〈`,¬ϕ〉 = ℘〈`,¬ϕ〉 ∨ α

15 if `′ = ERR then
16 ρ ∈ E = ρ ∧ ¬℘〈`, ϕ〉

17 return ℘, P

℘〈`, ϕ〉 =
∧
n∈N ¬pre`(CEXn)

Existential precondition synthesis

For an existential CTL property, a precondition must entail an existential witness satisfying

the sub-property ϕ at program location `. We thus verify the universal dual of the existential

property (as instrumented by our encoding) and seek a set of counterexamples generated from

the property’s universal dual to serve as an existential witnesses.

A precondition ℘〈`, ϕ〉 for a program state is initially False (line 6 in Algorithm 5). If a

counterexample is returned, ℘〈`, ϕ〉 is refined through the disjunction of the pre-image of the

counterexample returned, that is ℘〈`, ϕ〉 = ℘〈`, ϕ〉 ∨ pre(`,CEX) (line 10 in Algorithm 6).

Unlike for universal quantifiers, the pre-images need not be negated as they are witnesses for

the property being satisfied.

We then rule out the aforementioned counterexample by adding the assumption ¬pre`(CEX)

to each transition reaching ERR, and continue to unfold the loop with each newly discovered

counterexample while iteratively refining ℘〈`, ϕ〉. Note that finding one witness is not sufficient

to satisfy an existential property, as ℘〈`, ϕ〉 must characterize all the states satisfying the
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sub-property ϕ at a location. Thus

℘〈`, ϕ〉 =
∨
n∈N pre`(CEXn)

ALGORITHM 7: If divergence is suspected due to infinitely many counterexamples, the sub-

procedure strengthens the candidate precondition towards the limit.

1 Let Strengthen(α,CEX) : AP =
2 V = {v′. v ∈ Vars ∧ v′ ∈ CEX}
3 QE(∃V.α)
4 return α

Upon the return of our precondition method to its caller, ℘ will contain the precondition

for the most outer temporal property of the original CTL property ϕ. However, note that

in our procedure, divergence can occur due to the possibility of generating infinitely many

counterexamples. In practice this is rare, but not unheard of. We thus implement the following

heuristic introduced by [CCF+14]:

• If we suspect we are looking at a sequence of repeated counterexamples that will result in

divergence, we call the procedure Strengthen (Algorithm 7 on line 6 in Propagate).

The sub-procedure strengthens the candidate precondition towards the limit.

• Strengthen takes a calculated pre-image α, then proceeds to quantify out all variables

that are updated proceeding the program location ` by applying quantifier elimination

(QE).

• This heuristic can lead to unsoundness, as Strengthen may over-approximate the set of

states, causing ℘ to be potentially unsound for temporal properties involving existential

path quantifiers. To check that the guessed candidate precondition is in fact a real

precondition, e.g. that ℘⇒ EG ℘′, we can use the approach from Beyene et al. [BPR13]

to double check the small lemma.

• If the check succeeds we continue, if the check fails we raise an exception.

Reducing redundant and irrelevant reasoning

Our approach synthesizes counterexample guided preconditions over program locations, but so

far we have only shown how to do so for a single location at a time. We now demonstrate how we

utilize sequential locality to simultaneously calculate preconditions for the set of locations that

are arranged and can be accessed from a CEX starting from a given location `. Our propagation

sub-procedure Propagate (Algorithm 6) is called from TemporalWP at line 22. We iterate
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along the counterexample path, and for every reachable location ` ∈ L, we compute a pre-

image utilizing a suffix of CEX from ` onwards. In more informal terms, every program location

along the path can utilize the same counterexample to show that the property does or does not

hold. Practically, the computation of a pre-image is performed by going backwards over the

counterexample.

Propagate alone does not eliminate redundant or irrelevant reasoning, as we would still

iterate over all locations whose preconditions have already been computed. Recall the program

in Fig. 6.1 and the counterexample CEX1 retrieved when model checking AG y 6= 1: 〈`0, ρ1, `1〉,
〈`1, ρ3, `1〉, 〈`1, ρ2, `1〉, 〈`1, ρ4, `2〉, 〈`2, ρ5, `2〉, 〈`2, ρ7, ERR〉. More specifically, this counterexample

is produced from `1, but as discussed, we can compute a pre-image utilizing the suffix of

CEX1 from any ` onwards. Thus we can avoid redundant reasoning by utilizing sequential

locality based upon the program’s control-flow graph to compute a refinement for `2 from a

counterexample generated for `1. Given that `2 now has an accompanying precondition, it

would be redundant to iterate over `2 in TemporalWP to calculate the same precondition.

Thus in TemporalWP, we eliminate irrelevant locations such as `2 by solely iterating over

strongly-connected subgraphs.

We thus calculate a strongly-connected subgraph set G from a set of cycles C ⊆ L (lines

15–18 in TemporalWP), as defined in 2.4, in which we synthesize a precondition over each

program location ` that is an element of a minimal SCS. Such a location provides locality

across program locations given the nature of cycles. That is, we will be able to propagate

`’s precondition to all locations in MinSCS(P,C, `) ∈ SCS(P,C) given they are within a

generated counterexample for `. Other program analysis inspired techniques may be used for

the selection of initial locations to be verified. A cycle independent analysis can be run for

those locations unreachable from program G.

We now state the correctness and soundness of our procedure.

3.3.2 Proof of Soundness

Proposition 3.1. If the algorithm in Algorithm 2 terminates, for every sub-formula ϕ′ in ϕ,

every location ` ∈ L, and every reachable state s, we have s |= ¬℘〈`, ϕ〉 implies P, (`, f) |= ¬ϕ.

P, (`, f) |= ϕ implies s |= ℘〈`, ϕ〉 provided that no spurious counterexamples are produced, and

ranking functions are enumerable.

We prove the proposition by induction on the structure of the formula. Consider a universal

path formula, in which the counterexamples obtained from the underlying program analysis

tool are real counterexamples, it follows that their pre-images do not satisfy the formula. Ad-

ditional counterexamples further obtained are additionally sound, thus the termination of the
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loop searching for counterexamples denotes that the disjunction of all pre-images is sound and

complete. Given that existential path formulae are dual, the conjunction of all pre-images of

counterexamples are also sound. The cases of atomic predicates and Boolean operators are

trivial.

Additional Notation. For a program P , a location `, and a condition p over Vars, we denote

P [p@`] as the program obtained from P by splitting the location ` to `+ and `− and adding

the condition p on all transitions entering `+ and adding the condition ¬p on all transitions

entering `−. That is, P [p@`] = (L′, E ′,Vars), where L′ = (L − {`}) ∪ {`+, `−}, E ′ contains the

following transitions, and p′ is a primed copy of p.

• If (`1, ρ, `2) ∈ E and `1, `2 6= ` then (`1, ρ, `2) ∈ E ′.
• If (`1, ρ, `) ∈ E and `1 6= ` then (`1, ρ ∧ p′, `+) ∈ E ′ and (`1, ρ ∧ ¬p′, `−) ∈ E ′.
• If (`, ρ, `2) ∈ E and `2 6= ` then (`+, ρ, `2), (`−, ρ, `2) ∈ E ′.
• If (`, ρ, `) ∈ E then (`∗, ρ ∧ p′, `+), (`∗, ρ ∧ ¬p′, `−) ∈ E ′, where ∗ ∈ {+,−}.

This transformation has two distinct locations representing `, one where the precondition p

does hold and one where the precondition p does not hold. The modified program has the same

set of computations. This way we can reason about the correctness of our preconditions by

considering the locations `+ and `−.

Soundness of our Technique.

We now restate Proposition 3.1 using the introduced notation considering the CTL formula

AGϕ.

Proposition 3.2. If the algorithm in Algorithm 2 terminates, for every sub-formula ϕ′ in ϕ

and every location ` ∈ L we have

P [℘〈`, ϕ′〉@`] |= AG(pc = `+ ⇒ ϕ′) ∧ AG(pc = `− ⇒ ¬ϕ′)

We note how our formula ϕ is now wrapped in an AG formula, simply to indicate that from all

paths, if location `+\− is reached, then ϕ′\¬ϕ′ must hold. In our model checking procedure,

this is not necessary as in Verify it is only necessary to check the initial state of a program

P . Thus we are only using AG in our proof notation to denote how `+\− is reached.

Proof. Consider the base case, that being the atomic predicate α. By construction, for every

location ` we have ℘〈`, α〉 = α and ℘〈`,¬α〉 = ¬α. Then, P [α@`] |= AG(`+ ⇒ α) and

P [¬α@`] |= AG(`+ ⇒ ¬α).
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We now proceed by induction on the nesting depth of formulae.

• If ϕ′ = ϕ′1 ∨ ϕ′2. Consider a location ` where we denote ℘1 = ℘〈`, ϕ′1〉 and ℘2 = ℘〈`, ϕ′2〉.
By induction, we know that P [℘1@`] |= AG(`+ ⇒ ϕ′1) and P [℘2@`] |= AG(`+ ⇒ ϕ′2).

Suppose that P [℘ϕ′@`] 6|= AG(`+ ⇒ ϕ′). Then, there is a state (`′, f) that is reachable

in the program such that (`′, f) 6|= `+ ⇒ ϕ′ where `′ = `+. However, note that the

encoding of ϕ′ in Algorithm 3 adds the transition (`,¬℘1 ∧ ¬℘2, ERR) to P . Then, the

precondition synthesis terminates only when ℘〈`, ϕ′〉 is strong enough to guarantee that

ERR is not reachable in the modified program. Thus, it must be the case that the same

state (`, f) that serves as counterexample to AG(`⇒ ϕ′) would serve as a counterexample

to AG¬ERR in the modified program. Note that the dual argument (for `−) is similar and

thus omitted.

• If ϕ′ = ϕ′1 ∧ ϕ′2 the proof is similar to the previous case.

• If ϕ′ = A[ϕ′1Wϕ′2]. Consider a location ` where we denote ℘1 = ℘〈`, ϕ′1〉 and ℘2 = ℘〈`, ϕ′2〉.
By induction, we know that P [℘i@`] |= AG(`+ ⇒ ϕ′i) and that P [℘i@`] |= AG(`− ⇒ ¬ϕ′i).
Suppose that P [℘′ϕ@`] 6|= AG(`+ ⇒ ϕ′). Then, there is a state (`′, f) that is reachable

in the program such that (`′, f) 6|= `+ ⇒ ϕ′. Then, `′ = `+. However, the encoding of

ϕ′ in Algorithm 3 adds to every location `′ the transition (`′,¬℘1 ∧ ¬℘2, ERR) to P . It

additionally changes every transition to two transitions: one augmented by ℘1 ∧ ¬℘2 to

the same target and one augmented by ℘2 that leads to locations from where the error is

no longer reachable. Our precondition synthesis terminates only when ℘〈`, ϕ′〉 is strong

enough to guarantee that ERR is not reachable in the modified program. The completeness

of the case of A[ϕ′1Wϕ′2] follows from the proof of E[ϕ′1Uϕ
′
2] below.

• If ϕ′ = E[ϕ′1Uϕ
′
2], note that it is the dual of A[ϕ′1Wϕ′2] above. Now consider a location `

where we denote ℘1 = ℘〈`, ϕ′1〉 and ℘2 = ℘〈`, ϕ′2〉. By induction, we know that P [℘i@`] |=
AG(`+ ⇒ ϕ′i) and that P [℘i@`] |= AG(`− ⇒ ¬ϕ′i).
Suppose that P [℘′ϕ@`] 6|= AG(`+ ⇒ ϕ′). Then, there is a state (`′, f) that is reachable in

the program such that (`′, f) 6|= `+ ⇒ ϕ′. Then, `′ = `+. However, the encoding of ϕ′ in

Algorithm 3 treats EU as the dual of AW. Thus, it adds to every location ` a transition

(`, ℘1∧℘2, ERR) and every other transition is replaced with two transitions one augmented

by ¬℘1∧℘2, leading to the same target, and one augmented by ¬℘2, which is then leading

to a region where the transitions to ERR are no longer reachable. Then, the precondition

synthesis extracts counterexamples that reach the ERR state. A path reaching ERR is a

path that violates the dual AW and thus satisfies ϕ′. Thus, from every state satisfying

the weakest precondition of this counterexample the formula ϕ′ holds.

• If ϕ′ = AFϕ′1. Consider a location ` where we denote ℘1 = ℘〈`, ϕ′1〉. By induction,

we know that P [℘1@`] |= AG(`+ ⇒ ϕ′1) and that P [℘1@`] |= AG(`− ⇒ ¬ϕ′1). Now

suppose that P [℘′ϕ@`] 6|= AG(`+ ⇒ ϕ′), then there is a state (`′, f) that is reachable in the

program such that (`′, f) 6|= `+ ⇒ ϕ′ indicating that `′ = `+. Recall that a path reaching
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ERR is further analyzed in Refine, where we then attempt to find an accompanying set

of ranking functions M that will show that the counterexample is not valid, that is, we

enlarge the set of ranking functions M using the well known method of [CPR06]. That

is, the encoding of ϕ′ in Algorithm 3 adds a transition to ERR only in case that a loop

is found that does not have a ranking function. In the case that ℘1 holds, it no longer

becomes possible to reach ERR. Otherwise, from every state either it duplicates the state

and searches for a loop to that state or continues. From the soundness for this program

analysis procedure for ACTL, we know that when the program analysis task returns that

the system is safe. It follows that the precondition synthesized is strong enough to ensure

that the error location is not reached implying that there are no loops where ϕ′1 does not

hold. The completeness of the case of AFϕ′1 follows from the proof of EGϕ′1 below.

• If ϕ′ = EGϕ′1. Consider a location ` where we denote ℘1 = ℘〈`, ϕ′1〉. By induction, we

know that P [℘1@`] |= AG(`+ ⇒ ϕ′1) and that P [℘1@`] |= AG(`− ⇒ ¬ϕ′1). Suppose that

P [℘′ϕ@`] 6|= AG(`+ ⇒ ϕ′), then there is a state (`′, f) that is reachable in the program

such that (`′, f) 6|= `+ ⇒ ϕ′. Then, `′ = `+. However, the encoding of ϕ′ in Algorithm 3

treats EG as the dual of AF. Thus, it adds transitions to ERR whenever a loop is found

that does not visit ¬℘1. That is, the precondition synthesis extracts counterexamples

that reach the ERR state. Given that a path reaching ERR is further analyzed in Refine,

where the absence of a set of ranking function would potentially lead to the existence of

a recurrence set. We utilize the strategy in [GHM+08] to find a recurrence set to serve

as the weakest precondition guaranteeing the satisfiability of EG. Thus, from every state

satisfying the weakest precondition of this counterexample the formula ϕ′ holds.

Corollary 3.2.1. For every program P , if for every (`I , ρ, `) ∈ E, ρ ⇒ ℘〈`I , ϕ〉 then P |= ϕ.

Completeness holds (i.e., ⇐) provided that no spurious counterexamples are produced, and

ranking functions are enumerable. That is, if P |= ϕ, then for every (`I , ρ, `) ∈ E, ρ⇒ ℘〈`I , ϕ〉.

As previously mentioned, assuming that the counterexamples obtained from the underlying

program analysis tools are real counterexamples (i.e., they are non-spurious), the termination

of the loop searching for counterexamples denotes that the disjunction of all pre-images is

sound and complete. For our corollary itself to be relatively complete, we rely on the further

assumptions of the following algorithms. We assume that Refine finds paths to the error

state instrumented in the program. We assume that the computed weakest preconditions are

accurate. Finally, we assume that ranking functions that rule out counterexamples to liveness

properties can be found and are enumerable, that is, they can be represented as a possibly

infinite list of ranking pairs.
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3.4 Concluding remarks

In this chapter, we have described a procedure for CTL model checking that takes advantage

of the structure of control-flow graphs available in programs. Our procedure works recursively

on the structure of the property and computes (location-based) preconditions for the satisfac-

tion of each sub-formula. The idea is to use a decomposition based on program-location (thus

facilitating the use of program analysis techniques), but to maintain the current state of the

intermediate lemmas in a way their results can be used to quickly facilitate the computation

of results for nearby program locations. As is evident from the outcome of our experimental

evaluation in Chapter 7, our method leads to dramatic performance improvement over com-

peting tools that support CTL verification for infinite-state programs. Additionally, we wish to

further experiment with the scalability that our methodology can perhaps provide.



Chapter 4

Fairness for Infinite-State Programs

In this chapter we introduce the first known tool for symbolically proving fair -CTL properties

of (infinite-state) integer programs. Our solution is based on a reduction to our technique

for fairness-free CTL model checking in Chapter 3, via the use of infinite non-deterministic

branching to symbolically partition fair from unfair executions. We show the viability of our

approach in practice using examples drawn from device drivers and algorithms utilizing shared

resources further on in Chapter 7.

4.1 Introduction

In model checking, fairness allows us to bridge some of the expressive gaps between linear-

time (i.e. trace-based) and branching-time (i.e. state-based) reasoning. Fairness is crucial,

for example, to Vardi & Wolper’s automata-theoretic technique for LTL verification [VW94].

Furthermore, when proving state-based CTL properties, we must often use fairness to model

trace-based assumptions about the environment both in a sequential setting, and when reason-

ing about concurrent environments, where fairness is used to abstract away the scheduler.

In this chapter we thus introduce the first-known fair-CTL model checking technique for (infinite-

state) integer programs. Our solution reduces fair-CTL to fairness-free CTL using prophecy

variables, which determine future outcomes of the program execution, to encode a partition of

fair from unfair paths. That is, prophecy variables introduce additional information into the

state-space of the program under consideration, thus allowing fairness-free CTL proving tech-

niques to reason only about fair executions. Cognoscenti may at first find this result surprising.

It is well known that fair termination of Turing machines cannot be reduced to termination

of Turing machines. The former is Σ1
1-complete and the latter is RE-complete [Har86].1 For

1Sometimes termination refers to universal termination, which entails termination for all possible inputs.

52
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similar reasons fair-CTL model checking of Turing machines cannot be reduced to CTL model

checking of Turing machines. The key to our reduction is the use of infinite non-deterministic

branching when model checking fairness-free CTL. As a consequence, in the context of infinite

branching, fair and fairness-free CTL are equally difficult (and similarly for termination).

4.1.1 Related Work

Support for fairness in finite and other decidable settings has been well studied. Tools for these

settings (e.g. NuSMV for finite state systems [CCG+02, CES86], Moped and PuMoc for

pushdown automata [EKS03, ST12], Prism for probabilistic timed automata [KNP11, KNP02],

and Uppaal for timed automata [DHLP06]) provide support for fairness constraints. Proof

systems for the verification of temporal properties of fair systems (e.g., [BBC+00], [PS08]) also

exist. However, such systems require users to construct auxiliary assertions and participate in

the proof process.

As in Chapter 3, we however seek to automatically verify the undecidable general class of

(infinite-state) integer programs supporting both control-sensitive and numerical properties.

And as discussed in Chapter 3, some of these tools do not fully support CTL model checking,

as they do not reliably support mixtures of nested universal/existential path quantifiers, etc.

The tools which consider full CTL and the general class of integer programs as we do again

are [BPR13], [CKP14], and [CK13]. We emphasize that these tools provide no support for

verifying fair-CTL.

When we consider the general class of integer programs, the use of infinite nondeterminism to

encode fairness policies has been previously utilized by Olderog et al. [AO88]. However, they

do not rely on nondeterminism alone but require refinement of the introduced nondeterminism

to derive concrete schedulers which enforce a given fairness policy. Thus, their technique relies

on the ability to force the occurrence of fair events whenever needed by the reduction. We

support general fairness constraints, rather than just fair scheduling. The ability to force the

occurrence of fair events is too strong for our needs. Indeed, in the context of model checking we

rely on the program continuing a normal execution until the “natural” fulfillment of the fairness

constraint. Olderog et al. explicitly note that implementing fairness can be done independently

of temporal logic, and no further observances are made between their transformation and fair

temporal logic. In contrast, we are able to demonstrate how our transformation can easily

build upon recent CTL model checking techniques in order to solve CTL model checking for

infinite-state programs with fairness.

An analysis of fair discrete systems which separates reasoning pertaining to fairness and well-

foundedness through the use of inductive transition invariants was introduced in [PPR05]. Their

This is a harder problem and is co-RERE-complete.
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strategy is the basis of the support for fairness added to Terminator [CGP+07]. However, this

approach relies on the computation of transition invariants [PR04b], whereas our approach does

not. It has shown that, in practice, state-based techniques that circumvent the computation of

transition invariants perform significantly better [CSZ13]. As shown in Chapter 3, our technique

builds upon the latter and not the former. Finally a technique utilized to reduce LTL model

checking to fairness-free CTL model checking introduced by [CK11] is largely incomplete, as it

does not sufficiently determinize all possible branching traces. Note that these methodologies

are used to verify fairness and liveness constraints expressible within linear temporal logic, and

are thus not applicable to verify fair branching-time logic or branching-time logic. Indeed, this

was part of our motivation for studying alternative approaches to model checking with fairness.

4.2 Fairness

Generally speaking, fairness is a related notion to liveness in that they both characterize progress

over a program’s execution. More specifically, a fairness constraint is a condition on paths of

a program’s model. Consider a transition system, where traces contain no information with

regards to how often a process is executed, or how the next process to be executed is chosen.

This is due to the fact that transition systems are independent of an underlying scheduler

enforced perhaps by an operating system. That is, scheduling is treated nondeterministically.

Hence, unlike liveness, fairness constraints are not properties to be verified over a transition

system, but conditions assumed to be enforced by an underlying environment, e.g., a scheduler.

Thus when verifying certain temporal properties, we might find that they are not satisfied,

however, if the environment behaved fairly in its selection of processes to be executed, the

property would indeed hold. Given that we cannot predict the behavior of an underlying

environment, such as an operating system’s scheduler, we instead can model-check various

properties assuming the environment in which a program behaves fairly. Despite fairness being

a condition, it can indeed still be expressed in temporal logic, more specifically in LTL. There

exists 3 common notions of fairness [Wah]:

• Absolute Fairness, Impartiality: GF q, q is executed infinitely often.

• Strong Fairness: GF p ⇒ GF q, if p holds infinitely often, then p must hold infinitely

often.

• Weak Fairness: FG p ⇒ F q or FG p ⇒ GF q, if p holds from some point and onwards,

then q will eventually hold or will hold infinitely often, respectively.

We note that if a property holds under the assumption of weak fairness, then it also holds under

both strong and absolute fairness. However, absolute fairness does not imply strong fairness,
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Fair((S, S0, R, L), (p, q)) , (SΩ, S
0
Ω, RΩ, LΩ) where

SΩ = S × N
 (¬p ∧ n′ ≤ n)∨

(p ∧ n′ < n)∨
q

RΩ = {((s, n), (s′, n′)) | (s, s′) ∈ R}∧
S0

Ω = S0 × N
LΩ(s, n) = L(s)

Figure 4.1: Fair takes a system (S, S0, R, L) and a fairness constraint (p, q) where p, q ⊆ S,
and returns a new system (SΩ, S

0
Ω, RΩ, LΩ). Note that n ≥ 0 is implicit, as n ∈ N.

nor does strong fairness imply absolute fairness. In this chapter, we support both absolute and

strong fairness with one pair of sets of states. Extending our results to fairness over multiple

pairs is simple and omitted for clarity of exposition.

