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Abstract. We report a case study in automated incremental assertion-
based proof checkingwithPVS.Given an annotated distributed algorithm,
our tool ProPar generates the proof obligations for partial correctness, plus
a proof script per obligation. ProPar then lets PVS attempt to discharge
all obligations by running the proof scripts.

The Chang-Roberts algorithm elects a leader on a unidirectional ring
with unique identities. With ProPar, we check its correctness with a
very high degree of automation: over 90% of the proof obligations is
discharged automatically. This case study underlines the feasibility of
the approach and is, to the best of our knowledge, the first verification
of the Chang-Roberts algorithm for arbitrary ring size in a proof checker.

1 Introduction

Checking proofs with proof assistant tools is a recognized and valuable activ-
ity. Manual proofs tend to have small mistakes, and sometimes more serious
ones. Tools such as PVS provide powerful generic strategies, but the interaction
with these is usually rather involved. For correctness of distributed systems, the
tedious and cumbersome task of proof checking may benefit greatly from au-
tomation if there are general proof structures that apply and if a formalization
of the specification language is available. E.g., the TAME strategies [1] for PVS
relieve the book keeping in interactive proof checking for I/O automata.

In [15], we introduced a front-end tool supporting assertion-based verification
in the style of Owicki and Gries [18]. Given an annotated program, our tool
ProPar (Proof checking of Parallel programs) generates the proof obligations
for partial correctness, plus a proof script per obligation. It feeds the resulting
specification to the proof checker PVS [19], which attempts to discharge each
proof obligation by running the supplied proof script.

There is a growing interest to use general purpose provers like PVS as a
back-end for dedicated proof checking tasks. For example, [10] discusses
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customizations of and extensions to PVS that would support this, while [16]
describes a tool that supports batch proving using PVS.

Closer to our work is [17,20], in which the Owicki-Gries theory is formalized
in the Isabelle prover. Their work is mainly theoretical, while we aim at supporting
the proof checking of concrete examples in an effective way, and at dealing with
the incremental nature of constructing a correct annotation.

This paper reports a case study: we apply our tool ProPar to the ring leader
election algorithm by Chang and Roberts [3]. Our interest in the correctness
of this algorithm is twofold. For this simple algorithm, some of the correctness
proofs require rather involved reasoning on the ring structure, making it a non-
trivial case study. In addition, to the best of our knowledge, no existing proof
for this protocol for arbitrary ring size has ever been checked mechanically.

We construct a correct annotation of the algorithm in several steps, while
illustrating the use of ProPar and PVS. Of the final annotation, over 90% of the
proof obligations has been discharged automatically. In four cases we have to
supply a proof in PVS ourselves, only two of these proofs are non-trivial.

Compared to [15,13], the effectiveness and user-friendliness of ProPar has been
improved greatly, according to the findings of this case study.

Overview. This paper is organised as follows. In Section 2, we recall the Owicki-
Gries theory and explain ProPar. In Section 3, the Chang-Roberts algorithm
is introduced, and related work on correctness of this algorithm is discussed.
Sections 4, 5 and 6 present the actual annotation of Chang-Roberts and our
ProPar/PVS efforts. Section 7 has the conclusions and future work.

2 The Owicki-Gries Theory and the Tool ProPar

We check the correctness of annotated programs with the tool ProPar1 (Proof
checking of Parallel programs), which we introduced in [15]. ProPar takes an
annotated program as input, and generates proof obligations for the PVS proof
checker2 [19] for local and global correctness of the annotation. Per proof obli-
gation, ProPar generates a proof script to enable running PVS in batch mode.

2.1 Annotated Programs

ProPar accepts the following language constructs in annotated programs:

– empty statement (skip)
– sequential composition of two or more statements (. . . ;. . . )
– alternative selection of one or more guarded statements (if . . .fi)
– repetition of one or more guarded statements (do . . .od)
– parallel composition over the elements of a type (par x: . . . rap)

1 ProPar is available from the authors upon request.
2 ProPar can also generate Isabelle output, but that feature was not exploited here.
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– parallel composition of two or more statements3 (co . . .oc)
– atomic statements

Multiple guarded statements are separated by []; a guard is separated from the
corresponding statement by →. Atomic statements are statements whose exe-
cution cannot be interfered by executions of statements in other processes. An
example is the multiple assignment x, y := a, b. It is up to the user to determine
the atomic statements, and to model them in the language of the prover.

