342 research outputs found

    Leader Election in Anonymous Rings: Franklin Goes Probabilistic

    Get PDF
    We present a probabilistic leader election algorithm for anonymous, bidirectional, asynchronous rings. It is based on an algorithm from Franklin, augmented with random identity selection, hop counters to detect identity clashes, and round numbers modulo 2. As a result, the algorithm is finite-state, so that various model checking techniques can be employed to verify its correctness, that is, eventually a unique leader is elected with probability one. We also sketch a formal correctness proof of the algorithm for rings with arbitrary size

    Compact Deterministic Self-Stabilizing Leader Election: The Exponential Advantage of Being Talkative

    Full text link
    This paper focuses on compact deterministic self-stabilizing solutions for the leader election problem. When the protocol is required to be \emph{silent} (i.e., when communication content remains fixed from some point in time during any execution), there exists a lower bound of Omega(\log n) bits of memory per node participating to the leader election (where n denotes the number of nodes in the system). This lower bound holds even in rings. We present a new deterministic (non-silent) self-stabilizing protocol for n-node rings that uses only O(\log\log n) memory bits per node, and stabilizes in O(n\log^2 n) rounds. Our protocol has several attractive features that make it suitable for practical purposes. First, the communication model fits with the model used by existing compilers for real networks. Second, the size of the ring (or any upper bound on this size) needs not to be known by any node. Third, the node identifiers can be of various sizes. Finally, no synchrony assumption, besides a weakly fair scheduler, is assumed. Therefore, our result shows that, perhaps surprisingly, trading silence for exponential improvement in term of memory space does not come at a high cost regarding stabilization time or minimal assumptions

    An Automata-Theoretic Approach to the Verification of Distributed Algorithms

    Get PDF
    We introduce an automata-theoretic method for the verification of distributed algorithms running on ring networks. In a distributed algorithm, an arbitrary number of processes cooperate to achieve a common goal (e.g., elect a leader). Processes have unique identifiers (pids) from an infinite, totally ordered domain. An algorithm proceeds in synchronous rounds, each round allowing a process to perform a bounded sequence of actions such as send or receive a pid, store it in some register, and compare register contents wrt. the associated total order. An algorithm is supposed to be correct independently of the number of processes. To specify correctness properties, we introduce a logic that can reason about processes and pids. Referring to leader election, it may say that, at the end of an execution, each process stores the maximum pid in some dedicated register. Since the verification of distributed algorithms is undecidable, we propose an underapproximation technique, which bounds the number of rounds. This is an appealing approach, as the number of rounds needed by a distributed algorithm to conclude is often exponentially smaller than the number of processes. We provide an automata-theoretic solution, reducing model checking to emptiness for alternating two-way automata on words. Overall, we show that round-bounded verification of distributed algorithms over rings is PSPACE-complete.Comment: 26 pages, 6 figure

    Verification of distributed algorithms with the Why3 tool

    Get PDF
    Dissertação de mestrado integrado em Informatics EngineeringNowadays, there currently exist many working program verification tools however, the developed tools are mostly limited to the verification of sequential code, or else of multi-threaded shared-memory programs. Due to the importance that distributed systems and protocols play in many systems, they have been targeted by the program verification community since the beginning of this area. In this sense, they recently tried to create tools capable of deductive verification in the distributed setting (deductive verification techniques offer the highest degree of assurance) and claim to have achieved impressive results. Thus, this dissertation will explore the use of the Why3 deductive verification tool for the verification of dis tributed algorithms. It will comprise the definition of a dedicated Why3library, together with a representative set of case studies. The goal is to provide evidence that Why3 is a privileged tool for such a task, standing at a sweet spot regarding expressive power and practicality.Nos dias de hoje, possuímos diversas ferramentas de verificação, ferramentas essas limitadas à verificação de código sequencial, ou então de programas multi-thread de memória partilhada. Devido à importância que os sistemas e protocolos distribuídos desempenham em muitos sistemas, estes foram alvos por parte da comunidade de verificação de programas desde o início desta área. Neste sentido, recentemente tentaram criar ferramentas capazes de realizar a verificação dedutiva no ambiente distribuído (técnicas de verificação dedutiva que oferecem o mais elevado grau de segurança) e afirmam ter alcançado resultados impressionantes. Assim, esta dissertação irá explorar o uso da ferramenta de verificação dedutiva Why3 com o propósito de verificar algoritmos distribuídos. Irão ser desenvolvidos modos e modelos da biblioteca Why3do, juntamente com um conjunto representativo de casos de estudos. O objetivo é fornecer evidências de que Why3 é uma ferramenta privilegiada para esta tarefa, estando no ponto ideal na relação poder expressivo e praticabilidade.This work is financed by the ERDF – European Regional Development Fund through the North Portugal Regional Operational Programme - NORTE2020 Programme and by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia within project NORTE-01-0145-FEDER-028550- PTDC/EEI-COM/28550/2017