Recall that for a transition system P , a fairness condition is Ω = (p, q), where p, q ⊆ S. The

condition Ω denotes a strong fairness constraint. Absolute fairness constraints can be trivially

expressed by Ω = (True, q), that is, states from q must occur infinitely often. For a transition

system P and a CTL property ϕ, the definition of when ϕ holds in a state s ∈ S is defined as

in Chapter 2 Section 2.3 except that Πm(s) is redefined to be Πf ∪ {π ∈ Π∞ | P, π |= Ω}. We

use the notation |=Ω+ when expressing fairness, that is, we say that ϕ holds in P , denoted by

P |=Ω+ ϕ, if ∀s ∈ S0.P, s |=Ω+ ϕ. When clear from the context, we may omit P and simply

write s |=Ω+ ϕ or s |=m ϕ.

4.3 Fair-CTL Verification

In this section we present a procedure for reducing fair-CTL model checking to CTL model

checking. The procedure builds on a transformation of infinite-state programs by adding a

prophecy variable that truncates unfair paths. We start by presenting the transformation,

followed by a program’s adaptation for using said transformation, and subsequently the model

checking procedure.

In Fig. 4.1, we propose a reduction Fair(P,Ω) that encodes an instantiation of the fairness

constraint within a transition system. When given a transition system (S, S0, R, L,Ω), where

Ω = (p, q) is a strong-fairness constraint, Fair(P,Ω) returns a new transition system (without

fairness) that, through the use of a prophecy variable n, infers all possible paths that satisfy

the fairness constraint, while avoiding all paths violating the fairness policy. Intuitively, n is

decreased whenever a transition imposing p ∧ n′ < n is taken. Since n ∈ N, n cannot decrease

infinitely often, thus enforcing the eventual invalidation of the transition p∧n′ < n. Therefore,

RΩ would only allow a transition to proceed if q holds or ¬p ∧ n′ ≤ n holds. That is, either

q occurs infinitely often or p will occur finitely often. Note that a q-transition imposes no
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`1 `2

ρ1 : x′ = 0

ρ2 : m ≤ 0
x′ = x

ρ3 : m > 0
m′ = m
x′ = x

ρ4 : x′ = 1
m′ = m

`1 `2

ρ1 : x′ = 0

ρ2 : m ≤ 0 ∧
rΩ

x′ = x

ρ3 : m > 0 ∧ rΩ

m′ = m
x′ = x

ρ4 : rΩ

x′ = 1
m′ = m

rΩ : { (¬ρ2 ∧ n′ ≤ n) ∨ (ρ2 ∧ n′ < n) ∨m > 0 } ∧ n ≥ 0

(a) (b)

Figure 4.2: Reducing a transition system with the fair-CTL property AG(x = 0 ⇒ AF(x = 1))
and the fairness constraint GF ρ2 ⇒ GF m > 0. The original transition system is represented
in (a), followed by the application of our fairness reduction in (b).

constraints on n′, which effectively resets n′ to an arbitrary value. Recall that extending our

results to multiple fairness constraints is simple and omitted for clarity of exposition.

The conversion of P with fairness constraint Ω to Fair(P,Ω) involves the truncation of paths

due to the wrong estimation of the number of p-s until q. This means that Fair(P,Ω) can

include (maximal) finite paths that are prefixes of unfair infinite paths. So when model checking

CTL we have to ensure that these paths do not interfere with the validity of our model checking

procedure. Hence, we distinguish between maximal (finite) paths that occur in P and those

introduced by our reduction. We do this by adding a predicate t to mark all original “valid”

terminating states prior to the reduction in Fig. 4.1 and by adjusting the CTL specification.

These are presented in Section 4.3.3. We first provide high-level understanding of our approach

through an example.

4.3.1 Illustrative Example

Consider the example in Fig. 4.2 for the fair-CTL property AG(x = 0 ⇒ AF(x = 1)) and the

fairness constraint GF ρ2 ⇒ GF m > 0 for the initial transition system introduced in (a).

We demonstrate the resulting transformation for this infinite-state program, which allows us

to reduce fair model checking to model checking. By applying Fair(P,Ω) from Fig. 4.1, we

obtain (b) where each original transition, ρ2, ρ3, and ρ4, are adjoined with restrictions such that

{(¬ρ2 ∧ n′ ≤ n) ∨ (ρ2 ∧ n′ < n) ∨ m > 0 } ∧ n ≥ 0 holds. That is, we wish to restrict

our transition relations such that if ρ2 is visited infinitely often, then the variable m must be

positive infinitely often. In ρ2, the unconstrained variable m indicates that the variable m is

being assigned to a nondeterministic value, thus with every iteration of the loop, m acquires a

new value. In the original transition system, ρ2 can be taken infinitely often given said non-
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Term(α, t) ::= α
Term(ϕ1 ∧ ϕ2, t) ::= Term(ϕ1, t) ∧Term(ϕ2, t)
Term(ϕ1 ∨ ϕ2, t) ::= Term(ϕ1, t) ∨Term(ϕ2, t)

Term(EXϕ, t) ::= ¬t ∧ EX(Term(ϕ, t))
Term(AXϕ, t) ::= t ∨ AX(Term(ϕ, t))
Term(EGϕ, t) ::= EGTerm(ϕ, t)
Term(AFϕ, t) ::= AFTerm(ϕ, t)

Term(A[ϕ1Wϕ2], t) ::= A[Term(ϕ1, t) W Term(ϕ2, t)]
Term(E[ϕ1Uϕ2], t) ::= E[Term(ϕ1, t) U Term(ϕ2, t)]

Figure 4.3: Transformation Term(ϕ, t).

determinism, however in (b), such a case is not possible. The transition ρ2 in (b) now requires

that n be decreased on every iteration. Since n ∈ N, n cannot be decreased infinitely often,

causing the eventual restriction to the transition ρ2. Such an incidence is categorized as a finite

path that is a prefix of some unfair infinite paths. As previously mentioned, we will later discuss

how such paths are disregarded. This leaves only paths where the prophecy variable “guessed”

correctly. That is, it prophesized a value such that ρ3 is reached, thus allowing our property to

hold.

4.3.2 Prefixes of Infinite Paths

We explain how to distinguish between maximal (finite) paths that occur in P , and those

that are prefixes of unfair infinite paths introduced by our reduction. Consider a transition

system P = (S, S0, R, L,Ω), where Ω = (p, q), and let ϕ be a CTL formula. Let t be an atomic

predicate not appearing in L or ϕ. The transformation that marks “valid” termination states

is Term(P, t) = (S, S0, R
′, L′,Ω′), where R′ = R ∪ {(s, s) | ∀s′.(s, s′) /∈ R}, Ω′ = (p, q ∨ t) and

for a state s we set L′(s) = L(s) ∪ {t} if ∀s′ . (s, s′) /∈ R and L′(s) = L(s) otherwise.

That is, we eliminate all finite paths in Term(P, t) by instrumenting self loops and adding the

predicate t on all terminal states. The fairness constraint is adjusted to include paths that end

in such states. We now adjust the CTL formula ϕ that we wish to verify on P . Recall that t

does not appear in ϕ. Now let Term(ϕ, t) denote the CTL formula transformation in Fig. 4.3

(we note that AG can be constructed using AW).

The combination of the two transformations maintains the validity of a CTL formula in a given

system.

Theorem 4.1. P |=Ω+ ϕ⇔ Term(P, t) |=Ω+ Term(ϕ, t)

Proof. For every fair path of Term(P, t), we show that it corresponds to a maximal path in
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P and vice versa. The proof then proceeds by induction on the structure of the formula. For

existential formulae, witnesses are translated between the models. For universal formulae, we

consider all paths and translate them between the models.

Base case: Consider an atomic predicate α 6= t, assume Term(P, t), s |=Ω+ Term(α, t). Given

that Term(α, t) = α, we now have Term(P, t), s |=Ω+ α and P, s |=Ω+ α. These statements

are equivalent.

Induction hypothesis: For every state s and sub-formula ϕ (of lower temporal height) assume

Term(P, t), s |=Ω+ Term(ϕ, t)⇔ P, s |=Ω+ ϕ.

(⇐) Term(P, t), s |=Ω+ Term(ϕ, t)⇒ P, s |=Ω+ ϕ.

Proof by structural induction:

1. Term(P, t), s |=Ω+ Term(A[ϕ1Wϕ2], t)⇒ P, s |=Ω+ A[ϕ1Wϕ2].

Recall that Term(A[ϕ1Wϕ2], t) = A[Term(ϕ1, t) W Term(ϕ2, t)]. Consider a max-

imal path π = (s0, s1, . . .) starting at s in P . If π ∈ Π∞ and π is fair, then π is in

Term(P, t) as well and by Term(P, t), s |=Ω+ A[Term(ϕ1, t) W Term(ϕ2, t)] we

know either ∃j ≥ 0. Term(P, t), sj |=Ω+ Term(ϕ2, t) ∧ ∀i ∈ [0, j). Term(P, t),

si |=Ω+ Term(ϕ1, t) or ∀i ≥ 0 Term(P, t), sj |=Ω+ Term(ϕ1, t). Using our induc-

tion hypothesis we then have either P, sj |=Ω+ ϕ2 ∧ ∀i ∈ [0, j). P, si |=Ω+ ϕ1 or ∀i ≥
0. P, si |=Ω+ ϕ2. If π ∈ Πf then π = (s0, s1, . . . , sn) and π′ = (s0, s1, . . . , sn, sn+1, . . .)

is a path in Term(P, t), where for every k > 0, sn+k = sn. As Term(P, t), s |=Ω+

A[Term(ϕ1, t)WTerm(ϕ2, t)] then either: There is a j such that Term(P, t), sj |=Ω+

Term(ϕ2, t) and ∀i ∈ [0, j). Term(P, t), si |=Ω+ Term(ϕ1, t) If j < n, then clearly π

satisfies ϕ1Wϕ2. If j ≥ n then sj = sn and then Term(P, t), sn |=Ω+ Term(ϕ2, t) ∧
∀i ∈ [0, n). Term(P, t), si |=Ω+ Term(ϕ1, t) implying P, sn |=Ω+ ϕ2 ∧ ∀i ∈
[0, n). P, si |=Ω+ ϕ1. Or ∀i ∈ [0, |π|).Term(P, t), si |=Ω+ Term(ϕ2, t). We have

∀i ∈ [0, |π|). P, si |=Ω+ ϕ1. It thus follows that P, s |=Ω+ Aϕ1Wϕ2.

2. Term(P, t), s |=Ω+ Term(EXϕ, t)⇒ P, s |=Ω+ EXϕ.

Given that Term(EXϕ, t) = ¬t ∧ EX(Term(ϕ, t)) we now have Term(P, t), s |=Ω+

¬t ∧ EX(Term(ϕ, t)). First, consider Term(P, t), s |=Ω+ EX(Term(ϕ, t)), which

implies ∃π = (s0, s1, . . .). Term(P, t), s1 |=Ω+ Term(ϕ, t). Now consider Term(P, t),

s |=Ω+ ¬t, that is, the predicate ¬t indicates that (s, s1) was not an instrumented

transition. Given that we only instrument transitions in terminal states, ¬t guar-

antees that s1 is a successor of s as s is a non-terminal state in P . Recall our

assumption that ∀s′. Term(P, t), s′ |=Ω+ Term(ϕ, t)⇒ P, s′ |=Ω+ ϕ and (s, s1) ∈ R
thus P, s1 |=Ω+ ϕ.

3. A similar proof to AW and EX follows for AX, AF, AG, EU, and EG.

(⇒) P, s |=Ω+ ϕ⇒ Term(P, t), s |=Ω+ Term(ϕ, t).

Proof by structural induction:
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1. P, s |=Ω+ A[ϕ1Wϕ2]⇒ Term(P, t), s |=Ω+ Term(A[ϕ1Wϕ2], t).

Recall that Term(A[ϕ1Wϕ2], t) = A[Term(ϕ1, t)WTerm(ϕ2, t)]. Consider a path

π′ starting at s in Term(P, t), if π′ is of the form π′ = (s0, s1, . . . , sn, sn+1, sn+2, . . .)

such that for every k > 1 we have sn+k = sn and sn |=Ω+ t, then π = (s0, s1, . . . , sn)

is a maximal path in P since terminating paths are instrumented as self-loops in

Term(P, t) and marked with the predicate t. If P, s |=Ω+ A[ϕ1Wϕ2] then ei-

ther there is a j ≤ n such that P, sj |=Ω+ ϕ2 and ∀i ∈ [0, j). P, si |=Ω+ ϕ1 or

∀i ∈ [0, n]. P, si |=Ω+ ϕ1. By our induction hypothesis in the first case we have

Term(P, t), sj |=Ω+ Term(ϕ2, t) ∧ ∀i ∈ [0, j). Term(P, t), si |=Ω+ Term(ϕ1, t)

and in the second case we have ∀i ∈ [0, n]. Term(P, t), si |= Term(ϕ1, t). If π′ is of

the form π′ = (s0, s1, . . .) such that the predicate t does not hold anywhere along the

path, then π = (s0, s1, . . .) is an infinite path in P and by P, s |=Ω+ A[ϕ1Wϕ2]

we know that either ∃j ≥ 0. P, sj |=Ω+ ϕ2 ∧ ∀i ∈ [0, j). P, si |=Ω+ ϕ1 or

∀i ≥ 0. P, si |=Ω+ ϕ1. Using our induction hypothesis we then have that either

∃j ≥ 0. Term(P, t), sj |=Ω+ Term(ϕ2, t) ∧ ∀i ∈ [0, j). Term(P, t), si |=Ω+

Term(ϕ1, t) or ∀i ≥ 0. Term(P, t) |= Term(ϕ1, t). Thus, Term(P, t), s |=Ω+

Term(A[ϕ1Wϕ2], t).

2. P, s |=Ω+ EXϕ⇒ Term(P, t), s |=Ω+ Term(EXϕ, t).

We expand our formula to P |=Ω+ EXϕ ⇒ Term(P, t) |=Ω+ ¬t ∧ EXTerm(ϕ, t).

By P, s |=Ω+ EXϕ we know that there is s1 such that (s, s1) ∈ R and P, s1 |=Ω+ ϕ,

hence s is not terminal in P and Term(P, t), s |=Ω+ ¬t. Through our induction

hypothesis it then follows that Term(P, t), s1 |=Ω+ Term(ϕ, t). Both arguments of

the conjunction are thus satisfied hence Term(P, t), s |=Ω+ ¬t ∧ EXTerm(ϕ, t).

3. A similar proof to AW and EX follows for AX, AF, AG, EU, and EG.

After having marked the “valid” termination points in P by using the transformation Term(P, t),

we must ensure that our fair-CTL model checking procedure ignores “invalid” finite paths in

Fair(P,Ω). The finite paths that need to be removed from consideration are those that arise

by wrong prediction of the prophecy variable n. The formula term = AFAX False holds in a

state s iff all paths from s are finite. We denote its negation EGEX True by ¬term. Intuitively,

when considering a state (s, n) of Fair(P,Ω), if (s, n) satisfies term, then (s, n) is part of a

wrong prediction. If (s, n) satisfies ¬term, then (s, n) is part of a correct prediction. Further

on, we will set up our model checking technique such that universal path formulae ignore viola-

tions that occur on terminating paths (which correspond to wrong predictions) and existential

path formulae use only non-terminating paths (which correspond to correct predictions).
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4.3.3 Fair-CTL Model Checking

ALGORITHM 8: Our procedure FairCTL(P,Ω, ϕ) which employs both an existing CTL model

checker and the reduction Fair(P,Ω). An assertion characterizing the states in which ϕ holds under

the fairness constraint Ω is returned.

1 Let FairCTL(P,Ω, ϕ) : AP =
2 match (ϕ) with
3 ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | Aϕ1 ◦ ϕ2 | Eϕ1 ◦ ϕ2 →
4 aϕ1 = FairCTL(P,Ω, ϕ1)
5 aϕ2 = FairCTL(P,Ω, ϕ2)
6 A◦ϕ1 | E◦ϕ1 →
7 aϕ1 = FairCTL(P,Ω, ϕ1)
8 α → aϕ1 = α

9 match (ϕ) with
10 Eϕ1Uϕ2 → ϕ′ = E[aϕ1U(aϕ2 ∧ ¬term)]
11 EGϕ1 → ϕ′ = EG(aϕ1 ∧ ¬term)
12 EXϕ1 → ϕ′ = EX(aϕ1 ∧ ¬term)
13 Aϕ1Wϕ2 → ϕ′ = A[aϕ1W(aϕ2 ∨ term)]
14 AFϕ1 → ϕ′ = AF(aϕ1 ∨ term)
15 AXϕ1 → ϕ′ = AX(aϕ1 ∨ term)
16 ϕ1 ∧ ϕ2 → ϕ′ = aϕ1 ∧ aϕ2

17 ϕ1 ∨ ϕ2 → ϕ′ = aϕ1 ∨ aϕ2

18 α→ ϕ′ = aϕ1

19 P ′ = Fair(P,Ω)
20 a = CTL(P ′, ϕ′)
21 match (ϕ) with
22 Eϕ1 → return ∃n ≥ 0 . a
23 Aϕ1 → return ∀n ≥ 0 . a
24 → return a

We use Fair(P,Ω) to handle fair-CTL model checking. Our procedure employs an existing CTL

model checking algorithm for infinite-state systems. We assume that the CTL model checking

algorithm returns an assertion characterizing all the states in which a CTL formula holds, as

proposed in Chapter 3. Additionally tools proposed by Beyene et al. [BPR13] and support this

functionality. We denote such CTL verification tools by CTL(P, ϕ), where P is a transition

system and ϕ a CTL formula.

ALGORITHM 9: CTL model checking procedure Verify, which utilizes the subroutine in Algo-

rithm 8 to verify if a CTL property ϕ holds over P under the fairness constraints Ω.

1 Let Verify(P,Ω, ϕ) : bool =
2 a = FairCTL(Term(P, t),Ω,Term(ϕ, t))
3 return ∀(`I , ρ, `) ∈ E ∀f : Vars→ Vals . (f−1, f) |= ρ implies (`, f) |= a

Our procedure adapting Fair(P,Ω) is presented in Algorithm 8. Given a transition system P ,

a fairness constraint Ω, and a CTL formula ϕ, FairCTL returns an assertion characterizing the
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states in which ϕ fairly holds. Initially, our procedure is called by Verify in Algorithm 9 where

P and ϕ are initially transformed by Term(P, t) and Term(ϕ, t) discussed in Section 4.3.2.

That is, Term(P, t) marks all “valid” termination states in P to distinguish between maximal

(finite) paths that occur in P and those introduced by our reduction. Term(ϕ, t) allows us to

disregard all aforementioned finite paths, as we only consider infinite paths, which correspond

to a fair path in the original system.

Our procedure then begins by recursively enumerating over each CTL sub-property, wherein

we attain an assertion characterizing all the states in which the sub-property holds under the

fairness constraint Ω. These assertions will subsequently replace their corresponding CTL sub-

properties as shown on lines 4, 5, and 7. Recall that ◦ denotes a temporal operator. A new CTL

formula ϕ′ is then acquired by adding an appropriate termination or non-termination clause

(lines 10–18). This clause allows us to ignore finite paths that are prefixes of unfair infinite

paths. Recall that other finite paths were turned infinite and marked by the predicate t in

Term(P, t).

Ultimately, our reduction Fair(P,Ω) is utilized on line 19, where we transform the input

transition system P according to Fig. 4.1. With our modified CTL formula ϕ′ and transition

system P ′, we call upon the existing CTL model checking algorithm to return an assertion

characterizing all the states in which the formula holds. The returned assertion is then examined

on lines 21–24 to determine whether or not ϕ′ holds under the fairness constraint Ω. If the

property is existential, then it is sufficient that there exists at least one value of the prophecy

variable such that the property holds. If the property is universal, then the property must hold

for all possible values of the prophecy variable.

We state the correctness and completeness of our model checking procedure.

Theorem 4.2. For every CTL formula ϕ and every transition system P with no terminating

states we have for every (`I , ρ, `) ∈ E, if ρ ⇒ FairCTL (P,Ω, ϕ) then P |=Ω+ ϕ. Rela-

tive completeness holds (i.e., ⇐) provided that no spurious counterexamples are produced, and

ranking functions are enumerable. That is, if P |=Ω+ ϕ then for every (`I , ρ, `) ∈ E, ρ ⇒
FairCTL (P,Ω, ϕ).

Proof. First, we demonstrate that every infinite path in Fair(P,Ω) starting in (s, n) for some

prophecy variable n ∈ N corresponds to an infinite path in P starting in s satisfying Ω. Consider

an infinite path π = (s0, n0), (s1, n1), . . . in Fair(P,Ω). Let π′ = s0, s1, . . . be its projection in

P . Suppose that π′ is unfair. That is, states of the form (s, n) where s ∈ p occur infinitely often

along π but states of the form (s, n) where s ∈ q occur only finitely often. This implies that for

infinitely many i’s we have ni > ni+1. However, ∀i ≥ 0 we have n ≥ 0. As the only conjunct in

RΩ that allows n to increase requires q to hold. It thus follows that this is a contradiction.
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Now we demonstrate that every fair path in P according to Ω starting in s corresponds to

an infinite path in Fair(P,Ω) starting in (s, n) for some n ∈ N. Consider an infinite path

π = s0, s1, . . . in P such that π |= Ω. If there are finitely many occurrences of states from p in π

then let n0 be the number of such occurrences plus 1. Then, the path π′ = (s0, n0), (s1, n1), . . .

where ni+1 is ni − 1 if si ∈ p and ni+1 = ni. Otherwise, it is a path in Fair(P,Ω). Indeed,

every transition such that si ∈ p satisfies p∧ n′ < n and every other transition satisfies n′ ≤ n.

From this correspondence of fair paths in P and infinite paths in Fair(P,Ω), we can safely

disregard all the newly introduced finite paths given a transition system with no finite paths

(i.e., Term(P, t)).

We now turn to the main theorem, which we prove by induction on the structure of the formula.

Namely, we show that the assertion returned by FairCTL(P,Ω, ϕ) characterizes the set of

states of P that satisfy ϕ. We note that for our base case, that is, atomic predicates and

Boolean operators, the proof is immediate as it has been similarly shown by Theorem 4.1.

Induction hypothesis: Let ai be the assertion characterizing the set of states satisfying ϕi. For

every state s and every formula ϕi (of lower temporal height) assume P, s |= ϕi ⇔ (s⇒ ai) for

i ∈ {1, 2}.