Programs can be annotated using assertions, that may be placed at the control
points of a program, i.e. at locations right before or after a statement. Asser-
tions are predicates on the state of the program. For repetitions and parallel
compositions there is also a notion of invariants. An invariant must be placed
at the control point i before keyword do (resp par), and is equivalent to an as-
sertion placed at i and at all control points within the repetition (resp. parallel
composition). This gives the user a convenient shorthand and allows ProPar to
combine many duplicate proof obligations.

2.2 Proof Obligations

An annotated program is to be considered correct if all assertions are correct.
An assertion at a control point is correct if the state of the program satisfies
the assertion, whenever execution is at the control point. Note that termination
of programs is not considered. The tool ProPar automatically generates proof
obligations from which the correctness of a program can be derived.

All proof obligations are expressed in terms of Hoare triples. A Hoare triple
{P} S {Q} is a boolean that is true if and only if each terminating execution of
statement S that starts from a state satisfying predicate P is guaranteed to end
up in a state satisfying predicate Q. The weakest liberal precondition wlp.S.Q,
is the weakest precondition P such that {P} S {Q} is a correct Hoare triple.
More formally {P} S {Q} ≡ [P ⇒ wlp.S.Q], where [. . .] is a shorthand for “for
all states”, i.e. a universal quantifier binding all free variables.

According to Owicki-Gries [18] an assertion Q in a process is correct iff:

– local correctness: If Q is an initial assertion, Q is implied by the precondi-
tion of the program. If Q is preceded by atomic statement {P} S (with P
an assertion preceding statement S), then {P} S {Q} is a correct Hoare
triple.

– global correctness : For each atomic statement {P} S in a different process,
{P ∧ Q} S {Q} is a correct Hoare triple.

ProPar obtains the proof obligations for local correctness by rewriting (parts
of) the annotated program according to Table 1, while applying each line as
rewrite rule from left to right. The rewriting ends when no statements remain.
Nested parallel compositions are treated seamlessly in this manner. The Hoare

3 A co statement can be easily expressed in terms of par. However, in many cases the
number of proof obligations is smaller for co.
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Table 1. The local correctness proof obligations per statement type

{P}skip{R} ⇐ [P ⇒ R]
{P}atomic-statement-S{R} ⇐ [P ⇒ wlp.atomic-statement-S.R]

{P}S0; {Q}S1{R} ⇐
{

{P}S0{Q}
{Q}S1{R}

{P}
do B0 → {P0}S0

[] B1 → {P1}S1

od
{R}

⇐

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[P ∧ B0 ⇒ P0]
[P ∧ B1 ⇒ P1]
[P ∧ ¬(B0 ∨ B1) ⇒ R]
{P0}S0{P}
{P1}S1{P}

{P}
if B0 → {Q0}S0

[] B1 → {Q1}S1

fi
{R}

⇐

⎧⎪⎪⎨
⎪⎪⎩

[P ∧ B0 ⇒ Q0]
{Q0}S0{R}
[P ∧ B1 ⇒ Q1]
{Q1}S1{R}

{P}
par x :

{Q0.x}S.x{Q1.x}
rap
{R}

⇐

⎧⎨
⎩

[∀x : P ⇒ Q0.x]
∀x : {Q0.x}S.x{Q1.x}
[(∀x : Q1.x) ⇒ R]

{P}
co

proc {P0}S0{Q0} corp
proc {P1}S1{Q1} corp

oc
{R}

⇐

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[P ⇒ P0]
[P ⇒ P1]
{P0}S0{Q0}
{P1}S1{Q1}
[(Q0 ∧ Q1) ⇒ R]

triples corresponding to global correctness are related to atomic statements, and
can therefore be expressed directly in wlps of atomic statements.