    Assertion-based proof checking of Chang-Roberts leader election in PVS

    Get PDF
    We report a case study in automated incremental assertion-based proof checking with PVS. Given an annotated distributed algorithm, our tool ProPar generates the proof obligations for partial correctness, plus a proof script per obligation. ProPar then lets PVS attempt to discharge all obligations by running the proof scripts. The Chang-Roberts algorithm elects a leader on a unidirectional ring with unique identities. With ProPar, we check its correctness with a very high degree of automation: over 90% of the proof obligations is discharged automatically. This case study underlines the feasibility of the approach and is, to the best of our knowledge, the first verification of the Chang-Roberts algorithm for arbitrary ring size in a proof checker

    On the Limits and Practice of Automatically Designing Self-Stabilization

    Get PDF
    A protocol is said to be self-stabilizing when the distributed system executing it is guaranteed to recover from any fault that does not cause permanent damage. Designing such protocols is hard since they must recover from all possible states, therefore we investigate how feasible it is to synthesize them automatically. We show that synthesizing stabilization on a fixed topology is NP-complete in the number of system states. When a solution is found, we further show that verifying its correctness on a general topology (with any number of processes) is undecidable, even for very simple unidirectional rings. Despite these negative results, we develop an algorithm to synthesize a self-stabilizing protocol given its desired topology, legitimate states, and behavior. By analogy to shadow puppetry, where a puppeteer may design a complex puppet to cast a desired shadow, a protocol may need to be designed in a complex way that does not even resemble its specification. Our shadow/puppet synthesis algorithm addresses this concern and, using a complete backtracking search, has automatically designed 4 new self-stabilizing protocols with minimal process space requirements: 2-state maximal matching on bidirectional rings, 5-state token passing on unidirectional rings, 3-state token passing on bidirectional chains, and 4-state orientation on daisy chains

    Asynchronous neighborhood task synchronization

    Full text link
    Faults are likely to occur in distributed systems. The motivation for designing self-stabilizing system is to be able to automatically recover from a faulty state. As per Dijkstra\u27s definition, a system is self-stabilizing if it converges to a desired state from an arbitrary state in a finite number of steps. The paradigm of self-stabilization is considered to be the most unified approach to designing fault-tolerant systems. Any type of faults, e.g., transient, process crashes and restart, link failures and recoveries, and byzantine faults, can be handled by a self-stabilizing system; Many applications in distributed systems involve multiple phases. Solving these applications require some degree of synchronization of phases. In this thesis research, we introduce a new problem, called asynchronous neighborhood task synchronization ( NTS ). In this problem, processes execute infinite instances of tasks, where a task consists of a set of steps. There are several requirements for this problem. Simultaneous execution of steps by the neighbors is allowed only if the steps are different. Every neighborhood is synchronized in the sense that all neighboring processes execute the same instance of a task. Although the NTS problem is applicable in nonfaulty environments, it is more challenging to solve this problem considering various types of faults. In this research, we will present a self-stabilizing solution to the NTS problem. The proposed solution is space optimal, fault containing, fully localized, and fully distributed. One of the most desirable properties of our algorithm is that it works under any (including unfair) daemon. We will discuss various applications of the NTS problem
    corecore