(⇒) 1. Consider the case that ϕ = AXϕ1. Suppose that in Fair(P,Ω) we have that for every

n ≥ 0, (s, n) |= AX(a1 ∨ term), we show that s |= AXϕ1. Consider if there were no fair

paths starting in s, then this trivially holds. Now consider if a fair path π′ = s, s1, s2, . . .

in P existed, and recall the correspondence established above between fair paths in P and

infinite paths in Fair(P,Ω). We can then conclude that π = (s, n), (s1, n1), (s2, n2), . . . is

an infinite path in Fair(P,Ω), hence, (s1, n1) cannot satisfy term. It thus must be the

case that s1 satisfies a1 and thus P, s |=Ω+ AXϕ1.

2. Consider the case that ϕ = A[ϕ1Wϕ2]. Suppose that for every value of n we have

(s, n) |= A[a1W(a2 ∨ term)], we show that s |= A[ϕ1Wϕ2]. Consider if there were no fair

paths starting in s, then this trivially holds. Now consider a fair path π′ = s, s1, s2, . . . in

P existed, and recall the correspondence established above between fair paths in P and

infinite paths in Fair(P,Ω). We can then conclude that π = (s, n), (s1, n1), (s2, n2), . . .

is an infinite path in Fair(P,Ω), hence, every state on π cannot satisfy term and we

conclude that π satisfies a1Wa2. It thus must be the case that as π′ satisfies ϕ1Wϕ2 as

required.

3. The the case of ϕ = AFϕ1 is similar.

4. Consider the case that ϕ = EXϕ1. Now suppose that for some value of n such that

Fair(P,Ω), (s, n) |= EX(a1 ∧ ¬term), we show that P, s |=Ω+ EXϕ1. As (s, n) |= EX(a1 ∧
¬term) it follows that there is an infinite path π = (s, n), (s1, n1), . . . such that (s1, n1) |=
a1. Recall the correspondence between fair paths in P and infinite paths in Fair(P,Ω).

We conclude that π′ = s, s1, . . . is a fair path in P and s1 |= ϕ1. Thus, P, s |=Ω+ EXϕ1.
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5. Consider the case that ϕ = E[ϕ1Uϕ2]. Suppose that for some n ≥ 0 we have Fair(P,Ω), (s, n) |=
E[a1U(a2 ∧ ¬term)], we show that P, s |=Ω+ E[ϕ1Uϕ2]. Given our assumption, there is

a path (s, n), (s1, n1), . . . , (si, ni) that satisfies a1U(a2 ∧ ¬term) such that s, s1, . . . , si−1

satisfy a1 and si satisfies a2 ∧ ¬term. From (si, ni) satisfying ¬term there is an infinite

path (s, n), (s1, n1), . . . , (si, ni), (si+1, ni+1), . . . in Fair(P,Ω). Now recall the correspon-

dence between fair paths in P and infinite paths in Fair(P,Ω). We can thus conclude

that π′ = s, s1, . . . , si, si+1, . . . is a fair path in P such that s, s1, . . . , si−1 satisfy ϕ1 and

si satisfies ϕ2.

6. The case of ϕ = EGϕ1 is similar.

(⇐) 1. Consider the case that ϕ = AXϕ1. Suppose that P, s |=Ω+ AXϕ1. We show that

for every n ≥ 0 we have Fair(P,Ω), (s, n) |= AX(a1 ∨ term). Consider a state

(s, n) such that (s, n) has no successors, then it follows that Fair(P,Ω), (s, n) |=
AX(a1∨ term). Now consider a state (s, n) such that (s, n) has some successors, and

let (s1, n1) be some successor of (s, n). If (s1, n1) |= term then we have proved the

property. Otherwise, there is an infinite path (s1, n1), (s2, n2), . . . in Fair(P,Ω). By

the correspondence established above it must be the case that s1, s2, . . . is a fair path

in P . Thus, as s1 is a successor of s in P and s, s1, . . . is a fair path in P , it must

be the case that s1 |= ϕ1. Hence, by induction, s1 |= a1, and since n was arbitrary

it follows that this holds for every possible value of n.

2. Consider the case that ϕ = A[ϕ1Wϕ2]. Suppose that P, s |=Ω+ A[ϕ1Wϕ2]. We

show that for every n ≥ 0 we have Fair(P,Ω), (s, n) |= A[a1W(a2 ∨ term)]. Con-

sider a state (s, n) that has no infinite paths starting from it, then it follows that

Fair(P,Ω), (s, n) |= term. Now consider a state (s, n) such that it has some infinite

path starting from it and let π = (s, n), (s1, n1), (s2, n2), . . . be a maximal path in

Fair(P,Ω). If π is infinite then by the correspondence established above it must be

the case that π′ = s, s1, s2, . . . is a fair path in P . As P, s |=Ω+ A[ϕ1Wϕ2] it follows

that that π′ satisfies ϕ1Wϕ2, thus π satisfies a1Wa2.

If π is finite then let (si, ni) be the last state on π such that from (si, ni) there

is some infinite path. Let (s, n), (s1, n1), . . . , (si, ni), (s
′
i+1, n

′
i+1), . . . be this infinite

path. It follows that s, s1, . . . , si, s
′
i+1, . . . is a fair path in P and it must satisfy

ϕ1Wϕ2. If ϕ2 is satisfied on or before i then π satisfies a1Wa2.Otherwise, all states

s, s1, . . . , si satisfy ϕ1. Thus, the state (si+1, ni+1) satisfies term in Fair(P,Ω) and

hence π satisfies a1W(a2 ∨ term). As n was arbitrary it follows that this holds for

every possible value of n.

3. The case of ϕ = AFϕ1 is similar to the above.

4. Consider the case that ϕ = EXϕ1. Suppose that P, s |=Ω+ EXϕ1. We show that

for some n ≥ 0, Fair(P,Ω), (s, n) |= EX(a1 ∧ ¬term). By assumption, there exists

a fair path s, s1, s2, . . . in P such that s1 |= ϕ1. Recall the correspondence be-
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tween infinite paths in Fair(P,Ω) and fair paths in P , then there is an infinite path

(s, n), (s1, n1), (s2, n2), . . . in Fair(P,Ω). It thus follows that state (s1, n1) satisfies

¬term. As s1 ⇒ a1, it must be the case that (s, n) |= EX(a1 ∧ ¬term).

5. Consider the case that ϕ = E[ϕ1Uϕ2]. Suppose that P, s |=Ω+ E[ϕ1Uϕ2], and

let a1 be the assertion characterizing the set of states satisfying ϕ1 and a2 the

assertion characterizing the set of states satisfying ϕ2. By induction for every

state s, we have P, s |= ϕi ⇔ s ⇒ ai, for i ∈ {1, 2}. We show that for some

n ≥ 0, Fair(P,Ω), (s, n) |= E[a1U(a2 ∧ ¬term)]. By assumption, there is a fair

path π′ = s, s1, s2, . . . in P such that π′ |= ϕ1Uϕ2. Recall the correspondence be-

tween infinite paths in Fair(P,Ω) and fair paths in P , then there is an infinite path

π = (s, n), (s1, n1), (s2, n2), . . . in Fair(P,Ω). Due to π, we have that (s, n) |= ¬term
and similarly for every state on this path. Since si ⇒ aj iff P, si |=Ω+ ϕj, it thus

follows that (s, n) |= E[a1U(a2 ∧ ¬term)].

6. The case of ϕ = EGϕ1 is similar.

Corollary 4.2.1. For every CTL formula ϕ and every transition system P , if Verify(P,Ω, ϕ)

returns true, then P |=Ω+ ϕ. Relative completeness holds (i.e., ⇐) provided that no spurious

counterexamples are produced, and ranking functions are enumerable. That is, if P |=Ω+ ϕ,

then Verify(P,Ω, ϕ) returns true.

Proof. Verify calls FairCTL on Term(P, t) and Term(ϕ, t). It follows that Term(P, t)

has no terminating states and hence Theorem 4.2 applies to it. By Theorem 4.1, the mutual

transformation of P to Term(P, t) and ϕ to Term(ϕ, t) preserves whether or not P |=Ω+ . The

corollary follows.

4.4 Fair-ACTL Model Checking

In this section we show that in the case that we are only interested in universal path properties,

i.e., formulas in ACTL, there is a simpler approach to fair-CTL model checking. In this simpler

case, we can solely use the transformation Fair(P,Ω). Just like in Fair-CTL, we still must

ignore truncated paths that correspond to wrong predictions. However, in this case, this can

be done by a formula transformation.

Let NTerm(ϕ) denote the transformation in Figure 4.4. The transformation ensures that

universal path quantification ignores states that lie on finite paths that are due to wrong

estimations of the number of p-s until q. Using this transformation, it is possible to reduce

fair-ACTL model checking to (A)CTL model checking over Fair(P,Ω). Formally, this is stated

in the following theorem.
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NTerm(α) ::= α
NTerm(ϕ1 ∧ ϕ2) ::= NTerm(ϕ1) ∧NTerm(ϕ2)
NTerm(ϕ1 ∨ ϕ2) ::= NTerm(ϕ1) ∨NTerm(ϕ2)

NTerm(AXϕ) ::= AX(NTerm(ϕ) ∨ term)
NTerm(AFϕ) ::= AF(NTerm(ϕ) ∨ term)

NTerm(A[ϕ1Wϕ2]) ::= A[NTerm(ϕ1) W (NTerm(ϕ2) ∨ term)]

Figure 4.4: Transformation NTerm( ).

Theorem 4.3. For every ACTL formula ϕ and every transition system P with no terminating

states, we have P |=Ω+ ϕ⇔ Fair(P,Ω) |= NTerm(ϕ) ∨ term.

Proof. The proof proceeds by induction on the structure of the formula. We show that if

the property holds from s in P then for every n the (modified) property holds from (s, n)

in Fair(P,Ω) and vice versa. Note that the initial states of Fair(P,Ω) are all the initial

states of P annotated by all possible options of n ∈ N. It follows that the combination of all

transformations reduce fair-ACTL model checking to ACTL model checking. We start with an

auxiliary claim:

Claim 1. For every ACTL formula ϕ, every transition system with no terminating states P , and

for every state s of P , if for infinitely many n ∈ N we have Fair(P,Ω), (s, n) |= NTerm(ϕ) ∨
term for ∀n ∈ N, then we have Fair(P,Ω), (s, n) |= NTerm(ϕ) ∨ term.

We prove this claim by induction over the structure of the formula. It holds trivially for

predicates and Boolean combinations of formulae.

1. Consider the case that ϕ = AXϕ1. We recall that NTerm(ϕ) is AXϕ1 ∨ term. Sup-

pose that for infinitely many n’s we have Fair(P,Ω) |= NTerm(ϕ) ∨ term. Consider

a successor s′ of s and a value n′ ∈ N, then there is n′′ > n such that Fair(P,Ω) |=
NTerm(ϕ)∨ term. If Fair(P,Ω), (s, n′′) |= term then clearly Fair(P,Ω), (s′, n′) |= term

as well. Otherwise, Fair(P,Ω), (s′, n′) |= ϕ1∨ term. Thus, for infinitely many n′ we have

Fair(P,Ω), (s′, n′) |= ϕ1∨ term and by assumption it follows that this holds for all values

of n. As s′ was arbitrarily chosen it follows that the same holds for every successor of s′.

Thus, for every n′ ∈ N we have Fair(P,Ω), (s, n′) |= ϕ ∨ term.

2. Consider the case that ϕ = A[ϕ1Wϕ2]. We recall that NTerm(ϕ) is

A[NTerm(ϕ1)W(NTerm(ϕ2)∨term)]. Now suppose that for infinitely many n’s we have

Fair(P,Ω), (s, n) |= NTerm(ϕ)∨ term. Consider a value n′ and assume by contradiction

that Fair(P,Ω), (s, n′) 6|= NTerm(ϕ)∨term, then it follows that (s, n′) is not terminating.

Hence, there is an infinite path π starting in (s, n) that does not satisfy NTerm(ϕ). By

assumption there is an n′′ > n such that Fair(P,Ω), (s, n′′) |= NTerm(ϕ) ∨ term. The

path π′ that is identical to π except that it starts in (s, n′′) instead of in (s, n′) is also
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an infinite path from (s, n′′), it thus follows that (s, n′′) is not terminating and that the

path π′ does satisfy NTerm(ϕ). Note that the only difference between π and π′ is the

initial state (and in it the value of n), it thus follows that either (s, n′′) |= NTerm(ϕ1) or

(s, n′′) |= NTerm(ϕ2). In either case, we can find infinitely many different n′′′ > n′′ such

that the same thing will hold. It follows by induction that for infinitely many value n′′′ we

have (s, n′′′) |= NTerm(ϕ1) or (s, n′′′) |= NTerm(ϕ2). Thus in all cases, the same follows

for all values of n and we conclude that π cannot be a counterexample to NTerm(ϕ1).

3. Consider the case that ϕ = AFϕ1. We recall that NTerm(ϕ) is AF(NTerm(ϕ1)∨ term).

Suppose that for infinitely many n’s we have Fair(P,Ω), (s, n) |= NTerm(ϕ)∨term. Now

consider a value n′ and assume by contradiction that Fair(P,Ω), (s, n′) 6|= NTerm(ϕ) ∨
term, it follows that (s, n′) is not terminating. Hence, there is an infinite path π starting

in (s, n) that does not satisfy NTerm(ϕ). By assumption there is an n′′ > n such that

Fair(P,Ω), (s, n′′) |= NTerm(ϕ) ∨ term. Note that the path π′ is identical to π except

that it starts in (s, n′′) instead of in (s, n′) is also an infinite path from (s, n′′), it thus

follows that (s, n′′) is not terminating, and the path π′ does satisfy NTerm(ϕ). The

only difference between π and π′ is the initial state (and in it the value of n), similarly

it follows that (s, n′′) |= NTerm(ϕ1). and hence we can find infinitely many values for

which (s, n′′′) |= NTerm(ϕ1). By assumption it follows that for every value of n we have

(s, n) |= ϕ1 ∨ term, thus, it must be the case that (s, n′) |= NTerm(ϕ) ∨ term.

We now prove a stronger claim, which implies the Theorem: For every ACTL formula ϕ, every

transition system with no terminating states P , and every state s of P we have

P, s |=Ω+ ϕ⇔ ∀n ∈ N. Fair(P,Ω), (s, n) |= NTerm(ϕ) ∨ term

We prove this claim by induction on the structure of the formula.

Base case: Consider an atomic predicate α 6= t. Clearly, for every s and every n we have

P, s |=Ω+ α⇔ Fair(P,Ω), (s, n) |= NTerm(α). The proof for Boolean operators is immediate.

(⇒) 1. Consider the case that ϕ = AXϕ1. Suppose that P, s |=Ω+ AXϕ1, we show that

Fair(P,Ω), (s, n) |= NTerm(AXϕ1) ∨ term for an arbitrary n ∈ N. Recall that

NTerm(AXϕ1) = AX(ϕ1 ∨ term), and thus if (s, n) is terminating in Fair(P,Ω)

then clearly Fair(P,Ω), (s, n) |= term. Otherwise, consider an infinite path π′ =

(s0, n0), (s1, n1), . . . starting in (s, n) in Fair(P,Ω). Let π = s0, s1, . . . be the pro-

jection of π′ on the states in P . As shown above π is a fair path in P . Hence,

as P, s |=Ω+ AXϕ1 it follows that P, s1 |=Ω+ ϕ1 and by induction assumption

Fair(P,Ω), (s1, n1) |= ϕ1 ∨ term. The same argument works for every successor

(s1, n1) of (s, n), thus Fair(P,Ω), (s, n) |= NTerm(AXϕ1) ∨ term.

2. Consider the case that ϕ = A[ϕ1Wϕ2]. Suppose that P, s |=Ω+ ϕ, we show that
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Fair(P,Ω), (s, n) |= NTerm(ϕ) ∨ term.

Recall that NTerm(ϕ) = A[NTerm(ϕ1)W(NTerm(ϕ2) ∨ term)], if (s, n) is ter-

minating then the property trivially holds. Otherwise, consider an infinite path

π′ = (s0, n0), (s1, n1), . . . starting in (s, n) in Fair(P,Ω). Let π = s0, s1, . . . be

the projection of π′ on the states in P . As shown above π is a fair path in P .

Hence, as P, s |=Ω+ ϕ it follows that either for every i ≥ 0 we have P, si |=Ω+

ϕ1 or there is some j ≥ 0 such that P, sj |=Ω+ ϕ2 and for every i ∈ [0, j) we

have P, si |=Ω+ ϕ1. In both cases, it follows from the induction hypothesis that

the path π′ satisfies NTerm(ϕ1)W(NTerm(ϕ2) ∨ term). Now consider a finite

path π′ = (s0, n0), (s1, n1), . . . , (sm, nm) starting in (s, n) in Fair(P,Ω). Let π′′ =

(s0, n0), . . . , (si, ni), (s
′
i+1, n

′
i+1), . . . be an infinite path in Fair(P,Ω) that has a max-

imal joint prefix with π′. That is, (si+1, ni+1) is terminating in Fair(P,Ω). As above,

the projection of π′′ is going to be a fair path in P and thus, the prefix of π′′ that

agrees with π′ either all satisfies NTerm(ϕ1) or NTerm(ϕ2) holds somewhere along

it. In the first case, as (si+1, ni+1) is terminating we have that π′ satisfies the AW

formula. In the second case, the AW formula holds already by inspecting only the

prefix of π′, proving our claim.

3. The case for AF is similar.

(⇐) 1. Consider the case that ϕ = AXϕ1. Suppose that ∀n ∈ N we have Fair(P,Ω), (s, n) |=
ϕ ∨ term. If there are no fair paths starting from s in P , then, clearly, P, s |= ϕ.

Otherwise, consider a fair path π = s0, s1, . . . starting in s, and let ni be the size

of {j ≥ i | sj ∈ q and ∀k ∈ [i, j]sk /∈ p}. Then, (s0, n0), (s1, n1), . . . is an infinite

path in Fair(P,Ω), implying that Fair(P,Ω), (s1, n1) |= NTerm(ϕ1)∨ term. As we

have shown, Fair(P,Ω), (s1, n1) 6|= term, it thus follows that Fair(P,Ω), (s1, n1) |=
NTerm(ϕ1), and the same clearly holds for every n′1 > n1. We can now conclude

that for every n ∈ N we have (s1, n) |= NTerm(ϕ1) ∨ term. Hence, for every

successor s′1 of s and for every n ∈ N we have (s′1, n) |= NTerm(ϕ1 ∨ term), and

thus by induction we can conclude that s′1 |= ϕ1, proving our claim.

2. Consider the case that ϕ = A[ϕ1Wϕ2].

Suppose that ∀n ∈ N we have Fair(P,Ω), (s, n) |= ϕ ∨ term. If there are no fair

paths starting from s in P , then, clearly, P, s |= ϕ. Otherwise, consider a fair

path π = s0, s1, . . . starting in s. As in the proof of AX we can find an annotation

π′ = (s0, n0), (s1, n1), . . . that is an infinite path in Fair(M,Ω). Either ∀i ≥ 0 we

have (si, ni) |= NTerm(ϕ1) or there is j ≥ 0 such that (sj, nj) |= NTerm(ϕ2)∨term
and ∀0 ≤ i < j we have (si, ni) |= NTerm(ϕ1). As by assumption NTerm(ϕ)∨term
holds for (s, n′) for every n′ we can show that for every one of these states and

for every n′i > ni the same property (i.e., NTerm(ϕ1) or NTerm(ϕ2) ∨ term)

holds for (si, n
′
i). Thus, there are infinitely many values for which these properties

hold. Consider, without loss of generality the property ϕ1, then by the claim above
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Figure 4.5: A system showing that ECTL model checking is more complicated.

NTerm(ϕ1) ∨ term holds for all n′i in the state (s′i, n
′
i). Thus, we can conclude

from the induction assumption that the same pattern of satisfaction implies that π

satisfies the AW property.

3. The case for AF is similar.

Corollary 4.3.1. For every ACTL formula ϕ we have

P |=Ω+ ϕ⇔ Fair(Term(P, t),Ω) |= NTerm(Term(ϕ, t)) ∨ term

Proof. As Term(P, t) produces a transition system with no terminating states and Term(ϕ, t)

converts an ACTL formula to an ACTL formula, the proof then follows from Theorem 4.1 and

Theorem 4.3.

The direct reduction presented in Theorem 4.3 works well for ACTL but does not work for

existential properties. We now demonstrate why Fig. 4.1 is not sufficient to handle existential

properties alone. Consider the transition system P in Figure 4.5, the fairness constraint Ω =

{(p, q)}, and the property EG(¬p ∧ EFr). One can see that P,m0 |=Ω+ EG(¬p ∧ EFr). Indeed,

from each state si there is a unique path that eventually reaches s0, where it satisfies r, and

then continues to s−1, where p does not hold. As the path visits finitely many p states it is

clearly fair. So, every state mi satisfies EFr by considering the path mi, si, si−1, . . . , s0, s−1, . . ..

Then the fair path m0,m1, . . . satisfies EG(¬p ∧ EFr). On the other hand, it is clear that no

other path satisfies EG(¬p ∧ EFr).

Now consider the transformation Fair(P,Ω) and consider model checking of EG(¬p ∧ EFr).

In Fair(P,Ω) there is no path that satisfies this property. To see this, consider the transition

system Fair(P,Ω) and a value n ∈ N. For every value of n the path (m0, n), (m1, n), (m2, n), . . .

is an infinite path in Fair(P,Ω) as it never visits p. This path does not satisfy EG(¬p ∧ EFr).

Consider some state (mj, nj) reachable from (m0, n) for j > 2n. The only infinite paths starting

from (mj, nj) are paths that never visit the states si. Indeed, paths that visit si are terminated

as they visit too many p states. Thus, for every n ∈ N we have (m0, n) 6|= EG(¬p∧EFr). Finite
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paths in Fair(P,Ω) are those of the form (m0, n0), . . . , (mi, ni), (si, ni+1), . . .. Such paths clearly

cannot satisfy the property EG(¬p ∧ EFr) as the states si do satisfy p. Allowing existential

paths to ignore fairness is clearly unsound. We note also that in Fair(P,Ω) we have (m0, n) |=
NTerm(AF(p ∨ AG¬r)).

Reducing Fair Termination to Termination. Given the importance of termination as a system

property, we emphasize the reduction of fair termination to termination. Note that termination

can be expressed in ACTL as AFAX False, thus the results in Corollary 4.3.1 allow us to reduce

fair termination to model checking (without fairness). Intuitively, a state that satisfies AX false

is a state with no successors. Hence, every path that reaches a state with no successors is a finite

path. Here, we demonstrate that for infinite-state infinite-branching systems, fair termination

can be reduced to termination.

A transition system P terminates if for every initial state s ∈ S0 we have Π∞(s) = ∅. System

P fair-terminates under fairness Ω if for every initial state s ∈ S0 and every π ∈ Π∞(s) we have

π 6|= Ω, i.e., all infinite paths are unfair.

The following corollary follows from the proof of Theorem 4.3, where we establish a correspon-

dence between fair paths of P and infinite paths of Fair(P,Ω).