To illustrate the proof obligations generated by ProPar, we consider the pro-
gram fragment of the parallel composition in Table 1, where we assume that
assertions P , Q0, Q1 and R are placed at labels 0, 1, 2 and 3. The three lo-
cal correctness proof obligations on the right hand side are encoded in PVS as
follows, where we assume that S is an atomic statement:

loc Q0 stat 0: lemma
forall (s : state) : forall (x : X) : lab 0(s) ⇒ Q0(x)(s)

loc Q1 stat 1: lemma
forall (s : state) : forall (x : X) : lab 1(x)(s) ⇒ wlp S(x)(Q1(x))(s)

loc R stat 2: lemma
forall (s : state) : (forall (x : X) : lab 2(x)(s)) ⇒ R(s)
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Here, the variable s ranges over all possible program states, and is introduced
to model the brackets [. . .] in Table 1. The logical variable lab i represents the
conjunction of the assertions located at the control point with label i.

2.3 Proof Scripts

ProPar generates PVS proof scripts for each of the generated proof obligations,
and writes them to a .prf file in the PVS proof format. PVS is then run in batch
execution mode to check whether each proof obligation is discharged.

As the first step in a proof script, ProPar automatically selects assertions
and invariants from relevant control points and inserts them with the lemma
command. Here, ProPar also instantiates quantifier variables for the state with
appropriate skolem variables. Contrary to the previous version, ProPar now al-
ways explicitly chooses the skolem variables itself. Experience has taught us that
the automatic choices of PVS are not always suitable.

The second step is a simplification step, in which commands like replace,
assert and simplify are used. We now discuss an example of the difficulties
encountered when trying to automate this step. Consider the proof state

{-1} FORALL (c: component): lab_6(c)(s!1) => inv_0a(s!1)
[-2] FORALL (c: component): lab_6(c)(s!1)
|-------

[1] ass_7a(s!1)

Given the assumption that type component is non-empty, one would expect
there are high-level commands available that simplify this into

{-1} inv_0a(s!1)
[-2] FORALL (c: component): lab_6(c)(s!1)
|-------

[1] ass_7a(s!1)

However, we did not succeed in generating proof scripts that achieve this sim-
plification in all the different contexts that may occur. We solved this problem
by introducing two custom lemmas as follows, with t a generic type:

quantifier lemma 1: lemma
forall (P : bool) : (forall (x : t) : P ) = ((∃(x : t) : true) ⇒ P )

quantifier lemma 2: lemma
forall (P : [t → bool], Q : [t → bool]) : (forall (x : t) : P (x)) ⇒

(forall (x : t) : Q(x)) = forall (x : t) : P (x) ⇒ Q(x)))

This is a generalization of the approach we used in previous versions [15,13].
The third and last part of a proof script consists of a generalization of the

grind command to perform the hard work. This is the same as in [15].
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2.4 User Input

The input of ProPar consists of

– An annotated program, written in a prover independent language.
– An import file containing prover-dependent definitions.
– A file containing proof hints (optional, see below).
– A file containing manual proofs (optional, see below).

The annotated program contains only references to assertions, guards and wlp’s
of atomic statements. In the import file, the user has to express these in the
language of the prover. Usually this is a straightforward task.

Proof Hints. When the automatic proof of a lemma fails, the user may provide
proof hints, i.e. high-level directions to help the prover for a certain lemma.
Compared to [15], the use of proof hints is now much more generic. Proof hints
apply to the sequence of lemmas introduced in the beginning of a proof script.
If ProPar introduces too many lemmas, the prover becomes very inefficient. The
order of the lemmas can also influence the performance of the prover. Moreover,
additional lemmas from other theories may be needed. Through proof hints the
prover can focus on the appropriate lemmas, in the optimal order.

Finally, if all else fails, the user can supply a manual proof.

3 The Chang-Roberts Leader Election Algorithm

The leader election algorithm introduced by Chang and Roberts in [3] is designed
for a uni-directional ring consisting of components with unique identities. A strict
total order > on the identities is assumed. The algorithm elects the greatest
identity present according to >.