Corollary 4.3.2. P fair terminates iff Fair(P,Ω) terminates.

Recall that the reduction relies on transition systems having an infinite branching degree. For

transition systems with finite-branching degree, we cannot reduce fair termination of finite-

branching programs to termination of finite-branching programs, as the former is Σ1
1-complete

and the latter is RE-complete [Har86].

4.5 Example

Consider the example in Fig. 4.6. We will demonstrate the resulting transformations which

will disprove the CTL property EG x ≤ 0 under the weak fairness constraint GF True → GF

y ≥ 1 for the initial transition system introduced in (a). We begin by executing Verify in

9. In Verify the transition system in (a) is transformed according to Term(P, t) and the

CTL formula EG x ≤ 0 is transformed according to Term(P, t), as discussed in 4.3.2. Our

main procedure FairCTL in 8 is then called. First, we recursively enumerate over the most

inner sub-property x ≤ 0, wherein x ≤ 0 is returned as it is our base case. In lines 10–18, a

new CTL formula ϕ′ is then acquired by adding an appropriate termination or non-termination

clause. This clause allows us to ignore finite paths that are prefixes of some unfair infinite

paths, that is, those that have not been marked by Term(P, t). We then obtain (b) in Fig. 4.6



70 Chapter 4. Fairness for Infinite-State Programs

`1

`2

ρ1 : 0 ≤ y′ ≤ 1
x′ = x+ y

ρ2 : x′ = x
y′ = y

(a)

`1t

`2

ρ3 : False
ρ4 : True

ρ1 : 0 ≤ y′ ≤ 1
{ (¬True ∧ n′ ≤ n) ∨
(True ∧ n′ < n) ∨ y ≥ 1 } ∧
n ≥ 0
x′ = x+ y

ρ2 : { (¬True ∧ n′ ≤ n) ∨
(True ∧ n′ < n) ∨ y ≥ 1 } ∧
n ≥ 0
x′ = x
y′ = y

(b)

Figure 4.6: Verifying a transition system with the CTL property EG x ≤ 0 and the weak fairness
constraint GF True→ GF y ≥ 1. The original transition system is represented in (a), followed
by the application of our fairness reduction in (b).

by applying Fair(P,Ω) from Fig. 4.1 on line 19. Thus, we must restrict each transition such

that { (¬True ∧ n′ ≤ n) ∨ (True ∧ n′ < n) ∨ y ≥ 1 } ∧ n ≥ 0 holds. This can be seen in

transitions ρ1 and ρ2.

Recall that Fair(P,Ω) can include (maximal) finite paths that are prefixes of unfair infinite

paths. We thus have to ensure that these paths do not interfere with the validity of our model

checking procedure. We have shown how to distinguish between maximal (finite) paths that

occur in P and those introduced by our transformation in Theorem 4.1. This is demonstrated

by ρ3 and ρ4 in (b): in ρ3 we simply take the negation of the loop invariant (in this case it is

False), as it would indicate a terminating path given that no other transitions follow the loop

termination. In ρ4 we instrument a self loop and add the predicate t to eliminate all terminal

states. Additionally, utilizing Term(ϕ, t) on EG x ≤ 0 allows us to disregard all aforementioned

marked finite paths, as we only consider infinite paths which correspond to a fair path in the

original system.

On line 20, a CTL model checker is then employed with the transition system in (b) and the CTL

formula ϕ′. We then apply our methodology in Chapter 3 to the transformation introduced to

verify CTL for infinite-state systems. An assertion characterizing the states in which ϕ′ holds

is returned and then further examined on lines 21–24, where it is discovered that this property
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does not hold due to the restrictive fairness constraint applied to the existential CTL property.

The weak fairness constraint requires that infinitely often y ≥ 1 holds, which interferes with

the existential property that EG x ≤ 0. This shows that for the existential fragment of CTL,

fairness constraints restrict the transition relations required to prove an existential property.

This can be beneficial when attempting to disprove systems and their negations.

4.6 Concluding Remarks

We have introduced the first-known fair-CTL model checking procedure for infinite-state pro-

grams. Our solution reduces fair-CTL to fairness-free CTL via the use of a prophecy variable to

introduce additional information into the state-space of the program under consideration. In

the reduction, prophecy variables symbolically partition fair from unfair paths, thus allowing us

to consider only fair paths. Our implementation seamlessly builds upon existing CTL proving

techniques, one of which we introduced in Chapter 3. In addition, using a prototype implemen-

tation we demonstrate the viability of the approach in Chapter 7. As will be later discussed

in Chapter 5, in future work we hope to eliminate the limitations of the strategy introduced in

Chapter 5 by utilizing the technique introduced in this chapter to allow for Vardi & Wolper’s

automata-theoretic technique for LTL verification [VW94]. This can potentially eliminate the

incompleteness introduced in Chapter 5 for CTL∗ verification. That is, a seamless integration

between LTL and CTL reasoning may make way for an alternative relatively complete CTL∗

strategy.



Chapter 5

Automation of CTL∗ Verification for

Infinite-State System

In this chapter, we introduce the first known fully automated tool for symbolically proving

CTL∗ properties of (infinite-state) integer programs. The method uses an internal encoding

which facilitates reasoning about the subtle interplay between the nesting of path and state

temporal operators that occurs within CTL∗ proofs. A precondition synthesis strategy is then

used over a program transformation that trades nondeterminism in the transition relation for

nondeterminism explicit in variables predicting future outcomes when necessary. We show the

viability of our approach in practice using examples drawn from device drivers and various

industrial examples further on in Chapter 7.

5.1 Introduction

As discussed in the previous chapters, indeed a number of automated systems have been pro-

posed to exclusively reason about either Computation-Tree Logic (CTL) or Linear Temporal

Logic (LTL) in the infinite-state setting. Unfortunately, these logics have significantly reduced

expressiveness as they restrict the interplay between temporal operators and path quantifiers,

thus disallowing the expression of many practical properties, for example “along some future

an event occurs infinitely often”. As discussed in Chapter 4, some of these deficiencies can

be mitigated by considering fairness for branching-time logic (fair-CTL), as it allows for some

interaction between linear-time and branching-time reasoning, but only in specifying fairness

assumptions pertaining to a system’s environment. Fair-CTL thus cannot be generalized to

model all trace-based properties. Contrarily, CTL∗, a superset of both CTL and LTL, can facili-

tate the interplay between path-based and state-based reasoning. CTL∗ thus exclusively allows

72
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for the expressiveness of properties involving existential system stabilization and “possibility”

properties.

Until now, there have not existed automated systems that allow for the verification of such

expressive CTL∗ properties over infinite-state systems. This chapter proposes a method capable

of such a task, thus introducing the first known fully automated tool for symbolically proving

CTL∗ properties of (infinite-state) integer programs. The method uses an internal encoding

that admits reasoning about the subtle interplay between the nesting of temporal operators and

path quantifiers that occurs within CTL∗ proofs. A program transformation is first employed

that trades nondeterminism in the transition relation for nondeterminism explicit in variables

predicting future outcomes when necessary. We then synthesize and quantify preconditions

over the transformed program that represent program states that satisfy a CTL∗ formula. This

chapter demonstrates the viability of our approach in practice, thus leading to a new class of

fully-automated tools capable of proving crucial properties that no tool could previously prove.

In the sections below, we provide further examples of properties exclusive to CTL∗ in addition to

an analysis of the crucial application of CTL∗ properties in the infinite-state setting. Based on

our approach, we have developed a tool capable of automatically proving properties of programs

that no tool could previously fully automate. In Chapter 7, we report our benchmarks carried

out on case studies ranging from smaller programs to demonstrate the expressiveness of CTL∗

specifications, to larger code bases drawn from device drivers and various industrial examples.

5.1.1 Approach and Contribution

Our main contribution is an automated model checking method that allows for the arbitrary

nesting of state-based reasoning within path-based reasoning, and vice versa. Our strategy is to

recursively partition a CTL∗ formula, and for each nested sub-formula synthesize a precondition

that ensures its satisfaction. The nested sub-formula would then be substituted with its new-

found precondition, and the process would be repeated for the next outer sub-formula. The

essence of our algorithm thus lies within acquiring sufficient preconditions for path formulae that

admit a sound interaction with state formulae. Towards this purpose we recursively deconstruct

a CTL∗ formula in a way that allows us to determine where the subtle interplay between the

arbitrary nesting of path and state formulae occurs. To reason about the path sub-formulae,

we find a sufficient set of branching nondeterministic decisions within a program’s transition

relation. We then devise a method of temporarily substituting said nondeterministic decisions

with a symbolically partially-determinized form. That is, nondeterministic decisions regarding

which paths are taken are determined by variables that summarize some decisions regarding the

future of the program execution. When interchanging between path and state formulae, these

determinized relations must then be collapsed to incorporate path quantifiers. Preconditions
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for the given CTL∗ property can then be acquired via existing CTL model checkers.

Furthermore, we later extend our CTL∗ algorithm to support part of CTL∗lp via the instrumen-

tation of a unique history variable per past connective present within a CTL∗lp formula. For

the sake of clarity, we will first demonstrate our technical contributions of exclusively verifying

CTL∗, followed by further chapters demonstrating how we can extend our algorithm to support

this part of CTL∗lp.

Limitations: Our tool does not support programs with heap, nor do we support recursion

or concurrency. The heap-based programs we consider during our experimental evaluation

have been abstracted using an over-approximation technique introduced by [MBCC07]. Ef-

fective techniques for proving temporal properties of programs with heap remains an open

research question. Our technique relies on the availability of CTL model checking and non-

termination procedures. It is, in principle, applicable to every class of infinite-state systems

for which such procedures are available (provided that integer variables are allowed). Addi-

tionally, our procedure is not complete as we use a series of techniques for safety [McM06],

termination [PR04c, CSZ13], nontermination [GHM+08], and CTL [BPR13, CKP14] that are

not complete. Furthermore, our determinization procedure is not complete. We will address

this issue in later sections.

5.1.2 Related Work

There are various algorithms for model checking CTL∗ for finite-state programs and other

decidable settings. The approach of Emerson et al. [EL87] reduces a CTL∗ formula to µ-

calculus using a system of fixed-point equations on relations with first-order quantifiers and

equalities. This approach has been implemented in [GV04], where a µ-calculus model checker

is invoked after the translation. The approach described in [CGP99] calls for repeated calls to

a (global) linear-time model checker. The linear-time model checker computes the set of states

that satisfies a given path formula. This set of states can be used as a precondition that replace

state sub-formulae of super-formulae that include the said path formulae. One can think of our

approach as an implementation of the technique described in [CGP99], but over infinite-state

programs.

Contrarily, we seek to verify the undecidable general class of infinite-state programs support-

ing both control-sensitive and integer properties. Given that µ-calculus model checking is

polynomial-time equivalent to the solution of parity games [EJ99], one can conceive that the

approach in [BCPR14] could potentially solve CTL∗ model checking if the latter were reduced

to solving parity games by combining [GV04] and [EJ99]. However, we note that the resulting

infinite-state game would integrate the (first-order to µ-calculus) property within the program

making it difficult to extract invariants pertaining the program. For this reason, it is often
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the case that such a series of reductions inhibits tool performance. Furthermore, [BCPR14]

requires a manual instantiation of the structure of assertions, characterizing subsets of the

infinite-state game, that are to be found by their tool. We generalize an approach introduced

by [CK13], which reduces linear-time model checking to branching-time model checking. We

extend this approach to global model checking instead of local model checking by incorporating

preconditions and existential path quantifications, in addition to various improvements to their

technique.

Existing automated tools for verification of infinite-state programs support either branching-

time only or linear-time only reasoning, e.g., [Bod04, CGP+07, CK11, CK13, BPR13, CKP14,

ST12]. The important distinction however is that these tools do not allow for the interaction

between linear-time and branching-time formulae.

Finally, as we have previously discussed, we have adopted and repurposed a similar symbolic

determinization technique introduced in [CK11] for the verification of LTL formulae in the

infinite-state setting. Their symbolic determinization is based on the counterexample-guided

refinement of generated tree counterexamples, or counterexamples with branching paths. That

is, [CK13] produce a semantics-preserving transformation that encodes the structure of the

nested CTL formulae within the state space, allowing for the generation of tree counterexam-

ples. This causes precondition generation for syntactically partitioned formulae to be no longer

possible, limiting the interplay between linear-time operators and path quantifiers allowed by

our strategy.

5.2 Approach Overview and Example

5.2.1 Overview

In this section, we present a quick overview of our CTL∗ verification procedure ProveCTL∗,

presented in Alg. 13 and Alg. 12 with an in-depth explanation provided later in Section 4. The

procedure is designed to recurse over the structure of a given CTL∗ formula, and for each sub-

formula θ we produce a precondition a that ensures its satisfaction. That is, a is an assertion

over program variables and locations characterizing the states of the program that satisfy θ.

We start by finding the precondition of the innermost sub-formula, followed by searching for

the preconditions of the outer sub-formulae dependent on it.

A given CTL∗ formula is deconstructed to differentiate between state and path sub-formulae, as

the crux of verifying CTL∗ formulae lies within identifying the interplay between the arbitrary

nesting of path and state formulae. Preconditions for branching-time logic state formulae can

be acquired via existing CTL model checking techniques that return an assertion characterizing
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the states in which a sub-formula holds. The essence of our algorithm is thus within how we

acquire sufficient preconditions for path formulae that admit a sound interaction with state

formulae. Note that for our CTL∗ algorithms, we assume that all paths are infinite for the sake

of brevity and clarity. As previously discussed in Chapter 4, we assume that a transformation

has been applied to distinguish between maximal (finite) paths that occur in P and those

introduced by our transformations below.

Branching-Relations: We first define a key concept crucial to understanding our CTL∗ al-

gorithm. Branching-relations are pairs (ρ1, ρ2) such that for some location `, (`, ρ1, `
′) and

(`, ρ2, `
′′) are transitions of P and `′ ∈ MinSCS(P,C, `) and `′′ /∈ MinSCS(P,C, `). That is,

ρ1 is the condition for remaining in the (minimal) SCS of ` and ρ2 is the condition for leaving

the (minimal) SCS of `. Consider Figure 2.2 in Chapter 2, the pair (ρ1, ρ7) is a branching-

relation over `1 when considering the first aforementioned partition. Indeed, ρ1 stays within

the MinSCS(P,C, `1) = {`1, `2} but ρ7 leaves it. The pair (ρ4, ρ8) is a branching-relation over

`4 when considering the second partition, but not the first. We note that one pair is sufficient

evidence that some transitions are leaving the SCS. In the case that there are multiple tran-

sitions leaving an SCS (or staying in the SCS), then multiple branching-relations can identify

the same location.

The algorithm is based on the procedures below, which are defined in later sections of this

chapter:

Approximate is a procedure that performs a syntactic conversion from a path formula to

its corresponding over-approximated universal CTL formula (ACTL).The over-approximated

formula can then be checked by an existing CTL model checker over a symbolically partially-

determinized form of the program to reduce path formula verification to state formula verifica-

tion.

Determinize allows us to reason about path characterization through state characterization,

as the satisfaction of an ACTL over-approximated formula implies the satisfaction of the path

formula. However, the inverse does not hold. The procedure thus constructs a form of a

partially-determinized program over the symbolic representations of all characterized instances

of branching nondeterminism (i.e. branching-relations), stemming from the same program

location `. That is, nondeterministic decisions regarding which paths are taken would be

determined by prophecy variables, which determine future outcomes of the program execution,

and their values [AL91]. Recall that branching-relations are distinguished if they are not part

of the same strongly connected subgraph.

QuantElim acquires the proper set of states that satisfy a formula that has been verified over

a determinized program. This allows for the path quantification present within a CTL∗ formula,

that is, whether all paths (or some paths) starting from a state satisfy a path formula. When
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`1 `2

ρ1 : x′ = 1

ρ2 : x′ = x

ρ3 : x′ = 0

ρ4 : x′ = x

`1 `2

ρ1 : x′ = 1

ρ2 : n`1 6= 0
n′`1 = n`1 − 1
x′ = x

ρ3 : n`1 = 0
x′ = 0

ρ4 : x′ = x

(a) (b)

Figure 5.1: (a) The control-flow graph of a program for which we wish to prove the CTL∗

property EFG x = 1. (b) The control-flow graph after calling Determinize, it includes the
prophecy variable n`1 corresponding to the nondeterministic branching-relation (ρ2, ρ3).

a CTL∗ formula of the form θ ::= Aψ | Eψ is reached after acquiring a set of states satisfying

ψ, θ is verified on the same determinized program used for ψ. We then must use quantifier

elimination to acquire the proper set of states that satisfy θ, thus quantifying the assertions

over the values of the prophecy variables. If the formula is of the form Aψ, we universally

quantify the prophecy variables appearing in the set of states that satisfy Aψ. If the formula

is of the form Eψ, we existentially quantify the prophecy variables.

5.2.2 Example

Consider the program in Fig. 5.1(a) and the property EFG x = 1 stating that there exists

a possible future where x = 1 will eventually become true and stay true. This is a system

stabilization property, which can only be expressed in CTL∗. The property clearly holds for the

program as evidenced by the path (`1, 〈x 7→ 1〉), (`1, 〈x 7→ 1〉), . . ., which remains in `1 forever.

In order to check this property we recursively handle its sub-formulae. We begin by identifying

that G x = 1 is a path formula, and thus use Approximate to return the over-approximated

state formula AG x = 1. We then initiate a CTL model checking task where we seek a set of

states aG such that EFaG holds, and for every state s such that s |= aG we have s |= AG x = 1.

Our formula would now only be valid if we can find a set of states that are eventually reached

in a possible future from the program’s initial states such that AG x = 1 holds. However, no

such set of states exists as the nondeterministic choice from `1 to ρ2 and ρ3 does not allow us

to determine if we will eventually leave the loop or not. That is, there exists no set of states

that can exemplify the infinite branching possibilities of leaving ρ2 to possibly reaching ρ3 or

remaining in ρ2 forever. In order to reason about the original sub-formula G x = 1, we must

be observing sets of paths, not states. Given that we over-approximated our formula in a way

that allows us to only reason about states, we thus symbolically determinize the program to

simultaneously simulate all possible related paths through the control flow graph and try to
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separate them to originate from distinct states in the program.

Our procedure Determinize would then return a new symbolically partially-determinized

program in which a newly introduced prophecy variable, named n`1 in Fig. 5.1(b), is associated

with the branching-relation (ρ2, ρ3), and is used to make predictions about the occurrences of

relations ρ2 and ρ3. Recall that branching-relations are pairs of nondeterministic transitions,

one remaining in a SCS and the other leaving the same SCS. In this case, ρ3 is indeed disjoint

from the strongly connected subgraph of `1.

Given that we initialize n`1 to a nondeterministic value, for every path in the program, a positive

concrete number chosen at the nondeterministic assignment predicts the number of instances

that transition ρ2 is visited before transitioning to ρ3. That is, we remain in ρ2 until n`1 = 0,

with n`1 being decremented at each passage through the loop. Once we terminate the loop, the

prophecy variable is nondeterministically reset (for the case that we return to the same loop

again). A negative assignment to n`1 denotes remaining in ρ2 forever, or non-termination. We

note that this modification does not change the set of traces of the program.

We can now utilize an existing CTL model-checker to return an assertion characterizing the

states in which G x = 1 holds by verifying the determinized program, denoted by PD, using

the over-approximated CTL formula AG x = 1. The assertion aG = (`1 ∧ n`1 < 0) is returned.

Indeed, from states where the program is in `1 and when n`1 < 0 the program remains in

`1 forever. We proceed by replacing the sub-formula with its assertion in the original CTL∗

formula, resulting in EFaG. To verify the outermost CTL∗ formula, EF, note that syntactically

this is a readily acceptable CTL formula. However, we cannot simply use a CTL model checker

as the path quantifier E exists within a larger relation context reasoning about paths given

the inner formula FG. We thus must use the CTL model-checker to verify EFaG over the same

determinized program previously generated.

Our procedure returns with the same precondition (`1 ∧n`1 < 0). Indeed, the set of states that

eventually reach `1 with n`1 < 0 are those that start in `1 with n`1 < 0. We then use quantifier

elimination to existentially quantify out all introduced prophecy variables. The existential

quantification corresponds to searching for some path (or paths) that satisfy the path formula.

Thus, if there is a state s in the original program, and some value of the prophecy variables v

such that all paths from the combined state (s, n`1 = v) in PD satisfy the path formula then

clearly, these paths give us a sufficient proof to conclude that EFG x = 1 holds from s in P . In

our case, this indeed happens and the program, as mentioned, satisfies the formula.
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5.3 Checking CTL∗ Formulae

In this section, we describe the details of our CTL∗ model checking procedure ProveCTL∗. We

first define the procedures utilized by ProveCTL∗, namely Determinize and Approximate,

followed by our model checking procedure and its utilization of QuantElim.

5.3.1 Determinization

The procedure Determinize constructs a form of symbolically partially-determinized program

by considering branching-relations that characterize instances of branching nondeterminism.

Note that a partial determinization denotes that a program will still include non-determinism

following the transformation. We present our procedure in Alg. 10, where a program P is

given and a partially-determinized program PD, contingent upon nondeterministic branching-

relations, is returned. Ultimately, Determinize is designed to allow proof tools for branching-

time logic state formulae to be used to reason about path formulae.

ALGORITHM 10: Determinize identifies branching-relations and constructs a symbolically de-

terminized program over them.

1 Let Determinize(P ) : program =
2 PD = P
3 Synth = [ ]
4 (LD, ED,VarsD) = PD
5 C = CyclePoints(P )
6 foreach (`, ρ, `′) ∈ ED do
7 G = MinSCS(P,C, `) ∈ SCS(P,C)
8 if G 6= ∅ ∧MinSCS(P,C, `′) 6= G then
9 Synth = ` :: Synth

10 foreach (`, ρ, `′) ∈ ED do
11 if ` ∈ Synth then
12 VarsD = VarsD ∪ n` ∈ Z
13 if `′ ∈MinSCS(P,C, `) then
14 ρ = ρ ∧ (n` 6= 0) ∧ (n′` = n` − 1)

15 else
16 ρ = ρ ∧ (n` = 0)

17 return PD

We begin by finding a sufficient set of branching-relations to symbolically determinize the

program to one which has the same set of paths as the original. These relations are distinguished

if there exist at least two nondeterministic relations stemming from the same location and yet

are not part of the same strongly-connected subgraph. Our procedure thus begins by iterating

over the set of a program’s edges, (`, ρ, `′) ∈ E on line 6. We identify whether or not ` ∈ C
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given that G = MinSCS(P,C, `) and G 6= ∅ on lines 7 and 8. If from some location `, where

G = MinSCS(P,C, `), there is an edge to `′ such that MinSCS(P,C, `′) is not equivalent to G,

we can conclude that the transition from ` to `′ leaves the SCS of `. We only desire that ` and

`′ be elements of the most minimal SCS as such an edge eludes to the nondeterministic decision

point where a transition diverted from remaining within an SCS. This nondeterministic point

is key to the identification of where determinization must occur to facilitate the application of

state-based reasoning to path-based reasoning for a given program P . Recall that there are

numerous ways in which an SCS can be segmented, thus a particular choice may impact the

accuracy of our determinzation algorithm. That is, some segmentations may lead to a more

precise determinzation of the program, and thus a more accurate and efficient verification result.

Although this may be the case theoretically, that is not the case in practice. Due to the nature of

the procedural programs that we analyze, only one choice will ever be identified. Furthermore,

the choice of the SCS would not affect the correctness of our verification algorithm.

If the strongly connected subgraphs of ` and `′ do differ, we add ` to Synth, a list that

tracks locations with nondeterministic branching points. For every such location, we identify

branching-relations corresponding to the decision of either remaining in the same SCS, or leaving

it. After finding all possible elements of Synth, on line 11 we iterate over the program edges,

and for the branching-relations encountered we introduce a new prophecy variable to predict

the future outcome of the decision. Recall that there may exist multiple transitions leaving (or

staying in) a strongly connected subgraph, as multiple branching-relations can identify the same

location. In such a case, only one prophecy variable is produced for each location, and is utilized

across these transitions. Indeed, our motivation is to identify nondeterministic points so we can

symbolically simulate all possible branching paths through a program, yet decisions regarding

which paths are taken are determined by prophecy variables and their values. Information

regarding different paths is now stored in the state of the modified program. This allows for a

correspondence such that the verification path formulae can be reduced to the verification of

ACTL formulae.

When an edge (`, ρ, `′) ∈ E is reached containing ` ∈ Synth, a prophecy variable n` ∈ Z is

added to the set of program variables Vars at line 13. If `′ is contained within MinSCS(P,C, `),

we constrain ρ by requiring that n` > 0, and then decrement n`. If `′ is not contained within

MinSCS(P,C, `), we constrain ρ by n` = 0, and n′` remains unconstrained, entailing a reset

to a nondeterministic integer value. The nondeterministic decision of the number of times a

cycle is passed through is thus now determined by the prophecy variable n`. In the case that

n` < 0, this rule corresponds to behaviors where every visit to ` is followed by a successor in

the same SCS (i.e., the computation always remains in the SCS of `). The nondeterminism

within a transition relation is thus either determined at initialization by the initial choice of

values for n` or else later in a path by choosing new nondeterministic values for n`.
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We show that the determinization maintains the set of paths in the original program and the

prophecy variables introduced merely trade nondeterminism in the transition relation for a

larger, nondeterministic state space.

Theorem 5.1. For every path π in P there is a path π′ in PD such that π′⇓Vars = π. Further-

more, for every path π′ in PD it holds that π′⇓Vars is a path in P .

Proof. • Consider a path π in P where π = (`0, f0), (`1, f1), . . .. Consider a location `j, an

SCS Gj such that Gj = MinSCS(P,C, `j), and the variable nlj . We can annotate each

pair (`i, fi) in π by the number of expected future visits to Gj. We call a transition (`, ρ, `′)

a reset transition for nlj if ` ∈ Gj and `′ /∈ Gj or if ` = `I . Notice that in PD, a reset

transition (`, ρ `′) is conjuncted to nlj = 0. This leaves the value of n′lj unconstrained,

assigning it an arbitrary value once such a transition is taken. We call a transition (`, ρ, `′)

an internal transition for nlj if ` ∈ Gj, `
′ ∈ Gj and there is some `′′ /∈ Gj and a transition

(`, ρ′, `′′). Notice that in PD the transition (`, ρ, `′) is conjuncted to n′lj = nlj − 1. Also,

in PD every transition that is neither reset nor internal for nlj is conjuncted (implicitly)

to n′lj = nlj . It follows that for every i ≥ 0 the number of internal transitions for nlj
that appear until a reset transition is well-defined (and may be infinity). Clearly, this

annotation also matches the transition in PD. It follows that by adding an appropriate

annotation for every nl that is added to PD, we get a path in PD whose projection on

Vars is exactly that of path π.

• Consider an infinite path π′ in PD. Now consider a pair of states ((`, (f, v)), (`′, (f ′, v′))

appearing in π′, where v and v′ are the assignments to the prophecy variables appearing in

PD. By definition, there is a transition (`, ρ′, `′) in PD such that ((`, (f, v)), (`′, (f ′, v′)) |=
ρ′. However, ρ′ = ρ ∧ ξ, where ρ is an assertion over Vars and ξ is the assertion over the

prophecy variables. It then must be the case that (f, f ′) |= ρ. It follows that π = π′⇓Vars
is a path in P .

5.3.2 Approximation

In Alg. 11, we present a syntactic conversion from pure linear-time formulae in CTL∗, that is

LTL, to a corresponding over-approximation in ACTL. Our procedure is given a path formula

ψ and two atomic preconditions, aθ′1 and aθ′2 , corresponding to the satisfaction of the nested

CTL∗ formulae which appear within ψ. Recall that a precondition is an assertion over program

variables and locations, characterizing the states of a program that satisfy a certain temporal
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formula. The precondition aθ′2 is a conditional parameter utilized only when LTL formulae re-

quiring two properties (e.g. W, U, ∧, ∨) are given. Due to the recursive nature of ProveCTL∗,

presented in the next section, these preconditions would have already been priorly generated.

ALGORITHM 11: Approximate produces a syntactic conversion from a path formula to its cor-

responding over-approximation in ACTL.

1 Let Approximate(ψ, aθ′1 , aθ′2) : ϕ =

2 match (ψ) with
3 Fθ′1 → return AFaθ′1
4 Gθ′1 → return AGaθ′1
5 Xθ′1 → return AXaθ′1
6 θ′1Wθ′2 → return Aaθ′1Waθ′2
7 θ′1Uθ

′
2 → return Aaθ′1Uaθ′2

8 θ′1 ∧ θ′2 → return aθ′1 ∧ aθ′2
9 θ′1 ∨ θ′2 → return aθ′1 ∨ aθ′2

On lines 3 – 7, we instrument a universal path quantifier A preceding the appropriate temporal

operators. Not only so, but the sub-formulae θ′1 and θ′2 are replaced with their corresponding

preconditions aθ′1 and aθ′2 , respectively. This aligns with how ProveCTL∗ will recursively

iterate over each inner sub-formula followed by search for the preconditions of the outer sub-

formulae dependent on it. Replacing a path formula by its CTL approximation indeed is sound

in the sense that if the modified formula holds then the original holds as well. Note that in the

context of a deterministic program, approximation is both sound and complete. That is, both

path formula and corresponding state formula have the same truth value. This follows from

every state having at most one possible future.

In the following Theorem, for notational convenience, we assume that every path operator has

an arity of two and refer to its operands. In case the second operand (or both) do not exist

then they are not important and can be ignored.

Theorem 5.2. Consider a program P and a path formula ψ, where θ1 and θ2 are the direct sub-

formulae of ψ. Let aθi be an approximation of θi such that for every state s we have P, s |= aθi
implies P, s |= Aθi. Then, for every state s, we have P, s |= Approximate(ψ) then P, s |= Aψ.

Proof. For predicates and Boolean combinations of simpler formulae, the proof is immediate.

• Suppose that ψ = Gθ1. Then, Approximate(ψ, aθ1 , aθ2) is AG(aθ1). Suppose that s |=
Approximate(ψ, aθ1 , aθ2) but s 6|= Aψ. Then, there is a path π starting in s such that

π does not satisfy Gθ1. It follows that there is a suffix π′ of π that does not satisfy θ1.

Let s′ be the first state in π′. However, by assumption, s′ |= aθ1 . This contradicts the

assumption about aθ1 .
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• Suppose that ψ = Fθ1. Then, Approximate(ψ, aθ1 , aθ2) is AF(aθ1). Suppose that s |=
Approximate(ψ, aθ1 , aθ2) but s 6|= Aψ. Then, there is a path π starting in state such

that π does not satisfy Fθ1. However, by s |= Approximate(ψ, aθ1 , aθ2), there is a suffix

π′ of π such that the first state s′ in π′ satisfies aθ1 . It follows that π′ satisfies θ1 and that

π satisfies AFθ1.

• The proofs for until and weak until are similar but take further corner cases into account.

Theorem 5.2 does not consider existential path quantification. In order to conclude that the

CTL∗ formula P, s |= Eψ for some path formula ψ, we require that there is some value v of the

prophecy variables such that PD, (s, v) |= Aψ. This means that when restricting attention to

a certain set of paths that start in a state s (those that match the valuation v for prophecy

variables), all paths in the set satisfy the formula ψ. Clearly, this satisfies the requirement that

there is some path that satisfies the formula.

5.3.3 CTL∗ Verification Procedure

ALGORITHM 12: Verify wraps ProveCTL∗ and then checks all initial states.

1 Let Verify(θ, P ) : bool =
2 (L, E,Vars) = P
3 PD = Determinize(P )
4 (a, ) = ProveCTL∗(θ, P, PD)
5 return ∀(`I , ρ, `) ∈ E ∀f : Vars→ Vals . (f−1, f) |= ρ implies (`, f) |= a

In this section, we present our main CTL∗ verification procedure, ProveCTL∗. Alg. 12 depicts

Verify, which wraps the main procedure ProveCTL∗, shown in Alg. 13. We generate a

determinized copy of the program, PD, using the aforementioned procedure Determinize.

This program is then passed into ProveCTL∗ along with the original program P and a CTL∗

property θ. ProveCTL∗ then returns an assertion a, characterizing the states in which θ

holds. The second argument returned is disregarded, indicated by “ ”, as it is only used within

the recursive calls of ProveCTL∗. When ProveCTL∗ returns to Verify, it is only necessary

to check if the precondition a is satisfied by the initial states of the program.

We now turn to the main procedure ProveCTL∗ in Alg. 13. In order to synthesize a precondi-

tion for a CTL∗ property θ, a given CTL∗ formula is first deconstructed to differentiate between

state and path sub-formulae, as the crux of verifying CTL∗ formulae lies within identifying the

interplay between the arbitrary nesting of path and state formulae. On line 3, if θ can be

identified as a state formula ϕ, we carry out the set of actions on lines 4 – 20. If θ is identified
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ALGORITHM 13: Our recursive CTL∗ verification procedure employs an existing CTL model

checker and uses our procedures Approximate and QuantElim. It expects a CTL∗ property θ,

a program P , and its determinized version PD as parameters. An assertion characterizing the states

in which θ holds is returned along with a boolean value indicating whether the formula checked was

a path formula (and hence approximated).

1 Let rec ProveCTL∗ (θ, P, PD) : (formula, bool) =
2 (L, E,Vars) = P
3 match (θ) with
4 ϕ : stateformula →
5 match (ϕ) with
6 θ′1 ∨ θ′2 | θ′1 ∧ θ′2 | Aθ′1 ◦ θ′2 | Eθ′1 ◦ θ′2 →
7 (aθ′1 ,Path1) = ProveCTL∗(θ′1, P, PD)

8 (aθ′2 ,Path2) = ProveCTL∗(θ′2, P, PD)

9 A◦θ′ | E◦θ′ →
10 (aθ′1 ,Path1) = ProveCTL∗(θ′, P, PD)

11 (aθ′2 ,Path2) = (False,False)

12 match (ϕ) with
13 α → aθ = α;
14 →
15 ϕ′ = Replace(ϕ, aθ′1 , aθ′2)

16 if Path1 ∨Path2 then
17 aθ = QuantElim(CTL(PD, ϕ

′), ϕ)

18 else
19 aθ = CTL(P,ϕ′)

20 Path = False

21 ψ : pathformula →
22 match (ψ) with
23 θ′1 ∨ θ′2 | θ′1 ∧ θ′2 | θ′1 ◦ θ′2 →
24 (aθ′1 ,−) = ProveCTL∗(θ′1, P, PD)

25 (aθ′2 ,−) = ProveCTL∗(θ′2, P, PD)

26 ◦θ′ →
27 (aθ′1 ,−) = ProveCTL∗(θ′, P, PD)

28 aθ′2 = False

29 ψ′ = Approximate(ψ, aθ′1 , aθ′2)

30 aθ = CTL(PD, ψ
′)

31 Path = True

32 return (aθ,Path)
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as a path formula ψ, we then carry out the set of actions on lines 21 – 31. Note that in our

algorithm, we denote any temporal operator (i.e., F,G,X,W and U) by ◦. For both the state

and path formulae cases, we recursively accumulate the preconditions generated when consid-

ering the sub-formulae of θ at lines 7, 8, 10, 13, 24, 25, and 27. That is, for each sub-formula

θ, we produce a precondition aθ that ensures its satisfaction. We note that the precondition

of an atomic predicate α is the predicate itself, as shown on line 13. The precondition is then

utilized in the remaining actions of the algorithm.

Verifying Path Formulae

When a path formula ψ is reached, we begin by over-approximating the path formula by

syntactically converting it to the universal subset of branching-time logic (ACTL) using the

procedure Approximate. Recall that the preconditions generated when considering the sub-

formula(e) of ψ at lines 24, 25, and 27 will be utilized by Approximate to replace θ′1 and θ′2

with their corresponding preconditions aθ′1 and aθ′2 , respectively. On line 29, Approximate

would then return a corresponding state formula ψ′ where a universal path quantifier precedes

the temporal operator within ψ.

A precondition for the newly attained ACTL formula ψ′ can now be acquired via existing CTL

model checkers which return an assertion characterizing the states in which ψ′ holds. Existing

tools which support this functionality include [BPR13] and [CKP14]. In our tool prototype,

we build upon the latter. Recall that a precondition for a path formula requires more than a

precondition for the corresponding state formula, as ψ′ is merely an over-approximation. We

thus must utilize the provided determinized program PD when employing a CTL model checker

rather than the original program P , as shown on line 30. The assertion aθ is then returned

characterizing the sets of states in which θ holds.

Recall that PD leads to better correspondence between ψ and ψ′. That is, we find a sufficient set

of branching-relations, which determinize the program to one which has the same set of paths

as the original, yet decisions regarding which paths are taken are determined by introduced

prophecy variables and their values, allowing us to reduce path-based reasoning to state-based

reasoning. The assertion aθ that is returned thus may be defined over the introduced prophecy

variables in PD.

Finally, on line 31, we set the boolean flag Path to true. This flag is the second argument

to be returned by ProveCTL∗. It indicates to the caller that the result aθ returned by the

recursive call is approximated. The value of Path is used for deciding whether to use aθ as is or

modify it (in the case that the verified sub-formula is a state or a path formula, respectively),

admitting a sound interaction between state and path formulae. Below, we further demonstrate

this point.
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Verifying State Formulae

In the case that a state formula ϕ is reached, we partition the state sub-formulae by the syntax

of CTL as shown on lines 6 and 9. Recall that temporal operators are denoted by ◦. This

allows us to not only utilize existing CTL model checkers, but to also eliminate the redundant

verification of a temporal operator, when it is already preceded by a path quantifier. As a

side effect of partitioning ϕ in such a way, a path formula ψ will always be in the form of a

pure linear-time path formula, that is, LTL. This particular deconstruction of a CTL∗ formula

is what allows us to identify the intricate interplay between path and state formulae.

We begin by recursively generating preconditions when considering the sub-formula(e) of ϕ at

lines 7, 8, and 10. Recall that the precondition of an atomic predicate α is the predicate itself, we

thus return the atomic sub-formula on line 13, where no further work is necessary. Otherwise,

the recursively acquired preconditions will then be utilized by the procedure Replace on

line 15. Replace substitutes θ′1 and θ′2 with their corresponding preconditions aθ′1 and aθ′2 ,

respectively, and returns a new state formula ϕ′. Preconditions for branching-time logic state

formulae can be acquired via existing CTL model checkers. However, in order to allow for

the path quantification present within a CTL∗ formula to range over path formulae, we must

consider whether all or some paths starting from a particular state satisfy a path formula. This

is required in the case that the immediate inner sub-formula is a pure linear-time path formula,

which is identified by the aforementioned boolean flag Path given the partitioning of θ. The

role of Path is to track if a sub-formula of the current formula is a path formula. That is, Path

indicates that the path quantifier exists within the context of verifying a path formula, and not

a branching-time state formula. Thus, it must be verified using PD, yet the set of states of PD

that characterize it actually represents a set of paths. This set of paths must be collapsed later

to a characterization of the set of states of P where the (state) formula holds. This is the key

to allowing the interplay between state and path formulae, as we further demonstrate below.

Quantifier Elimination for Satisfying Preconditions

ALGORITHM 14: QuantElim applies quantifier elimination in order to convert path characteri-

zation to state characterization restricting attention to states from which an infinite path exists.

1 Let QuantElim(a, ϕ) : AP =
2 a

EG
= CTL(PD,EG True)

3 match (ϕ) with
4 Eψ → return QE(∃n`∈L.aEG

∧ a)
5 − → return QE(∀n`∈L.aEG

→ a)

The procedure QuantElim, presented in Alg. 14, which converts path characterization to

state characterization, is thus executed at line 17 of ProveCTL∗. QuantElim takes in
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the assertion a returned from calling a CTL model checker on the determinized program PD

and the partitioned CTL formula ϕ′, as well as the original formula ϕ. We then quantify

the assertions over the values of the prophecy variables. If ϕ is a universal CTL formula, we

universally quantify the prophecy variables appearing in the set of states that satisfy ϕ on

line 5 in Alg. 14. If ϕ is an existential CTL formula, we existentially quantify the prophecy

variables on line 4. Predictions of the prophecy variables may lead to finite paths to appear

in the program. Recall that for our CTL∗ algorithms, we assumed that all paths are infinite

for the sake of brevity and clarity. Quantification thus must be restricted to states for which

there does exist a prophecy value leading to infinite paths. For example, consider Fig. 5.1(b),

and a path in which the loop has not yet terminated, yet the prophecy variable n`1 can no

longer be decreased given that it has reached a value of 0. We thus cannot take another loop

transition given that we can no longer decrease n`1 , nor can we leave the loop given that it has

not terminated. Hence, on line 2 we acquire the precondition aEG satisfying the CTL formula

entailing nontermination, that is EG True for PD. The precondition aEG is then conjuncted

with a to ensure that the quantification of prophecy variables does not include finite paths

generated due to invalid predictions of the prophecy variables. This is done according to the

polarity of the quantification (universal or existential). The assertion aθ is then returned by

QuantElim characterizing the set of states in which θ holds. Note that this solution is simpler

than that proposed in Chapter 4, as terminating paths necessitate fairness, requiring further

consideration of finite paths.

In the case that Path is false, the most immediate inner sub-formula would then be a state

formula. This indicates that we can indeed use a CTL model checker using ϕ′ and the original

program P , as demonstrated on line 19. Upon the return of ProveCTL∗ to its caller Verify,

aθ will contain the precondition for the most outer temporal property of the original CTL∗

formula θ. Now it is only necessary to check if the precondition aθ is satisfied by the initial

states of the program to complete the verification of our CTL∗ formula. Finally, Path is set to

false, in order to carry out the above procedure again when necessary.

Theorem 5.3. If Verify(θ, P ) returns true then P |= θ.

Proof. We show by induction on the number of path quantifiers in the CTL∗ formula θ that the

set of states computed as satisfying θ in line 17 of ProveCTL∗ is sound. That is, if a state

(`, f) is such that (`, f) |= aθ then (`, f) satisfies θ.

• Consider a state formula Aψ, where ψ does not include further path quantifications. The

computation of aθ uses recursive calls to Approximate() with preconditions for the sub-

formulae of ψ. By induction on the structure of ψ and repeated use of Theorem 5.2 we

can show that every precondition aθ′1 and aθ′2 appearing in the calls to Approximate()
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is sound. That is, if P, s |= aθ′i then P, s |= Aθ′i. It follows that once we get to the check

of the state formula Aψ the precondition aθ is obtained from universal quantification of

a sound approximation of Aψ. It follows that in PD for every possible valuation v for

the prophecy variables either (`, (f, v)) has no infinite paths starting from it or (`, (f, v))

satisfies Aψ in PD.

Consider a path π that starts in (`, f) in P . We note that if (`, f) is reachable from some

initial state, i.e., there is a computation σ ·π for which π is a suffix, then by Theorem 5.1

there exists a computation σ′ · π′ of PD such that σ′ · · · π′⇓Vars = σ · π. In particular, π′

satisfies ψ as required and some state (`, (f, v)) for some assignment to prophecy variables

v is reachable in PD.

• Consider a state formula Eψ, where ψ does not include further path quantifications. The

computation of aθ uses recursive calls to Approximate() with preconditions for the sub-

formulae of ψ. By induction on the structure of ψ and repeated use of Theorem 5.2 we

can show that every precondition aθ′1 and aθ′2 appearing in the calls to Approximate()

is sound. That is, if P, s |= aθ′1 then P, s |= Aθ′i. It follows that once we get to the check

of the state formula Eψ the precondition aθ is obtained from existential quantification

of a sound approximation of Aψ. It follows that in PD for some possible valuation v for

the prophecy variables we have that (`, (f, v)) has an infinite path starting from it and

(`, (f, v)) satisfies Aψ in PD.

Similar to the case of Aψ, if an infinite path π′ of PD that starts in (`, f) is the suffix of

a computation of PD then (`, (f, v)) is reachable in PD.

• In the case of a state formula θ that includes nesting of path quantifiers the proof proceeds

as before. This part relies on the structure of θ being in negation normal form and the

soundness of previous approximations aθ′ for every state sub-formula θ′ of θ.

We note that the implication in Theorem 5.3 is only in one direction. That is, failing to

prove that a property holds does not implicate that its negation holds (though this might

be proved by negating the formula, converting it to negation normal form, and running our

procedure on it). This incompleteness stems from the over-approximation of path formulae

by a corresponding ACTL formulae, as although this over-approximation is checked over PD,

PD does not determinize all paths. In the next section we discuss the incompleteness of this

determinization scheme.
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`1

`2 `3

`4

`5 `6

`7

x′ = 0

x′ = 2 x′ = 2

x′ = 0 x′ = 1

x′ = 0 x′ = 1

x′ = 3 x′ = 3

Figure 5.2: Program for which determinization is insufficient.

5.4 (In)completeness of Determinization

Given that our determinization technique has been adopted and repurposed from a similar

symbolic determinization technique introduced in [CK11] for the verification of LTL formulae,

we have thus inherited the limitations found within their technique. In this section we discuss

the aforementioned limitations.

We begin with a contrived illustrative example in Fig. 5.2 that serves as a theoretical exercise

on the completeness of determinization. First, we characterize all properties that represent the

different paths which can be taken inside the loop:

ϕ1 := x=2→ X(x=0 U x=3)

ϕ2 := x=2→ X(x=0 U(x=1 U x=3))

ϕ3 := x=2→ X(x=1 U(x=0 U x=3))

ϕ4 := x=2→ X(x=1 U x=3)

Now consider the property ψ := EG(
∨4
i=1 ϕ1). This property holds given that there always exists

a path in which a computation satisfies one of the four ϕi properties. That is, each property ϕi is

representative of a possible passage through the loop. Unfortunately, our procedure would not

be able to determine that the given program satisfies this property. Recall that our procedure

will determinize the program by replacing nondeterministic decisions regarding which paths are

taken using prophecy variables to determine future outcomes of the program execution. We then

would attempt to verify the over-approximated ACTL variant of the properties introduced in ϕi.