Each component may send its own unique identity to its neighbour in the
ring. Components only forward messages with identities which are greater than
any identity received thus far. The component that receives its own identity
concludes that its identity is the greatest in the ring and wins the election.

The algorithm was intended as an improvement on the leader election part of
Le Lann’s token passing algorithm [8]. Here, due to faulty connections, multiple
elections can overlap and correctness is not guaranteed. Like [3], we restrict
ourselves to reliable connections and one election round only.

3.1 The Algorithm in Assertion-Based Style

In Figure 1, the Chang-Roberts leader election algorithm is shown, including
assertions for the correctness specification. The program is a parallel composition
of the repetition to be executed by each component. The program terminates
only when all components have finished the repetition. The labels 0a, 0b, etc.
that precede assertions are generated by ProPar, we stick to that labelling in
the remainder of this paper. Likewise, we refer to the guards in the selection
statement at location 2 as guard 2a, 2b and 2c.
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var leader : [comp → nat], ready : [comp → bool]
0: {ass 0a: (∀c:comp : leaderc = id(c))}

{ass 0b: (∀c:comp : ¬readyc)}
par (c : comp):

1: do ¬readyc →
2: if readyprev(c) →
3: readyc := true

[] leaderprev(c) = id(c) →
4: readyc := true

[] leaderprev(c) > leaderc →
5: leaderc := leaderprev(c)

fi
od

6: rap
7: {ass 7a: (∀c1,c2:comp : leaderc1 = leaderc2}

{ass 7b: (∀c1,c2:comp : leaderc1 ≥ id(c2)}
{ass 7c: (∃c:comp : leaderc = id(c)}

Fig. 1. The Chang-Roberts leader election algorithm

Assertions 0a, 0b, 7a, 7b and 7c express the correctness of the algorithm.
These enforce that upon termination of the parallel statement, all components
have elected the same leader, i.e. the greatest identity present in the ring.

To start, each component has its own identity for leader. Inside the repetition
at control point 1, the election takes place. Each component c monitors the leader
identity of its immediate neighbour prev(c) in the unidirectional ring. When the
neighbour’s leader identity is greater than the component’s own leader identity,
guard 2c evaluates to true, and the component may copy it in statement 5.
In this manner, candidate leader identities spread over the ring, until they are
overtaken by a better identity. The greatest identity spreads over the ring until
it reaches the originating component. Then this component signals it has won
because guard 2b evaluates to true. At this point, the election is finished.

A component can only terminate the repetition after its ready flag has been
set to true. In this way the algorithm ensures that all components can find out
that the election has ended, an aspect that is often ignored in the literature.

We model communication by having the receiver poll the sender’s current
leader identity. This is clearly equivalent to synchronous communication with
explicit messages. Moreover, for this particular algorithm, a version with asyn-
chronous communication simulates our polling version: the sending of a message
in the asynchronous case can be related to the polling moment in our version.

Ring structure. We assume the type comp for the components on the ring,
and a constant function id : [comp → nat] mapping each component to its
unique identity which is a natural number. In this way we immediately have
the total order >. For the ring structure, we assume the constant function
prev : [comp → comp] which points at the predecessor of a component in the
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direction of
messages

prev

prev

prev

prevprev

prev

prev

6
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0

2
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Fig. 2. A unidirectional ring

ring. An example ring is shown in Figure 2. Here, the unique identity of a compo-
nent is in the node, and the arrows between components indicate the predecessor
relation.

3.2 Related Work

Lynch et al. have studied Chang-Roberts in the I/O automata language. [12]
has a correctness proof, but proofs are only sketched. In [11,9] a performance
analysis of a timed version is given but the proofs are not checked (in contrast to
other results in both publications). An IOA model is online at the IOA homepage
(http://theory.csail.mit.edu/tds/ioa/). In [7], a finite instance of this IOA
model is checked in Isabelle/IOA.