For example, ϕ1’s ACTL approximation would be x=2→ AX(A(x=0 U x=3)). In particular, the

sub-property A(x=0 U x=3) holds only at `5 and `7. It follows that there exists no set of states

that satisfy AX(A(x=0 U x=3)). Thus the set of states satisfying the property is characterized

by the precondition False; and the ACTL approximation of ϕ1 does not hold given that we

would be applying QuantElim over the precondition False. Similarly, the remaining ACTL
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approximations of other sub-formulae do not hold. Our procedure will thus fail to verify that

the property ψ is true for this program. The problem lies within the need to specify in advance

one of uncountably many choices.

Consider again the program in Fig. 5.2. Let ψ0 :=x=2 ∧ X x = 0 and ψ1 :=x=2 ∧ X x = 1.

That is, ψ0 describes the choice `1 7→ `2 7→ `4 and ψ1 describes the choice `1 7→ `3 7→ `4. We

can construct LTL formulae that search for a path that toggles between the choice of ψ0 and

ψ1. For example, E(x 6=2 U(ψ0 ∧X(x 6= 2 U ψ1))), requires to identify the paths that first choose

to go from `1 to `2 in the first run through the loop and go from `1 to `3 in the second run

through the loop. Now consider a word w ∈ {`2, `3}∗, we can write the CTL∗ formula Eϕw with

the aforementioned pattern that corresponds to the existence of the path that takes the choices

as written in w. It follows that in order to use our determinization strategy, we would have to

include a choice for all possible future choices of whether to branch from `1 to `2 or `3.

A possible solution would be to strengthen our determinization strategy to include a larger

number of choices encoded in one variable. For example, we could consider an arbitrary integer

nb (for branch) and whenever the value of nb is even, we choose the first branch and whenever

the value of nb is odd we choose the second branch. Thus whenever nb is used, it must be

divided by two (integer division), and when nb becomes 0 it is reset to a new arbitrary value.

Thus, nb would encode an arbitrarily large number of choices on how to branch in a certain

point. Given that the branch appears in a loop that could be repeated forever, this suggested

improvement still does not completely determinize the program. Indeed, the computations that

remain in the loop include new branching points whenever the value of nb is reset. From the

branching point at `4, it is possible to create a formula that will search for a path that creates

the pattern wω for a word w ∈ {`2, `3}∗. Thus, predictions of arbitrarily many choices is not

sufficient, as we would need to consider the predictions in {`2, `3}ω. Unfortunately, there are

uncountably many different words in {`2, `3}ω. Thus, in order to fully determinize a program we

would have to allow nondeterministic variables ranging over the Reals (with infinite precision)

and use a trick similar to the even/odd choice with division by 2. Thus our determinization

approach is limited and, in general, it is impossible to completely determinize a program.

5.4.1 Towards completeness of CTL∗

This above example is clearly a theoretical exercise in completeness of determinization, and we

stress that, in practice, we have found that our determinization procedure handles programs

and properties that we wish to verify quite well. The automata theoretic approach to LTL model

checking [VW86] can be viewed as determinization that is tailored for the formula to be verified.

We are not aware of implementations that use the automata theoretic approach for handling

LTL sub-formulae within CTL∗ formulae for infinite-state programs. However, in the future
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we wish to eliminate the limitations of our determinization procedure, given that countable

non-determinism in the context of nested nondeterministic branching leads to incompleteness.

Recall that our technique introduced in Chapter 4 allows for some interaction between linear-

time and branching-time over fairness assumptions pertaining to a system’s environment. We

suspect that building upon this technique may make way for a more complete procedure sup-

porting CTL∗ verification when reasoning about path formulae. As an example, we refer back to

Chapter 4 Fig. 4.2. If we were to apply our CTL∗ methodology, as fair-CTL is indeed a subset of

CTL∗, the performance of our model-checker would suffer. Consider the transformation applied

in Fig. 4.2(b), now consider if we were to instead apply our CTL∗ transformation:

`1 `2

ρ1 : x′ = 0

ρ2 : n`1 6= 0
n′`1 = n`1 − 1
m ≤ 0
x′ = x

ρ3 : n`1 = 0
m > 0
m′ = m
x′ = x

ρ4 : x′ = 1
m′ = m

Figure 5.3: Verifying a control-flow graph of a program with the fair-CTL property AG(x =
0 ⇒ AF(x = 1)) and the fairness constraint GF ρ2 ⇒ GF m > 0 utilizing the ProveCTL∗

methodology.

These transformations significantly differ, as Fig. 4.2(b) demonstrates a property-dependent

instrumentation, whilst Fig. 5.3 a property-independent one. That is, the transformation in

ProveCTL∗ only attempts to determinize the paths in a given program, regardless of the CTL∗

property or the fairness constraint at hand. The transformation in Chapter 4 aims to identify

non-deterministic decisions which repeat infinitely often based on a given fairness constraint.

Thus at each transition in Fig. 4.2(b), the choice { (¬ρ2 ∧ n′ ≤ n) ∨ (ρ2 ∧ n′ < n) ∨ m >

0 } ∧ n ≥ 0 is given. The transformation in ProveCTL∗ only attempts to distinguish all

possible non-deterministic paths within a generally identified SCS, thus in Fig. 5.3, the path

partitioning solely relies on whether n`1 6= 0 or n`1 = 0. The counterexamples and preconditions

produced from the former transformation are clearly more conducive to the verification of a

fair-CTL property relative to a general SCS transformation, as they are guided by a specific

property.

If a fairness constraint corresponds to the structure of a program’s SCS, then ProveCTL∗

could be used to verify a fair-CTL property with a likelihood of performance loss. However,

the incompleteness of ProveCTL∗, as discussed in 5.4, could pose further issues. Indeed,

ProveCTL∗ may not always be able to verify a fair-CTL property given an incompatible pro-
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gram structure relative to the given fairness constraint. Consider the structure of the following

program:

1 bool b;

2 while (nondet()) {

3 if (nondet()) {

4 b = true;

5 ...;

6 } else {

7 b = false;

8 ...;

9 }

10 ...;

11 }

For the fairness property Ω = {(b = True, b = False)}, and a given CTL formula, our

determinization in ProveCTL∗ may not be able to sufficiently isolate the paths that satisfy

Ω in order to prove the fair-CTL property. This is a result of the fairness constraint not

corresponding explicitly to the program’s SCS or structure. Our technique in Chapter 4 should

thus be considered as part of a prospective automata theoretic approach where determinization

is indeed tailored for the formula to be verified. We hope to further examine both the viability

and practicality of such an extension.

5.5 Concluding Remarks

We have introduced the first-known fully automatic method capable of proving CTL∗ properties

for infinite-state (integer) programs. This allows us, for the first time ever, to automatically

verify properties of programs that mix branching-time and linear-time temporal operators. We

have developed an implementation capable of automatically proving properties of programs that

no tool could previously prove. The method underlying our tool is one that uses a symbolic

representation capable of facilitating reasoning about the interaction between sets of states and

sets of paths.

As previously discussed, we hope to eliminate the limitations of our determinization procedure

by potentially utilizing the technique introduced in Chapter 4 which allows for some interaction

between linear-time and branching-time over fairness assumptions pertaining to a system’s

environment. Additionally, when specifying the correct behavior of systems, relating data

at various stages of a computation is often crucial, as expressing program correctness often
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requires relating program data throughout different branches of an execution. However, CTL∗

alone cannot express this without the support of first-order quantification. There does exist

one automated model checking tool that supports first-order CTL [BBR14]. The first-order

quantification is encoded as a set of constraints within an existing CTL model-checker to obtain

an automatic verifier for first-order CTL. However, it is unclear if a similar strategy can be

integrated with our CTL∗ model-checker, as the constraints reason about quantification over

sets of states, and not paths. We thus hope to further investigate the aforementioned approach

to extend the support of CTL∗ to include first-order logic.



Chapter 6

Remembrance of Things Past

In this chapter, we consider the linear-past extension to CTL∗ for infinite-state systems in which

the past is linear and each moment in time has a unique past. We discuss the practice of this

extension and how it is further supported through the use of history variables over our CTL∗

technique introduced in Chapter 5.

6.1 Introduction

Past-time connectives are known to make the formulation of temporal logic specifications ex-

ponentially more intuitive and succinct [LPZ85], thus in this chapter we choose to support

a past-connective extension to CTL∗, maintaining the effectiveness of the intuitiveness of our

specification and verification platform. As noted earlier, adding linear-past connectives to CTL∗

adds no additional expressive power given that a computation always has a definite starting

time and a unique past [GPSS80, KPV12] 1. One thus may speculate that no “extension” per

se is necessary, as an automated translation from CTL∗lp to CTL∗ is a more suitable strategy

than embedding the additional history variables to be proposed, however, we believe this not to

be the case. For CTL∗lp, and more specifically the fragment in which we tackle, the translation

itself is non-elementary, and a translation algorithm may induce combinatorial explosions, even

with limited temporal height [LS95, KPV12]. The known lower bounds for conversion from

temporal logic with past to temporal logic without past are expressible in the fragment we con-

sider [LS95]. It follows that already supporting this fragment offers succinctness of expression.

Additionally, the conversion of linear-past connectives to future connectives would likely pro-

duce sub-formulae resembling the history variables we introduce. Hence, a translation strategy

with an accompanying combinatorial formulae explosion would not be beneficial in practice.

1Note that we have not found CTL∗bp to have beneficial expressiveness to the specific properties we wish to
verify, thus we do not address the extension CTL∗bp in this chapter.

94
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We are not aware of any implementations of the (non-elementary) translation from LTL with

past, to LTL (and clearly none for CTL∗lp).

6.1.1 Approach and Contribution

In this chapter we thus extend our CTL∗ algorithm to support part of CTL∗lp via the instrumen-

tation of a unique history variable per past connective present within a CTL∗lp formula. The

history variable tracks the state of the consequent nested temporal formula. If the consequent

nested formula within a past connective is a state sub-formula, the history variable is satis-

fied based on the state of the sub-formula’s synthesized preconditions. However if the nested

formula is another past connective, the history variable is satisfied based on the state of an addi-

tional history variable associated with the sub-formula. The satisfaction of a history variable is

clearly dependent on which past connective is being verified. Additionally, the history variables

are analyzed within a larger context of a future formula, that is, they are instrumented when

verifying a future CTL∗ sub-formula which incorporates their corresponding past sub-formulae.

Based on our approach, we have extended our tool to automatically prove CTL∗lp properties

of programs that no tool could previously fully automate, as will be later demonstrating in

Chapter 7.

6.2 CTL∗lp– Adding Past to CTL∗

In this section, we consider an extension to CTL∗ that admits temporal operators that refer

to the past. As perviously mentioned, we specifically consider a fragment of the linear-past

logic CTL∗lp. We thus redefine our semantics to incorporate past-connectives in Chapter 2

Section 2.3.2. In addition we extend our recursive CTL∗ verification procedure to support the

incorporation of the past. We include an example that demonstrates the different stages of

the algorithm in Section 6.3. We additionally discuss the challenges of extending to full CTL∗lp
in Section 6.2.2, and further exhibit the usefulness of our CTL∗lp extension via a case study

provided in Section 6.3.1.

6.2.1 Checking CTL∗lp Formulae

In this section, we describe the details of our CTL∗lp model checking procedure ProveCTL∗lp
presented in Alg. 15. First, recall that a translation from CTL∗lp to CTL∗ as a solution to ver-

ifying CTL∗lp could be non-elementary, and a translation algorithm may induce combinatorial

explosions, even with limited temporal height [LS95, KPV12]. We stress again that the lower
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ALGORITHM 15: Extending our recursive CTL∗ verification procedure to support CTL∗lp.

1 Let rec ProveCTL∗lp (θ, P, PD) : (formula, bool, program, program) =

2 (L, E,Vars) = P
3 match (θ) with
4 ϕ : stateformula →
5 match (ϕ) with
6 θ′1 ∨ θ′2 | θ′1 ∧ θ′2 | Aθ′1 ◦± θ′2 | Eθ′1 ◦± θ′2 →
7 (aθ′1 ,Path1, P, PD) = ProveCTL∗lp(θ

′
1, P, PD)

8 (aθ′2 ,Path2, P, PD) = ProveCTL∗lp(θ
′
2, P, PD)

9 A◦±θ′ | E◦±θ′ →
10 (aθ′1 ,Path1, P, PD) = ProveCTL∗lp(θ

′, P, PD)

11 (aθ′2 ,Path2) = (False,False)

12 match (ϕ) with
13 α → aθ = α;
14 θ′1 ∨ θ′2 | θ′1 ∧ θ′2 | A◦θ′ | E◦θ′ | Aθ′1 ◦ θ′2 | Eθ′1 ◦ θ′2 →
15 ϕ′ = Replace(ϕ, aθ′1 , aθ′2)

16 if Path1 ∨Path2 then
17 aθ = QuantElim(CTL(PD, ϕ

′), ϕ)

18 else
19 aθ = CTL(P,ϕ′)

20 A◦−1θ′ | E◦−1θ′ | Aθ′1 ◦−1 θ′2 | Eθ′1 ◦−1 θ′2 →
21 (aθ, P, PD) = AddHistory(ϕ, ◦−1, aθ′1 , aθ′2 , P, PD)

22 Path = False

23 ψ : pathformula →
24 match (ψ) with
25 θ′1 ∨ θ′2 | θ′1 ∧ θ′2 | θ′1 ◦± θ′2 →
26 (aθ′1 ,Path1, P, PD) = ProveCTL∗lp(θ

′
1, P, PD)

27 (aθ′2 ,Path2, P, PD) = ProveCTL∗lp(θ
′
2, P, PD)

28 ◦±θ′ →
29 (aθ′1 ,Path1, P, PD) = ProveCTL∗lp(θ

′, P, PD)

30 (aθ′2 ,Path2) = (False,False)

31 match (ψ) with
32 θ′1 ∨ θ′2 | θ′1 ∧ θ′2 →
33 aθ = Approximate(ψ, aθ′1 , aθ′2)

34 Path = Path1 ∨Path2

35 θ′1 ◦ θ′2 | ◦θ′ →
36 ψ′ = Approximate(ψ, aθ′1 , aθ′2)

37 aθ = CTL(PD, ψ
′)

38 Path = True
39 θ′1 ◦−1 θ′2 | ◦−1θ′ →
40 (aθ, P, PD) = AddHistory(ψ, ◦−1, aθ′1 , aθ′2 , P, PD)

41 Path = False

42 return (aθ,Path, P, PD)
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ALGORITHM 16: AddHistory produces history variables corresponding to past-connectives in

CTL∗lp.

1 Let AddHistory(ψ, ◦−1, aθ1 , aθ2 , P, PD) : formula, past-operator, program, program =
2 aθ = Hψ

3 match (◦−1) with
4 F−1 →
5 ι = (H ′ψ = a′θ1); ρh = (H ′ψ = Hψ ∨ a′θ1)

6 G−1 →
7 ι = (H ′ψ = a′θ1); ρh = (H ′ψ = Hψ ∧ a′θ1)

8 X−1 →
9 ι = (H ′ψ = False); ρh = (H ′ψ = aθ1)

10 W−1 →
11 ι = (H ′ψ = a′θ1 ∨ a

′
θ2

); ρh = (H ′ψ = (Hψ ∧ a′θ1) ∨ a′θ2))

12 U−1 →
13 ι = (H ′ψ = a′θ2); ρh = (H ′ψ = (Hψ ∧ a′θ1) ∨ a′θ2)

14 P = InstrumentHistory(Hψ, ι, ρh, P )
15 PD = InstrumentHistory(Hψ, ι, ρh, PD)
16 return (aθ, P, PD)

ALGORITHM 17: InstrumentHistory embeds conditions over history variables within a tran-

sition system P .

1 Let InstrumentHistory(H, ι, ρh, P ) : program =
2 (L, E,Vars) = P
3 foreach (`, ρ, `′) ∈ E do
4 if ` = `I then
5 ρ = ρ ∧ ι
6 else
7 ρ = ρ ∧ ρh

8 Vars = Vars ∪ {H}
9 return P

bound in [LS95] can be expressed in our fragment. We thus introduce a procedure that extends

ProveCTL∗ in Chapter 5 by introducing the sub-procedures AddHistory and Instrumen-

tHistory, which serve to introduce history variables per past-connective present within a

CTL∗lp formula. We provide an overview of these sub-procedures below, followed by a more

in-depth explanation regarding these extensions.

AddHistory & InstrumentHistory are procedures that produce a precondition for a past

sub-formula by introducing history variables into the program. A history variable tracks the

state of a consequent nested temporal formula within a program. AddHistory creates a

history variable and its appropriate satisfying assertions tailored to the past-connective that is

being verified. InstrumentHistory extends the transitions of P and PD by instrumenting

the assertions updating the truth values of the introduced history variable. The Boolean truth
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value of the history variable within a program’s computation corresponds to the truth values

of the past formula in a given history. The history variable produced can thus serve as the

precondition for the past sub-formula at hand.

We now describe the details of these additional procedures and their use in ProveCTL∗lp, fol-

lowed by a detailed example that explores the usage of history variables. As with ProveCTL∗,

we generate a determinized copy of the program, PD, using the procedure Determinize. This

program is then passed to ProveCTL∗lp along with the original program P and a CTL∗lp prop-

erty θ. Our extension can be observed on lines 20 – 21 and lines 39 – 41, where given a

CTL∗lp formula, we not only deconstruct the formula to differentiate between state and path

sub-formulae, but also between past and future sub-formulae. On line 20, if θ can be identified

as a state formula with a past temporal operator, then we carry out the set of actions on line

21. If θ is identified as a past path formula on line 39, we carry out the set of actions on line

40.

Note that AddHistory indeed accepts the temporal operator ◦−1 in addition to the sub-

formula it operates on. This highlights a subtle difference between the treatment of state

formulae in the algorithm. In the treatment of future-state formulae, an existing model checker

for CTL is called. However, in the case of the past, a state formula characterizes a set of histories

rather than a set of states. Thus, a model checker would have to return a characterization of

the set of histories satisfying a given state formula rather a precondition characterizing a set of

states. The approach we take is to add history variables to the program, hence allowing us to

describe histories using preconditions that refer to the introduced history variables. Hence, we

further partition a state-formula in AddHistory by treating the temporal operator as a path

formula in order to instrument the correct history variable corresponding to the past-temporal

operator ◦−1. We now turn to the detailed description of AddHistory.

AddHistory & InstrumentHistory

In Alg. 16, we present a conversion from linear-past formulae to corresponding history variable

conditions to be embedded into the programs P and PD. That is, reasoning pertaining to a

linear-past formula is reduced to conditions over a history variable that captures the truth value

of the CTL∗lp formula. Our procedure is given a past-temporal operator ◦−1, its corresponding

linear-past formula ψ, and two preconditions, aθ1and aθ2 , corresponding to the satisfaction of

the nested CTL∗lp formulae which appear within ψ. This aligns with how ProveCTL∗lp will

recursively iterate over each inner sub-formula followed by search for the preconditions of the

outer sub-formulae dependent on it, thus these preconditions would have already been priorly

generated. Due to the structure of CTL∗lp, note that aθ1 and aθ2 are either preconditions de-

scribing state formulae, or preconditions describing the histories satisfying past path formulae.
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It follows that both are expressed in terms of the variables of P alone and do not refer to the

prophecy variables that form part of PD. Recall that aθ2 is a conditional parameter utilized

only when a CTL∗lp formula requiring two properties (i.e., W−1, U−1) is given.

On line 2 we generate a unique history variable, Hψ, corresponding to the past-temporal opera-

tor ◦−1 to be analyzed. The history variable is indeed a Boolean variable that has the value true

if the history of the computation so far satisfies the past property, and is false otherwise. We

thus define conditions ι and ρh and assign them assertions that depend on ◦−1. The condition

ι is to be instrumented in the initial transitions of P and PD, that being transitions leaving

`I , while ρh is to be instrumented in the remaining transitions. If the aforementioned temporal

operator is:

• F−1, on line 5, Hψ is assigned the truth valuation of the atomic precondition a′θ1 in ι.2 For

the remaining transitions, ρh, Hψ becomes true and stays true if a′θ1 is satisfied at least

once. These conditions reflect that sometime in the past, aθ1 held.

• G−1, on line 7, the dissatisfaction of a′θ1 will cause Hψ to become false and stay false in

ρh. That is, in order for Hψ to hold, then the valuation of a′θ1 must always remain true,

denoting that aθ1 must have always held in the past.

• X−1, on line 9, Hψ is initially false in ι, given that there exists no previous state in P

and PD where a′θ1 can be satisfied. As for the remaining transitions, if aθ1 is satisfied,

indicating the valuation before an update, then Hψ is true. That is, Hψ only holds if aθ1

held in the immediate previous state.

• W−1, on line 11, Hψ is assigned the truth valuation of the disjunction of a′θ1 or a′θ2 in ι.

For ρh, Hψ is satisfied if a′θ2 holds, otherwise the valuation of a′θ1 must be true in addition

to Hψ being previously true. These conditions thus reflect that in the past, aθ2 may hold

before aθ1 holds indefinitely.

• U−1, on line 13, Hψ is assigned the truth valuation of the atomic precondition a′θ2 in ι.

As for ρh, Hψ is assigned the same valuation as in W−1. It is the initialization state that

enforces that aθ2 held at some time in the past, and aθ1 has been holding ever since. Hψ

can only ever become true in ι if aθ2 holds, thus in ρh, Hψ ∧ a′θ1 will be falsified until aθ2

becomes true at least once.

Once ι and ρh are appropriately assigned in AddHistory, InstrumentHistory is called on

lines 14 and 15 with Hψ, ι, and ρh. InstrumentHistory instruments the conditions over our

history variable Hψ within the programs P and PD, respectively. Both ι and ρh are defined

2Recall that a′θ1 refers to the value of aθ1 after an update, that is, references to all variables would be replaced
by references to primed versions.
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in terms of variables of P and can be instrumented into both P and PD. As demonstrated

in Alg. 17, a program is iterated on line 3. When an edge (`, ρ, `′) ∈ E is reached containing

` = `I , that is the initial location, then ι is conjuncted to the condition ρ. Otherwise, ρh, our

condition over the history variable H, is conjuncted with ρ. The modified program with the

history variable H is then returned on line 9.

Finally, on line 16 in Alg. 16, we return the transformed programs P and PD alongside the his-

tory variable Hψ as an atomic predicate, serving as the precondition of our linear-past formula.

Given that we encode linear-past formulae within our programs, it is sufficient to return Hψ

as the precondition given that its truth valuation will be contingent upon the newly embedded

transitions. We now show that AddHistory is deterministic, that is, the computations of

the resulting program are the computations of the original program annotated by additional

information.