Garavel et al. [6] have model checked Le Lann’s full token passing algo-
rithm for concrete ring sizes in the formal language LOTOS and proposed an
improvement. They find mistakes in the presence of faulty connections that
lead to overlapping election rounds, which is outside the scope of our case
study. However, the mistakes found and the improvement proposed suggest
that having a proper notification of the election termination should be part
of the protocol. We have this in our version of the leader election, as explained
above.

Sen [21] reports on another model checking experiment in his thesis, compar-
ing the tool POTA to SPIN.

A correctness proof for arbitrary ring size is given by Chen et al in [4] in the
formal language μCRL, but it has not been proof checked in any tool. In fact,
this paper turns out to contain some essential mistakes in both specification and
proof, thus underlining the need for machine-checked verifications.

Many papers study the performance of Chang-Roberts and related algorithms
(like [2]). That is outside the scope of this paper.

Apparently, despite the attention in the literature, the Chang-Roberts algo-
rithm has not been verified mechanically for arbitrary ring size. It seems that
this algorithm, while small and simple, has the appropriate degree of complexity
to make it a nice proof checking challenge for our tool ProPar.

http://theory.csail.mit.edu/tds/ioa/
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4 A Correct Chang-Roberts Annotation (Phase 1)

We must extend the annotation given in Figure 1 with assertions and invariants
until it is provably correct, i.e. each proof obligation generated by ProPar is
discharged either automatically by running PVS on the generated proof script,
or manually by proving it in PVS ourselves. In the coming sections, we extend
the annotation and then run ProPar to see how far PVS gets in batch mode.

In the first annotation step, we work from the annotation in Figure 1 towards
the one in Figure 3 (new parts marked ∗).

We start by adding invariants. We weaken assertion 7b to a local version
in invariant 0a. The two are equivalent when assertion 7a holds. Assertion 7a
becomes true when at least one component signals that the election is finished.
We state this in invariant 0b with no more than two quantified variables, using
transitivity of =. When exiting the parallel statement, by successful termination
of each repetition, the premise in invariant 0b holds for all components hence
establishing assertion 7a. For assertion 7c, we observe that each leader identity
stored by a component is the identity of some component in the ring. We state
this as invariant 0c. Combining assertion 7a and invariant 0c yields assertion 7c.

To establish the correctness of these invariants, we add assertions to the con-
trol points inside the parallel statement. We start by stating each selection guard
as an assertion following the guard’s execution. We can do so if the guard con-
tinues to hold regardless of what the other components do. For each of the
guards 2a, 2b and 2c this is indeed the case. Similarly, we state the negation of
the repetition guard at location 6.

In addition, we state in assertion 4b that the current component’s leader
identity is equal to its neighbour’s leader identity. We also state in assertion 5b
that none of the components have finished the repetition.

4.1 ProPar Results

We run the ProPar tool on the files containing the annotated algorithm from
Figure 3. ProPar generates 36 proof obligations and proof scripts. Of these, 29
are discharged automatically by PVS. The seven remaining obligations are:

– local correctness of assertion 4b (when executing guard 2b),
– local correctness of assertion 7c (when exiting the parallel statement), and
– global correctness of assertions 4a and 4b when executing assignment 5,
– global correctness of assertion 5b when executing assignment 4,
– global correctness of invariant 0b when executing assignment 3 or 4.

For assertion 4b, when guard 2b holds, clearly c still has its own identity for
leader. If this was not the case, then it copied a better identity from its prede-
cessor, and then guard 2b cannot hold. Reasoning about this requires information
on the leader identities that a component has had between the first (its own)
and the last (the winner). We can do so by adding a history variable, which is
discussed in the next section. We choose this as our next move, in the hope that
it will help in discharging the other proof obligations.
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var leader : [comp → nat], ready : [comp → bool]
0: {ass 0a: (∀c:comp : leaderc = id(c))}

{ass 0b: (∀c:comp : ¬readyc)}
{inv 0a: (∀c:comp : leaderc ≥ id(c))} ∗
{inv 0b: (∀c1,c2:comp : readyc1

⇒ leaderc1 = leaderc2)} ∗
{inv 0c: (∀c1:comp : (∃c2:comp : leaderc1 = id(c2)))} ∗
par (c : comp):

1: do ¬readyc →
2: if readyprev(c) →
3: {ass 3a: readyprev(c)} ∗

readyc := true
[] leaderprev(c) = id(c) →

4: {ass 4a: leaderprev(c) = id(c)} ∗
{ass 4b: leaderc = leaderprev(c)} ∗
readyc := true

[] leaderprev(c) > leaderc →
5: {ass 5a: leaderprev(c) > leaderc} ∗

{ass 5b: (∀c1:comp : ¬readyc1
)} ∗

leaderc := leaderprev(c)
fi

od
6: {ass 6a: readyc} ∗

rap
7: {ass 7a: (∀c1,c2:comp : leaderc1 = leaderc2}

{ass 7b: (∀c1,c2:comp : leaderc1 ≥ id(c2)}
{ass 7c: (∃c:comp : leaderc = id(c)}

Fig. 3. Chang-Roberts algorithm (phase 1, marked ∗)

In order to maintain global correctness of invariant 0b under assignment 4,
we calculate the wlp. We find a stronger version of assertion 4b: when guard 2b
holds, it is in fact the case that the winning identity has traversed the entire
ring is the leader for each component. This is added as assertion 4c in the
following section. This assertion will help in discharging the remaining global
correctness obligations for assertions 4a, 4b and 5b. Note that reasoning to show
local correctness of the new assertion 4c requires induction on the ring structure.
Here, the history variable can be useful too.

5 A Correct Chang-Roberts Annotation (Phase 2)

The first step for dealing with the remaining proof obligations from Section 4.1,
for which PVS cannot successfully execute the ProPar proof script, is to intro-
duce a history variable leadersc for each component c in the ring. The history
variable records all the values that the program variable leaderc takes on during
execution. This enables us to compare current and past leader identities of a
component and its neighbour. We can add any history variable if it does not
change the program’s behaviour.
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We now state invariants 0d to 0g, expressing that each new leader identity
accepted by component c is better than c’s own identity, has been copied from
c’s predecessor, and hence must be in the leadersprev(c) collection.

The new annotation is Figure 4 with everything from the previous annotation
(unmarked) and the new parts added in this phase (marked ∗). Note that the part
marked ∗∗ belongs with the final annotation (see Section 6). The two annotations
are merged in Figure 4 to save space.

As announced, we also add assertion 4c which helps to maintain invariant 0b
under assignment 4, and which implies assertion 4b. Assertion 4a is weakened
to make use of variable leaders, by combining guard 2b and invariant 0d.

For history variable leaders, we ensure the proper initial value with the new
assertion 0c. Its value is updated in statement 5: whenever a new leader identity
is copied it is also added to the leaders collection. Invariants 0d to 0g express
the additional information that we require for proving correctness.

5.1 ProPar Results

We run ProPar on the incremented annotated algorithm from Figure 4 (except
the part marked ∗∗). Of the 52 proof obligations generated, PVS discharges 46
automatically through the ProPar proof scripts.

We notice that PVS fails for local correctness of assertions 5b and 7a whereas it
ran successfully for the previous annotation. PVS gets confused by the growing
number of applicable lemmas: this annotation has seven invariants instead of
three. If we give ProPar proof hints for these failing proof, we can easily generate
the successful script again. We supply only the invariants from the previous
annotation plus the assertions of the location prior to the current statement:

loc_ass_5b_stat_2: lab_2_inv_0a lab_2_inv_0b lab_2_inv_0c
loc_ass_7a_stat_6: lab_6_ass_6a lab_6_inv_0a lab_6_inv_0b lab_6_inv_0c

With these proof hints, the proofs generated by ProPar are accepted by PVS.
Of the 52 proof obligations, PVS has now 48 discharged automatically. The

four obligations for which PVS fails are (∗ marks the new obligation):

– local correctness of assertion 4b (when executing guard 2b),
∗ local correctness of assertion 4c (when executing guard 2b),
– local correctness of assertion 7c (when exiting the parallel statement), and
– global correctness of invariant 0b when executing assignment 3.