Theorem 6.1. Consider a sub-formula ψ in which the outermost operator is a past tempo-

ral operator. Given a program P̂ = (L, E,Vars) and conditions aθ1 and aθ2, let ( , P̂ ′, ) =

AddHistory(ψ, aθ1 , aθ2 , P̂ , ). Then, for every computation π of P̂ there is a unique compu-

tation π′ of P̂ ′ such that π′ ⇓Vars= π, and all computations of P̂ ′ are of this form.

Proof. • We construct π′ by extending π with assignment for the history variables. We do

this by induction on the positions in a computation π of P̂ . For the initial location, a

unique value for the history variable H ′ψ can be determined by a′θ1 and a′θ2 . This is carried

out by going over the five options for ι in Alg. 16.

By induction given that the values of Hψ are determined up to some location i, then it

is the case that the value of H ′ψ is determined by the value of Hψ and a′θ1 and a′θ2 . This

is carried out by one of the five options for ρh in Alg. 16. It thus follows that π is a

computation of P̂ ′, as a′θ1 and a′θ2 are givens and thus H ′ψ can be determined over every

computation π.

• In the other direction, consider a computation π′ of P̂ ′. For every transition (`, ρ̂, `′) of

P̂ ′ we know that there is a transition (`, ρ, `′) of P1 such that ρ̂ = ρ ∧ α, where α is a

condition produced by AddHistory (either ι or ρh in terms of Alg. 16). It follows that

π′ ⇓Vars is a computation of P̂ , as the valuation obtained by restricting the valuation to

variables in Vars remains the same.

Consider a past formula ψ. We now show that given sound preconditions for the sub-formulae

nested within ψ, AddHistory soundly approximates the truth of ψ. This approximation is

due to the value of preconditions for the sub-formulae themselves being an over-approximation.



6.2. CTL∗lp– Adding Past to CTL∗ 101

Theorem 6.2. Consider a past path formula ψ. Given a program P = (L, E,Vars) and the

preconditions aθ1 and aθ2 computed for the sub-formulae of ψ. Suppose that for every history

σ such that σ |= aθi we have P, σ |= Aψi. Let ( , P ′, ) = AddHistory(ψ, aθ1 , aθ2 , P, ). If

P ′, σ |= Hψ then P, σ ⇓Vars|= Aψ.

Proof. By Theorem 6.1, the premises of the Theorem are well defined. Indeed, given a history

σ of AddHistory(ψ, aθ1 , aθ2 , P, ) the history σ ⇓Vars is well defined and for every computation

σ′ of P there is a history σ of AddHistory(ψ, aθ1 , aθ2 , P, ) such that σ′ = σ ⇓Vars.

We consider the case of past path formulae.

• Suppose that ψ = θ1U
−1θ2. By assumption aθ1 and aθ2 are sound. We proceed by

induction on the length of σ. If |σ| = 1 then the value of Hψ soundly approximates the

truth value of ψ as aθ2 is sound and H ′ψ is initialized by ι to a′θ2 . If |σ| > 1 then the value

of Hψ soundly approximates the truth value of ψ as aθ1 and aθ2 are sound and ρh updates

H ′ψ to (Hψ ∧ a′θ1) ∨ a
′
θ2

.

• The cases of ψ = θ1W
−1θ2, ψ = G−1θ1, and ψ = F−1θ1 are similar.

• Suppose that ψ = X−1θ1. By assumption aθ1 is sound. We proceed by induction on the

length of σ. If |σ| = 1 then the value of Hψ is the truth value of ψ as H ′ψ is initialized by

ι to false. If |σ| > 1 then the value of Hψ soundly approximates the truth value of ψ as

aθ1 is sound and ρh updates H ′ψ to aθ1 .

We note that pure-past formulae can include disjunctions and conjunctions. However, given

that the precondition for α ∧ β will be the conjunction of the preconditions for α and β (and

similarly for disjunction), the soundness of using Boolean connectives is immediate.

ProveCTL∗lp

We return to our main algorithm in Alg. 15. The treatment of path formulae is somewhat differ-

ent from our original ProveCTL∗. Future temporal operators (lines 36 – 38) are treated just

like the previous case. Past temporal operators (lines 39 – 41) are deterministically encoded as

history variables and depend only on the variables of P . Thus, we set Path to False. Finally,

Boolean connectives can be either pure-past formulae or include future temporal operators in

them. In both cases, the precondition is set to the Boolean combination of the preconditions

for the sub-formulae (as is masked by the call to CTL in the previous algorithm). However,

the decision of whether the check should continue over P or PD depends on the values of Path1

and Path2. Accordingly we set Path to their disjunction on line 34.
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Theorem 6.3. If Verify(θ, P ) returns true for a program P = (L, E,Vars) then, P |= θ.

Proof. We show by induction on the number of path quantifiers in a CTL∗lp formula θ that the

set of states computed as satisfying θ returned from ProveCTL∗lp is sound. That is, for a

program P returned from ProveCTL∗lp and a history σ, if P, σ |= aθ then P, σ ⇓Vars satisfies

θ.

• Consider a state formula Aψ, where ψ does not include further path quantification. Sup-

pose that P, σ |= aψ.

The computation of aψ uses recursive calls to AddHistory for the past sub-formulae

of ψ and calls to Approximate() with preconditions for the future sub-formulae of ψ.

Every call to AddHistory changes P and PD by adding history variables to them. By

induction on the structure of ψ and repeated use of of Theorem 6.2 we can show that every

preconditions aθ′1 and aθ′2 appearing in the calls to AddHistory are sound. Then, by

repeated use of Theorem 5.2 we can show that every preconditions aθ′1 and aθ′2 appearing

in the calls to Approximate() are also sound.

The precondition aθ is obtained either in line 17, 19, or 21. If it is obtained in line 17,

then it is obtained from universal quantification of a sound approximation of Aψ on the

last version of PD. If it is obtained in line 19, then it is obtained from a call to a (sound)

CTL model checker. If it is obtained in line 21, then by Theorem 6.2 it is sound.

It follows that in PD for every possible valuation v of the prophecy variables either σ has

no infinite paths starting from it or σ satisfies Aψ̂ in PD, where ψ̂ is obtained from ψ by

repeatedly replacing sub-formulae by their approximated versions as done by recursive

calls of Approximate().

Consider a path π that starts in σ ⇓ V in P . By Theorems 5.1 and 6.1 the path π satisfies

ψ.

• Consider a state formula Eψ, where ψ does not include further path quantifications.

Suppose that P, σ |= aψ.

As in the universal case, aψ is obtained by using recursive calls to AddHistory for the

past sub-formulae of ψ and calls to Approximate() with preconditions for the future

sub-formulae of ψ. Every call to AddHistory changes P and PD by adding history

variables to them. By induction on the structure of ψ and repeated use of Theorem 6.2

we can show that every preconditions aθ′1 and aθ′2 appearing in the calls to AddHistory

are sound. By induction on the structure of ψ and repeated use of Theorem 5.2 we can

show that every preconditions aθ′1 and aθ′2 appearing in the calls to Approximate() are

sound.
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The precondition aθ is obtained either in line 17, 19, or 21. If it is obtained in line 17,

then it is obtained from existential quantification of a sound approximation of Eψ on the

last version of PD. If it is obtained in line 19, then it is obtained from a call to a (sound)

CTL model checker. If it is obtained in line 21, then by Theorem 6.2 it is sound.

If follows that in PD for some possible valuation v of the prophecy variables σ has some

computation starting from it and σ satisfies Eψ̂ in PD, where ψ̂ is obtained from ψ by

repeatedly replacing sub-formulae by their approximated versions as done by recursive

calls of Approximate(). It follows that there is a computation π in PD that starts in σ

such that PD, π, |σ| − 1 |= ψ.

Consider a computation π that starts in σ in PD and consider their projections π′ = π⇓Vars
and σ′ = σ⇓Vars on the variables of P . By Theorem 5.1 π′ is a computation of P . By

Theorems 5.2 and 6.2 it follows that P, π′, |σ′| − 1 |= ψ.

• In the case of a state formula θ that includes nesting of path quantifiers, the proof proceeds

as before. This part relies on the structure of θ being in negation normal form and the

soundness of previous approximations of aθ′ for every state sub-formula θ′ of θ.

6.2.2 Interaction of Histories and Prophecies

In this section, we discuss what would be required in order to extend our algorithm to handle

full CTL∗lp. The fraction of CTL∗lp that we consider ensures that there are no references to the

future (i.e., prophecy variables) appearing inside references to the past (i.e., history variables).

Indeed, the definition of past formulae τ ensures that the direct sub-formlae of a past operator

are either state formulae, past formulae, or Boolean operators that nest them.

Consider the removal of this restriction and an attempt to use our algorithm in the case of

a future path formula immediately nested within a past formula. Due to the determinization

arising from verifying a path formula, the preconditions that describe the approximation of

states that satisfy a future path formula could refer to the values of prophecy variables. Such

preconditions are relevant only with respect to PD as P does not include the prophecy variables.

Now consider a past sub-formula that refers to such a precondition. The history variable

instrumented in the program would describe the truth value of the past formula. The assertions

that govern the truth value of such a history variable – ι and ρH , as described in AddHistory –

would thus include a reference to prophecy variables. It follows that we would be able to add

these history variables only to PD and not to P . This would be sound for PD and would produce

correct approximations for PD. However, as in our CTL∗ algorithm, at some point the algorithm

reaches the path quantification within which these path formulae are nested. We would need
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to “collapse” the preconditions that now refer to both prophecy variables and history variables

to be relevant to P . Preconditions containing prophecy variables would be handled by the

appropriate quantification as is done now in QuantElim. However, the conversion of path

characterization back to state characterization over preconditions alone is not sufficient in the

case of CTL∗lp. We must quantify not only over the preconditions, but the transitions of PD.

Just as in QuantElim, we seek to acquire the proper set of states that satisfy formulae, which

have been instrumented into the program as assertions over history variables, given that these

assertions may depend on prophecy variables that have been produced by previous calls to

ProveCTL∗lp.

Now consider if our path quantification was indeed universal, then universally quantifying the

assertions ι and ρH would be sufficient to translate the truth of the history variables to P .

However, such is not the case with existential path quantification. It is not clear how one

can embed history variables into P if they do reason about prophecy variables, and require

existential quantification. We have chosen not to include the universal quantification option

formally here as it would lead to the definition of a very complex fragment of CTL∗lp, where

once future is used within past, it can be used only within universal path quantification (and

this remains the case also for the state formulae that contain this part).

We demonstrate this limitation further with a counterexample. First, consider the program in

Fig. 5.1(a) and the property EX−1X−1x = 0. Clearly, the property holds in `2 from the second

iteration and onwards of `2. It follows that the locations and variables of the program do not

provide sufficient information to express the truth value of this property, thus some information

must be added to the program in order to be able to express the truth value of the formula

[LPZ85]. This is the role of the history variables – instrument information to the program that

enables us to distinguish between histories that end in the same state of the original program.

Now consider the formulae ϕ0 = F−1FG x = 0, ϕ1 = F−1FG x = 1, Eϕ0, Eϕ1, and Eϕ1 ∧ ϕ2.

This would required the usage of the determinized program in Fig. 5.1(b) for our analysis. The

precondition for AG x = 0 is `2. The precondition for AF `2 is a0 = `2 ∨ (`1 ∧ n`1 ≥ 0). The

precondition for AG x = 1 is `1∧n`1 < 0. The precondition for AF(`1∧n`1) is a1 = `1∧n`1 < 0.

Now, adding a history variable for F−1a0 would add the condition H ′0 = n′`1 ≥ 0 to the initial

transition, H ′0 = H0 to the transition looping on `1 and H ′0 = True to all transitions entering

`2. Adding a history variable for F−1a1 would add the condition H ′1 = n′`1 < 0 to the initial

transition, H ′1 = H1 to all other transitions.

If we attempt to introduce these history variables in P once quantification is reached, we arrive

at a problem. Indeed, Eϕ0 should be true for every state of P and Eϕ1 should be true for `1. If

we indeed were to existentially quantify the introduced prophecy variables over the transitions

in PD as necessitated by E, E(ϕ0 ∧ ϕ1) would result in being true on all transitions, however,

this is not sound as it is indeed false everywhere. It follows that existential quantification over
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transitions is not sufficient to transform history variables instrumented in PD into sufficient

conditions over P .

6.3 Demonstrating CTL∗lp

In this section, we provide a CTL∗lp example that demonstrates the usage of history variables to

provide a comprehensive view of how the CTL∗ algorithm extends to verifying CTL∗lp. Consider

the program in Fig. 6.1(a) and the property EGFG−1 x = 1 stating that there exists some path

such that infinitely often there is a state in which x = 1 has always held in the past (note that

this formula is equivalent to EG x = 1 in the initial state). The property clearly holds for the

program as evidenced by the path (`1, 〈x 7→ 1〉)((`2, 〈x 7→ 1〉))ω, which never enters the loop in

`1 and continues to remain in the loop at `2 forever. Importantly (for the example), the path

does pass through `1, where the property AFG−1 x = 1 does not hold.

As discussed, in order to check this property we recursively handle its sub-formulae. The most

inner sub-formula is a past sub-formula, namely G−1 x = 1. We call the function AddHistory

with the precondition x = 1, given that the precondition of an atomic predicate is the atomic

predicate itself. AddHistory produces a history variable corresponding to the past-connective

G−1 and calls upon InstrumentHistory to add conjuncts to the transitions of P and PD that

update the value of this new history variable. In Fig. 6.1(b), we show the history variable HG−1

introduced in P , and in Fig. 6.1(c) in PD. In the initial state, H ′
G−1 is set to the Boolean

valuation of x′ = 1. For the remaining transitions, if x′ = 1 is satisfied and HG−1 is true,

indicating the valuation before an update, then H ′
G−1 is true after the update. The history

variable HG−1 is then returned by AddHistory as the precondition satisfying G−1 x = 1.

We now continue with the next inner sub-formula with HG−1 replacing G−1 x = 1. Namely,

F (HG−1).

We identify that F HG−1 is a path sub-formula, and thus produce the over-approximated CTL

formula AF(HG−1) , which is returned from Approximate. The property AF(HG−1) does not

hold on `1 in P . From `1, the nondeterministic choices to ρ2 and ρ3 mean that not all successors

satisfy HG−1 . In order to reason about the original (path) sub-formula F HG−1 , we must be

observing sets of paths, not states. Recall that we over-approximated our formula in a way

that allows us to only reason about states, we thus symbolically determinize the program to

simultaneously simulate all possible related paths through the control flow graph and try to

separate them to originate from distinct states in the program.

As before, PD is a new symbolically partially-determinized program in which a newly introduced

prophecy variable, namely n`1 in Fig. 6.1(c), is associated with the branching-relation (ρ2, ρ3),

and is used to make predictions about the occurrences of relations ρ2 and ρ3. As can be
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`1 `2

ρ1 : x′ = 1

ρ2 : x′ = 0

ρ3 : x′ = 1

ρ4 : x′ = x

(a)

`1 `2

ρ1 : x′ = 1
H ′

G−1 = x′ = 1

ρ2 : x′ = 0
H ′

G−1 = HG−1 ∧ x′ = 1

ρ3 : x′ = 1
H ′

G−1 = HG−1 ∧ x′ = 1

ρ4 : x′ = x
H ′

G−1 = HG−1 ∧ x′ = 1

(b)

`1 `2

ρ1 : x′ = 1
H ′

G−1 = x′ = 1

ρ2 : n`1 6= 0
n′`1 = n`1 − 1

x′ = 0
H ′

G−1 = HG−1 ∧ x′ = 1

ρ3 : n`1 = 0
x′ = 1
H ′

G−1 = HG−1 ∧ x′ = 1

ρ4 : x′ = x
H ′

G−1 = HG−1 ∧ x′ = 1

(c)

Figure 6.1: (a) The control-flow graph of a program for which we wish to prove the CTL∗lp
property EGFG−1 x = 1. (b) The control-flow graph after calling AddHistory to instrument
the history variable necessary for reasoning about the past-connective G−1. (c) The control-flow
graph after calling Determinize, and then AddHistory, it includes the prophecy variable
n`1 , corresponding to the nondeterministic branching-relation (ρ2, ρ3)
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seen in Fig. 6.1(c), prophecy variables are initialized to a nondeterministic value, are reset

whenever exiting the minimal SCS associated with their location, and are decremented whenever

staying inside the same minimal SCS. As in the case of CTL∗, we now utilize an existing

CTL model-checker to return an assertion characterizing the states in which the F (HG−1)

holds by verifying the determinized program, denoted by PD, using the over-approximated CTL

formula AF (HG−1). The result of this CTL model checking task over PD is aF = (`1 ∧ n`1 =

0 ∧HG−1) ∨ (`2 ∧HG−1).

We then replace F HG−1 by aF and finally arrive at our outermost CTL∗lp formula EG aF. As

dictated by our ProveCTL∗lp algorithm, our final step is to verify EG aF , a syntactically

acceptable CTL formula. As discussed, we cannot simply use a CTL model checker as the path

quantifier E exists within a larger relation context reasoning about paths given the inner for-

mula GF. We thus must use the CTL model-checker to verify EGaF over the same determinized

program previously generated in Fig. 6.1(c). Our procedure then returns with the same precon-

dition (`1∧n`1 = 0∧HG−1)∨(`2∧HG−1). The set of states that satisfy the formula EGFG−1 x = 1

are indeed those that start in `1 with n`1 = 0.

Finally, we use quantifier elimination to existentially quantify out all introduced prophecy

variables. Recall that if there is a state s in the original program, and some value of the

prophecy variables v such that all paths from the combined state (s, n`1 = v) in PD satisfy the

path formula then clearly, these paths give us a sufficient proof to conclude that EGFG−1 x =

1 holds from s in P . In our case, the procedure QuantElim existentially quantifies our

precondition given the path quantifier E, and produces the precondition HG−1 . History variables

are instrumented in both P and PD and the precondition can be evaluated over P . For this

program, HG−1 does indeed hold at the initial state. The program, as mentioned, does satisfy

the formula.

6.3.1 Case Study

We report on a case study that requires the application of our extended ProveCTL∗lp algo-

rithm presented in Alg. 15. Our case study concerns I/O request packets (IRP) in Windows

Device Drivers and the requirement that each IRP must have a Cancel routine that allows the

cancellation of an I/O operation. In Fig. 6.2, we thus provide an example in which an IRP is

queued in order to set and clear its Cancel routine. When setting the Cancel routine for the

IRP, one must use a spin lock, as shown on line 1, to protect the IRP pointer and the queue.

A spin lock is a lock that causes a thread trying to acquire it to simply wait in a loop while

repeatedly checking if the lock is available. However note that before queuing an IRP, despite

it being protected by a spin lock, it is a requirement that drivers must mark an IRP as pending

(using IoMarkIrpPending) before queuing it. In our example, the driver does indeed mark the
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IRP as pending on line 3 after acquiring a spin lock, and then continues to call the method

InsertTailList on line 4, which queues the IRP in order to set and clear its Cancel routine.

The Cancel routine is then set and cleared on lines 9 – 22. Given this requirement, we wish to

verify the property requiring that drivers mark an IRP as pending using IoMarkIrpPending

before queuing it, that is:

AG(InsertTailList()⇒ X−1 (¬InsertTailList() U−1 IoMarkIrpPending()))

1 KeAcquireSpinLock(&deviceContext->irpQueueSpinLock, &oldIrql);

2

3 IoMarkIrpPending(Irp);

4 InsertTailList(&deviceContext->irpQueue, &Irp->Tail.Overlay.ListEntry);

5

6 oldCancelRoutine = IoSetCancelRoutine(Irp, IrpCancelRoutine);

7 ASSERT(oldCancelRoutine == NULL);

8

9 if (Irp->Cancel) {

10

11 oldCancelRoutine = IoSetCancelRoutine(Irp, NULL);

12 if (oldCancelRoutine) {

13

14 RemoveEntryList(&Irp->Tail.Overlay.ListEntry);

15

16 KeReleaseSpinLock(&deviceContext->irpQueueSpinLock, oldIrql);

17 Irp->IoStatus.Status = STATUS_CANCELLED;

18 Irp->IoStatus.Information = 0;

19 IoCompleteRequest(Irp, IO_NO_INCREMENT);

20 return STATUS_PENDING;

21

22 } else {

23

24 }

25 }

26

27 KeReleaseSpinLock(&deviceContext->irpQueueSpinLock, oldIrql);

28 return STATUS_PENDING;

Figure 6.2: A Windows Device Driver driver setting a Cancel routine for an I/O request packet.

We thus call ProveCTL∗lp with the property above, the program in Fig. 6.2, which we will

denote as P , and a determinized variation (PD) attained from the Determinize algorithm pre-

viously discussed in Alg. 10. Supplementary information regarding how we interpret and parse a

program’s commands to attain P can be found in [BCI+16]. Given that we recursively partition

our CTL∗lp formula, we begin with the sub-formula ¬InsertTailList() U−1 IoMarkIrpPending()

and identify it as a path formula containing a past-connective. We thus refer to our AddHis-
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tory algorithm in Alg. 16. Given that InsertTailList() and IoMarkIrpPending() are call

sites, they serve as the atomic predicates aθ1 and aθ2 , respectively. Our sub-formula is then

matched on line 12 in Alg. 16 with U−1 in which ι corresponds to the condition to be instru-

mented at the initial state of P and PD, that being `I , while ρ denotes the condition to be

instrumented in the remaining transitions. That is, ι = (H ′U−1 = a′θ2) and ρ = (H ′U−1 = (HU−1∧
a′θ1)∨ a

′
θ2

) are to to be instrumented into P and PD. Our uniquely synthesized history variable

HU−1 then serves as our precondition for our sub-formula. That is, a true valuation over HU−1

would satisfy the sub-formula ¬InsertTailList() U−1 IoMarkIrpPending(). We then sub-

stitute HU−1 in the original sub-formula to attain the CTL∗lp formula AG(InsertTailList()⇒
X−1 (HU−1)).

Our next inner sub-formula happens to be another path formula containing a past-connective.

AddHistory would thus be called upon again with aθ1 = HU−1 given that we substituted our

previous linear-past sub-formula with its corresponding history variable. The initial transition

ι is then assigned False while ρ is assigned (H ′
X−1 = HU−1). As with our previous sub-

formula, ι and ρ are also instrumented into the transition systems P and PD, with HX−1

serving as the precondition of X−1 (HU−1). We substitute our linear-past sub-formula once

more with its associated history variable, and thus finally arrive to our outer-most CTL∗lp formula

AG(InsertTailList()⇒ HX−1).

Given the above transformations, every transition within P and PD has now been embedded

with history variable conditions corresponding to our inner linear-past sub-formulae. Our outer-

most formula can now simply be treated as a CTL formula where a precondition can be acquired

via existing CTL model checkers which return an assertion characterizing the states in which

(InsertTailList()⇒ HX−1) holds. Recall that existing tools that support this functionality

include [BPR13] and our technique introduced in Chapter 3. For this particular example, we

will be utilizing our CTL model checker on P , given that all of our nested sub-formulae are not

future path formulae, hence determinization is not required. In this case, the model-checker

does not return any counterexamples, deeming our precondition to be True. We have thus

proved that our property holds for Fig. 6.2.