Apparently, all previous global correctness obligations are now discharged except
the one for invariant 0b under assignment 4, assertions, and only one of the new
proof obligations remains unproved.

We establish local correctness of assertion 7c with local correctness of asser-
tion 7a and invariant 0c as proof hints. Since 7a and 7c are at the same control
point, with 7a preceding 7c, we can use local correctness of 7a as a lemma here.
We adjusted ProPar to allow such proof hints.

For local correctness of assertion 4c, we need one final invariant. This is de-
scribed in the following section.
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var leader : [comp → nat], leaders : [comp → setof(nat)], ready : [comp → bool]
0: {ass 0a: (∀c:comp : leaderc = id(c))}

{ass 0b: (∀c:comp : ¬readyc)}
{ass 0c: (∀c:comp : leadersc = {leaderc})}
{inv 0a: (∀c:comp : leaderc ≥ id(c))}
{inv 0b: (∀c1,c2:comp : readyc1

⇒ leaderc1 = leaderc2)}
{inv 0c: (∀c1:comp : (∃c2:comp : leaderc1 = id(c2)))}
{inv 0d: (∀c:comp : leaderc ∈ leadersc)} ∗
{inv 0e: (∀c:comp,n:nat : n ∈ leadersc ⇒ leaderc ≥ n)} ∗
{inv 0f: (∀c:comp : (leadersc − {id(c)}) ⊆ leadersprev(c))} ∗
{inv 0g: (∀c:comp,n:nat : n ∈ leadersc ⇒ n ≥ id(c))} ∗
{inv 0h: (∀c1,c2:comp : leaderc2 = id(c1)

⇒ (∀c3:comp : mp(c1, c3) ≤ mp(c1, c2) ⇒ c1 ∈ leadersc3))} ∗∗
par (c : comp):

1: do ¬readyc →
2: if readyprev(c) →
3: {ass 3a: readyprev(c)}

readyc := true
[] leaderprev(c) = id(c) →

4: {ass 4a: id(c) ∈ leadersprev(c)} ∗
{ass 4b: leaderc = leaderprev(c)}
{ass 4c: (∀c1:comp : leaderc1 = leaderc)} ∗
readyc := true

[] leaderprev(c) > leaderc →
5: {ass 5a: leaderprev(c) > leaderc}

{ass 5b: (∀c1:comp : ¬readyc1
)}

leaderc, leadersc := leaderprev(c), leadersc ∪ {leaderprev(c)} ∗
fi

od
6: {ass 6a: readyc}

rap
7: {ass 7a: (∀c1,c2:comp : leaderc1 = leaderc2}

{ass 7b: (∀c1,c2:comp : leaderc1 ≥ id(c2)}
{ass 7c: (∃c:comp : leaderc = id(c)}

Fig. 4. Chang-Roberts algorithm (phase 2 marked ∗, and phase 3 marked ∗∗)

6 A Correct Chang-Roberts Annotation (Phase 3)

We add a final invariant to enable the manual proof for local correctness of
assertion 4c. The annotation obtained in this way is Figure 4, now including the
line marked ∗∗. Invariant 0h expresses for component c2 that has the identity
of c1 for leader, that all components on the predecessor path from c2 to c1 have
also seen the identity of c1. Note the use of function mp(c1, c2) which computes
the distance in the ring between c1 and c2 by counting the number of prev steps
back from c2 to c1.
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6.1 ProPar Results

Local correctness of assertion 7b is lost, and mended with proof hints, as in
Section 5.1. Of the 55 current proof obligations, PVS discharges 51 automatically,
4 of these through our use of proof hints. The obligations for which PVS fails
are (∗ marks the new obligation):

– local correctness of assertion 4b (when executing guard 2b),
– local correctness of assertion 4c (when executing guard 2b),
– global correctness of invariant 0b when executing assignment 3.
∗ global correctness of invariant 0h when executing assignment 5.

Only the second obligation seems to require an involved proof, but the others
turn out to be too tricky for PVS with ProPar proof scripts, even with our proof
hints. All of these require a manual proof.