6.4 Concluding Remarks

We have introduced the first-known fully automatic method capable of proving CTL∗lp proper-

ties for infinite-state (integer) programs. We provide a novel methodology which extends our

CTL∗ procedure in Chapter 5 to the verification of a fragment of CTL∗lp, providing users with

an exponentially more succinct logic to reason about linear-past. We have introduced a trans-

formation which embeds history variables corresponding to nested past-connective formulae
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within the transition system. That is, the history variables track the truth valuation of a past

CTL∗lp formula along a computation.

As discussed in Chapter 5, eliminating the limitations of our determinization procedure in the

future perhaps through techniques introduced in Chapter 4 would also allow us to extend our

algorithm to handle full CTL∗lp. Indeed, in our current technique it is not possible to quantify

prophecy variables nested within history variables. However, this would not be a requirement

if our determinization is not utilized, providing potential for a full CTL∗lp technique.
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Implementation and Benchmarks

In this Chapter, we present the open-source tool T2, upon which all of our implementations

of Chapters 3–6 have been made. We demonstrate T2 in order to support the automatic

verification of CTL, fair-CTL, CTL∗, and CTL∗lp for software systems. As input can be provided in

a native format and in C, via the support of the LLVM compiler framework, we use benchmarks

derived from the Windows OS kernel, the back-end infrastructure of the PostgreSQL database

server, and the SoftUpdates patch system. We briefly discuss T2’s architecture, its underlying

techniques, and conclude with an experimental illustration of its competitiveness and directions

for future extensions.

7.1 Introduction

In this chapter, we describe T2 (a.k.a TERMINATOR 2), an open-source framework that im-

plements, combines, and extends research techniques developed in Chapters 3–6, in addition

to other research techniques [BCF13, CSZ13] aimed towards the unification of a verification

system of temporal properties for software systems. T2 is a fully automated tool that operates

on an input format that can be automatically extracted from the LLVM compiler framework’s

intermediate representation. This in turn allows T2 to analyze programs in a wide range of

programming languages including C programs, and potentially any broader set of languages

based on LLVM (e.g., C++, Objective C, and Swift), against a user-given temporal prop-

erty. As T2 includes contributions from other research methodologies, in this chapter we will

indeed demonstrate all features of T2, yet explicitly highlight features corresponding to this

dissertation. T2 allows users to:

1. Utilize state-of-the-art termination techniques, shown to be highly competitive with ex-

isting termination tools, in addition to various and recent techniques for proving safety

111
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and nontermination of infinite-state C programs. Details with regards to these features

can be found in [BCF13, CSZ13].

2. Verify CTL properties through synthesizing preconditions asserting the satisfaction of

CTL input property. CTL subsumes reasoning about safety, termination, and nontermi-

nation, in addition to expressive state-based properties via the system’s interaction with

inputs and nondeterminism, a capability in which linear-time temporal logics like LTL

are inadequate to express. This feature is the implementation of our technique from

Chapter 3.

3. Verify fair-CTL, which allows one to model trace-based assumptions about the environ-

ment both in a sequential setting, and when reasoning about concurrent environments,

where fairness is used to abstract away the scheduler. This feature is the implementation

of our technique from Chapter 4.

4. Utilize the first known fully automated tool for symbolically proving CTL∗lp properties

of infinite-state C programs. CTL∗lp is capable of expressing CTL, LTL, and properties

necessitating their interplay. This feature is the implementation of our techniques from

Chapters 5 and 6.

We describe T2’s capabilities and demonstrate its effectiveness by an experimental evalua-

tion against competing tools. We include several key optimizations conducive to T2’s perfor-

mance and how they allowed the aforementioned verification techniques to come to fruition.

T2’s architecture is based on the combination of a reachability engine, ranking functions and

recurrence-sets synthesis, and our precondition synthesis strategy introduced in Chapter 3. We

close this chapter with an experimental comparison to competing tools, as well as an evalua-

tion that demonstrates the performance improvements achieved with the various optimisations

implemented. We note that T2 is implemented in F# and makes heavy use of the Z3 SMT

solver [DMB08]. T2 runs on Windows, MacOS, and Linux. It is available under the free MIT

license at https://github.com/hkhlaaf/T2.

7.1.1 Related work

We focus on tool features of T2 and consider only related publicly released tools. Generally

speaking, we note that with the exception of KITTeL [FKS11], T2 is the only open-source ter-

mination prover and is the first open-source temporal property prover. When considering T2’s

features outside the scope of this dissertation, ARMC [PR07] and CProver [KSTW], implement a

TERMINATOR-style [CPR06] incremental reduction to safety proving. T2 is distinguished from

these tools by its use of lexicographic ranking functions instead of disjunctive termination ar-

guments [CSZ13]. Other termination proving tools include FuncTion [Urb13], KITTeL [FKS11],

https://github.com/hkhlaaf/T2
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and Ultimate [HHP14], which synthesize termination arguments, but have weak support for

inferring supporting invariants in long programs with many loops. AProVE [GBE+14] is a

closed-source portfolio solver implementing many successful techniques, including T2’s meth-

ods. With regards to all contributions to T2 within the scope of this dissertation, we know

of only one other tool able to automatically prove CTL properties of infinite-state programs:1

Q’ARMC [BPR13], however Q’ARMC does not provide an automated front-end to its native

input and requires a manual instantiation of the structure of the invariants. We are not aware

of tools other than T2 that can verify Fair-CTL and CTL∗lp for such programs.

As extensively discussed in Chapter 2, T2 only supports linear integer arithmetic fragments of C.

An extension of T2 that handles heap program directly is presented in [ABCK15].2 As in many

other tools, numbers are treated as mathematical integers, not machine integers. However,

our C front-end provides a transformation [FKS12] that handles machine integers correctly by

inserting explicit normalization steps at possible overflows.

7.2 Background

We have discussed numerous systems that have been proposed to automate the temporal verifi-

cation of C programs [CK13, CK11, BPR13]. Yet It is unclear to what extent real C programs

are handled given that each verification system utilizes its own intermediate language. A

verification system’s front-end preprocessing, or lack-thereof, can thus significantly impact its

capability to be fully automated and modular. T2 indeed similarly allows input in its internal

program representation to facilitate use from other tools. T2 internally represents programs

as control flow graphs of program locations L connected by transition rules with conditions

and assignments to a set of integer variables Vars, just as defined by Control Flow Graphs in

Chapter 2 Section 2.2. However, it additionally supports the direct operation on C programs,

through the conversion from the LLVM-IR allowing an automatic conversion of, e.g., C programs

to our native input format.

In recent years, LLVM has become the standard basis of program analysis tools for C, for a

multitude of reasons: A rapidly-growing number of programming languages are being supported

by LLVM, T2 thus profits from this development and can potentially be used to also analyze

programs written in Objective-C, Swift, . . . . Additionally, when compiling the LLVM-IR, LLVM

implements a number of compiler optimizations that are readily applied to simplify verification

analysis significantly. LLVM-IR uses Static Single Assignment (SSA) based representation that

includes type information, explicit control flow graphs, and an explicit data-flow representation

1We do not discuss tools that only support finite-state systems or pushdown automata.
2Alternatively, the heap-to-integer abstractions implemented in Thor [MTLT10] for C or the one implemented

in AProVE [GBE+14] for C and Java can be used as a pre-processing step.
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Figure 7.1: Flowchart of the T2 termination proving procedure

using an infinite typed register set, all features conducive to the generation of T2’s native input

format. We have thus chosen to extend llvm2kittel [FKS11], which automatically translates C

programs into integer term rewriting systems using LLVM, to also generate T2’s native format.

Our implementation uses the existing dead code elimination, constant propagation, and control-

flow simplifications to simplify the input program. Further details on how we generate the T2

native input from a C program from can be found in [BCI+16].

7.2.1 Back-end

In T2, we implement efficient safety, termination, and non-termination procedures allowing for

which our techniques from Chapters 3–6 are built upon, providing scalable automated temporal

logic model checking.

Proving Safety: To prove temporal properties, T2 repeatedly calls to a safety proving proce-

dure on instrumented programs. For this, T2 implements the Impact [McM06] safety proving

algorithm, and furthermore can use safety proving techniques implemented in Z3, e.g. gener-

alized property directed reachability (GPDR) [HB12b] and Spacer [KGC14]. Thus, we convert

our transition systems into sets of linear Horn clauses with constraints in linear arithmetic, in

which one predicate p` is introduced per program location `. For example, the transition from

`2 to `2 in Fig. 2.1(right) is represented as ∀x, k, x′ : p`2(x
′, k)← p`2(x, k) ∧ x′ = x− k.

Proving Termination: A schematic overview of the termination proving procedure is displayed

in Fig. 7.1. In the initial Instrumentation phase (described in [BCF13]), the input program is

modified so that a termination proof can be constructed by a sequence of alternating safety

queries and rank function synthesis steps. This reduces the check of a speculated (possibly

lexicographic) rank function f for a loop to an assertion that the value of f after one loop

iteration is smaller than before that iteration. If the speculated termination argument is insuf-

ficient, our Safety check fails, and the returned counterexample is used to refine the termination

argument in step RF Synth. Here, we follow the strategy presented in [CSZ13] to construct a

lexicographic termination argument, extending a standard linear rank function synthesis pro-

cedure [PR04a].3 The synthesis procedure is implemented as constraint solving via Z3. Note

3T2 can optionally also synthesize disjunctive termination arguments [PR04b] as implemented in the original
TERMINATOR [CPR06].



7.3. Experimental Evaluation 115

that the overall procedure is independent of the used safety prover and rank function synthesis.

In our Preprocessing phase, a number of standard program analysis techniques are used to

simplify the remaining proof. Most prominently, this includes the termination proving pre-

processing technique presented in [BCF13] to remove loop transitions that we can directly

prove terminating, without needing further supporting invariants. In our termination bench-

marks, about 80% of program loops (e.g. encodings of for i in 1 .. n do-style loops) are

eliminated at this stage.

Disproving Termination: When T2 cannot refine a termination argument based on a given

counterexample, it tries to prove existence of a recurrence set [GHM+08] witnessing non-

termination in the RS Synth. step. T2 uses a variation of the techniques from [BSOG], re-

stricted to only take a counterexample execution into account and implemented as constraint

solving via Z3.

7.3 Experimental Evaluation

We conclude with evaluations underlining T2’s effectiveness compared to competing tools.

There are currently no other known tools supporting fair-CTL and CTL∗ for infinite-state sys-

tems, thus we are not able to make experimental comparisons with other tools with regards

to these benchmarks. We note that T2’s performance has significantly improved through ad-

vancements in our back-end (e.g. by using Spacer instead of Impact), relative to the initial

publications of Chapters 3–6.

7.3.1 CTL Experiments

We evaluate T2’s CTL verification techniques against the only other available tool, Q’ARMC [BPR13]

on the 56 benchmarks from its evaluation in Fig. 7.2 . These benchmarks are drawn from the I/O

subsystem of the Windows OS kernel, the back-end infrastructure of the PostgreSQL database

server, and the SoftUpdates patch system. They can be found at http://www.cims.nyu.edu/

~ejk/ctl/. The tools were executed on a Core i7 950 CPU with a timeout of 100 seconds. Both

tools are able to successfully verify all examples. T2 needs 2.7 seconds on average, whereas

Q’ARMC takes 3.6 seconds. The scatterplot on the right shows how proof times compare on the

individual examples. Detailed benchmarks and experimentations against [CK13] can be found

in [BPR13].

http://www.cims.nyu.edu/~ejk/ctl/
http://www.cims.nyu.edu/~ejk/ctl/
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Figure 7.2: Experimental evaluations of CTL on infinite-state programs drawn from the Win-
dows OS, and PgSQL against Q’ARMC.

7.3.2 Fair-CTL Experiments

In addition to benchmarks drawn fromhttp://www.cims.nyu.edu/~ejk/ctl/, we applied our

tool to several small programs: a classical mutual exclusion algorithm as well as code fragments

drawn from device drivers. As previously discussed, there are currently no known tools support-

ing fair-CTL for infinite-state systems, thus we are not able to make experimental comparisons.

Fig. 7.3 shows experimental evaluations of sequential Windows device drivers (WDD) and

various concurrent systems 4. WDD1 uses the fairness constraint

GF(IoCreateDevice.exit{1})⇒ GF(status = SUCCESS), while WDD2 and 3 utilize the same

fairness constraint in relation to checking the acquisition and release of spin locks and the

entrance and exit of critical regions, respectively. WDD4 requires a weak fairness constraint

indicating that STATUS OK will hold a value of true infinitely often, that is, whenever sockets

are successfully opened, the server will eventually return a successful status infinitely often.

Note that the initially concurrent programs are reduced to sequential programs via [GCPV09],

which uses rely-guarantee reasoning to reduce multi-threaded verification to liveness. We verify

the traditional Bakery algorithm, requiring that any thread requesting access to the critical

region will eventually be granted the right to do so. The producer-consumer algorithm requires

that any amount of input data produced, must be eventually consumed. The Chain benchmark

4Benchmarks can be found at http://heidyk.com/experiments.html

http://www.cims.nyu.edu/~ejk/ctl/
http://heidyk.com/experiments.html


7.3. Experimental Evaluation 117

Program LoC Property FC Time(s) Result

WDD1 20 AG(BlockInits()⇒ AF UnblockInits()) Yes 14.4 X

WDD1 20 AG(BlockInits()⇒ AF UnblockInits()) No 2.1 χ

WDD2 374 AG(AcqSpinLock()⇒ AF RelSpinLock()) Yes 18.8 X

WDD2 374 AG(AcqSpinLock()⇒ AF RelSpinLock()) No 14.1 χ

WDD3 58 AF(EnCritRegion()⇒ EG ExCritRegion()) Yes 12.5 χ

WDD3 58 AF(EnCritRegion()⇒ EG ExCritRegion()) No 9.6 X

WDD4 302 AG(added socket > 0⇒ AFEG STATUS OK) Yes 30.2 X

WDD4 302 AG(added socket > 0⇒ AFEG STATUS OK) No 72.4 χ

Bakery 37 AG(Noncritical⇒ AF Critical) Yes 2.9 X

Bakery 37 AG(Noncritical⇒ AF Critical) No 16.4 χ

Prod-Cons 30 AG(pi > 0⇒ AF qi <= 0) Yes 18.5 X

Prod-Cons 30 AG(pi > 0⇒ AF qi <= 0) No 5.5 χ

Chain 48 AG(x ≥ 8⇒ AF x = 0) Yes 1.8 X

Chain 48 AG(x ≥ 8⇒ AF x = 0) No 4.7 χ

Figure 7.3: Experimental evaluations of infinite-state programs such as Windows device drivers
(WDD) and concurrent systems, which were reduced to non-deterministic sequential programs
via [GCPV09]. Each program is tested for both the success of a branching-time liveness property
with a fairness constraint and its failure due to a lack of fairness. A X represents the existence
of a validity proof, while χ represents the existence of a counterexample. We denote the lines
of code in our program by LoC and the fairness constraint by FC. There exist no competing
tools available for comparison.

consists of a chain of threads, where each thread decreases its own counter, but the next thread

in the chain can counteract, and increase the counter of the previous thread, thus only the last

thread in the chain can be be decremented unconditionally. These algorithms are verified on

2, 4, and 8 threads, respectively.

For the the existential fragment of CTL, fairness constraints can often restrict the transition

relations required to prove an existential property, as demonstrated by WDD3. For universal

CTL properties, fairness policies can assist in enforcing properties to hold that previously did

not. Thus, our tool allows us to both prove and disprove the negation of each of the properties.

7.3.3 CTL∗lp Experiments

As with CTL and fair-CTL, we have drawn out a set of CTL∗ problems from industrial code bases

(I/O subsystems of the Windows OS kernel, the back-end infrastructure of the PostgreSQL

database server, and the Apache web server). We note that these are the same set of industrial

examples drawn from our CTL benchmarks, with CTL∗ properties applied to them. These

benchmarks were executed on an Intel x64-based 2.8 GHz single-core processor. Recall that

CTL∗ allows us to express “possibility” properties, such as the viability of a system, stating

that any reachable state can spawn a fair computation. Additionally, we demonstrate that we

can now verify properties involving existential system stabilization, stating that an event can

eventually become true and stay true from any reachable state. For example, “OS frag. 1”,
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Program LoC Property Time(s) Res.

Cancel I/O 35 AG(InsertTailList()⇒ X−1 (¬InsertTailList() U−1 1.0 X

IoMarkIrpPending())

Cancel I/O 35 AG(InsertTailList()⇒ (F−1 KeAcquireSpinLock() ∧ 0.1 X

AF KeReleaseSpinLock()))

OS frag. 1 393 AG((EG(phi io compl ≤ 0)) ∨ (EFG(phi nSUC ret > 0)))) 17.4 ×
OS frag. 1 393 EF((AF(phi io compl > 0)) ∧ (AGF(phi nSUC ret ≤ 0)))) 23.8 X

OS frag. 2 380 EFG((keA ≤ 0 ∧ (AG keR = 0))) 13.7 X

OS frag. 2 380 EFG((keA ≤ 0 ∨ (EF keR = 1))) 3.5 X

OS frag. 3 50 EF(PPBlockInits > 0 ∧ (((EFG IoCreateDevice = 0) 10.4 X

∨ (AGF status = 1)) ∧ (EG PPBunlockInits ≤ 0)))

PgSQL arch 1 106 EFG(tt > 0 ∨ (AF wakend = 0)) 1.5 ×
PgSQL arch 1 106 AGF(tt ≤ 0 ∧ (EG wakend 6= 0)) 3.8 X

PgSQL arch 1 106 EFG(wakend = 1 ∧ (EGF wakend = 0)) 18.3 X

PgSQL arch 1 106 EGF(AG wakend = 1) 10.3 X

PgSQL arch 1 106 AFG(EF wakend = 0) 1.5 ×
PgSQL arch 2 100 AGF wakend = 1 1.4 X

PgSQL arch 2 100 EFG wakend = 0 0.5 ×
Bench 1 12 EFG(x = 1 ∧ (EG y = 0)) 0.2 X

Bench 2 12 EGF x > 0 0.1 X

Bench 3 12 AFG x = 1 0.1 X

Bench 4 10 AG((EFG y = 1) ∧ (EF x ≥ t)) 0.5 ×
Bench 5 10 AG(x = 0 U b = 0) T/O –

Bench 6 8 AG((EFG x = 0) ∧ (EF x = 20)) 0.1 ×
Bench 7 6 (EFGx = 0) ∧ (EFGy = 1) 0.4 ×
Bench 8 6 AG((AFG x = 0) ∨ (AFGx = 1)) 0.5 X

Figure 7.4: Experimental evaluations of infinite-state programs drawn from the Windows OS,
PgSQL, and 8 toy examples. There are no competing tools available for comparison.

“OS frag. 3”, “PgSQL arch 1”, and “Bench 2” are verified using said properties, described

in detail in Section 1.1.1. Our case study’s results in Section 6.3.1, demonstrating our CTL∗lp
extension, is also included under “Cancel I/O”. We also include a few toy examples to further

demonstrate further expressiveness of CTL∗ and its usefulness in verifying programs.

Given that our benchmarks tackle infinite-state programs, the only existing automated tool for

verifying CTL∗ in the finite-state setting [GV04] is not applicable. In Figure 7.4 we display

the results of our benchmarks. As with our fair-CTL benchmarks, for each program and its

corresponding CTL∗ property to be verified, we display the number of lines of code (LoC), and

report the time it took to verify a CTL∗ property (Time column) in seconds. We provide a

“Res.” column which indicates the results of our tool. A X indicates that the tool was able to

verify the property. Likewise, an × indicates that the property did not hold, thus the tool failed

to prove the property. The symbol “–” in the result column indicates that a result was not

determined due to a timeout. A timeout or memory exception is indicated by T/O. A timeout

is triggered if verification of an experiment exceeds 3000 seconds. Note that in various cases,

we verify the same program using a CTL∗ property and its negation. Our tool thus allows us

to prove each of the properties as well as disprove each of their negations.

Our experiments demonstrate the practical viability of our approach. Our runtimes show that
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our tool runs well within the range of performance previously exhibited by specialized tools

such as as [CGP+07, CK11, CK13, BPR13], which can only verify significantly less expressive

properties over infinite-state programs. Our tool has successfully both verified and invalidated

CTL∗lp properties corresponding to their expected results for all but one of the benchmarks. This

is due to the aforementioned limitation, that is, our countable nondeterministic determinization

technique is not complete.

7.4 Concluding Remarks

T2 is a mature platform for safety, termination, and temporal property verification. In future

developments, we wish to integrate and extend its input language with native support for the

heap, recursion, and concurrency. This would allow the further support LLVM-IR generated for

languages such as C++, Objective-C, and Swift, which can in-turn be mapped onto its input

language. Alternatively, an extension to the input language would allow us to directly parse

languages like C or C++, or possibly directly supporting binaries. Indeed, such features would

allow us to further verify the expressive temporal logics of fair-CTL, CTL∗, and CTL∗lp beyond

C programs.
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Thesis Summary

In this dissertation, we automatically verified increasingly expressive temporal specifications

for the undecidable general class of infinite-state programs supporting both control-sensitive

and integer properties. This was achieved through introducing the first known unifying, fully

automated verification system culminating to the verification of a superset logic, known as

CTL∗lp, of the widely accepted specification language of temporal logic.

We built our framework by introducing a novel scalable, automated, and high-performance CTL

verification technique that utilizes a counterexample-guided precondition synthesis strategy.

This methodology is unique to competing strategies beyond its scalability in that it allows us

to implement internal encodings conducive to the verification of more expressive logics such

as fair-CTL, CTL∗, and CTL∗lp. We supported the verification of fair-CTL through a reduction

to our CTL model checking technique via a program transformation that used infinite non-

deterministic branching to symbolically partition fair from unfair executions.

For CTL∗, we proposed a method that used an internal encoding which facilitated reasoning

about the subtle interplay between the nesting of path and state temporal operators that

occurs within CTL∗ proofs. A precondition synthesis strategy was then used over a program

transformation which trades nondeterminism in the transition relation for nondeterminism

explicit in variables predicting future outcomes when necessary. We then proposed a linear-

past extension to CTL∗, that being CTL∗lp, in which the past is linear and each moment in time

has a unique past. We supported this extension through the use of history variables over our

CTL∗ technique.

Finally, we demonstrated the fully automated implementation of our techniques, and reported

our benchmarks carried out on code fragments from the PostgreSQL database server, Apache

web server, Windows OS kernel, as well as smaller programs demonstrating the expressiveness

of fair-CTL, CTL∗, and CTL∗lp specifications. Together, these novel methodologies lead to a new

class of fully automated tools capable of proving crucial properties that no tool could previously

prove in the infinite-state setting.
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