We run ProPar on the annotation of Figure 4 with the proof hints and manual
proofs (discussed in the remainder of this section), to find that all proof obliga-
tions are discharged, hence correctness of Chang-Roberts is now established.

6.2 Manual Proofs

When starting a manual proof, the proof script generated by ProPar is very
helpful. We use the PVS option to step through the generated proof, until we
reach the point where ProPar calls on the semidecision procedures (like grind).
Here we take over and manually instruct PVS step by step until we have Q.E.D.

We have created a theory for the ring structure with domain-specific knowl-
edge. In this theory, we have proved some useful lemmas which are used in the
manual proofs for invariant 0b and assertion 4c.

The proofs for local correctness of assertion 4b and for global correctness
of invariant 0b under statement 3 are easy. Global correctness of invariant 0h
under statement 5 requires a complicated case distinction on the three quantified
variables but this is very manageable.

As announced, for local correctness of assertion 4c we must use some kind of
induction on the ring structure. We apply measure-induct+ and use as measure
function the distance mp(c1, c2). The base case is easy. For the induction step,
based on the assumption that we have the same leader for c1 and prev(c2) we
can then prove the induction step using all invariants except 0b. This requires a
complicated proof of about 90 PVS proof steps.

7 Conclusions and Future Work

We successfully applied our method to check correctness of the Chang-Roberts
algorithm for arbitrary ring size, by creating a proof in an incremental and
automated fashion. In the end, 51 out of 55 proofs were handled automatically.
Five of the 51 proofs required straightforward proof hints from the user. In
addition, four manual proofs were needed, two of which were rather involved.
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The most significant parts of the proof effort were developing a correct anno-
tation, and manually proving the remaining proof obligations. Other activities
(creating an import file, creating proof hints and interacting with the tool) were
negligible compared to these.

During the case study we made pragmatic improvements to ProPar, that
resulted in a higher rate of automatically handled proofs, without changing any-
thing in the theory. E.g., the proof hints mechanism now allows for user-defined
lemmas to be introduced, and for local correctness results of pre-assertions at the
current control point to be exploited. Custom lemmas are applied to smoothen
the quantifications encountered which differ for control points in the body ver-
sus the control point at the end of a parallel composition. In addition, the proof
scripts have been changed to make them behave in a more predictable way, by
explicitly instantiating with skolem variables.

7.1 PVS Discussion

In contrast to manual proofs, when dealing with large numbers of generated
proofs, it is essential that proof strategies are robust and behave in a predictable
way. In our previous case study [15] we discovered a bug in PVS that prevented
certain proofs to be completed automatically. This has been repaired since ver-
sion 4.0 (PVS bug 920). In this case study another bug has been encountered in
PVS 4.0 and submitted (PVS bug 979, reportedly fixed but yet not released).

In some cases unpredictable behavior of PVS caused problems. For example,
certain proofs suddenly failed after hiding an unnecessary antecedent. Still many
seemingly simple proof obligations exist that PVS cannot handle automatically.
To deal with this, we introduced new proof hints, and applied custom lemmas
to support the prover.

A more powerful proof script language for PVS is desirable. For example, it
would be useful to be able to enumerate possible instantiations of quantifier vari-
ables, and to specify in which order PVS should try to use them. PVS commands
like use and the higher level grind often choose the right instantiations, but for
proofs in batch mode “often” is not good enough.

7.2 Future Work

There are several directions for future work. Termination of programs (or more
generally progress conditions [5]) could be supported by generating proof obli-
gations for the decrease of a user supplied norm function. Another topic is to
study to what extent inductive proofs (e.g., for security protocols like in [14])
can be supported, if the user supplies a measure function. Soundness could be
warranted by automatically verifying that the generated proof obligations are
sufficient, similar to the approach in [17].

Finally, PVS has weak support for controlling instantiations of quantifier vari-
ables, which sometimes causes the tail part of the generated proofs to fail. Until
PVS is improved in this respect, we can possibly circumvent this by arranging
for the user to supply suitable instantiation hints.
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