1,535 research outputs found

    Efficient Large-scale Trace Checking Using MapReduce

    Full text link
    The problem of checking a logged event trace against a temporal logic specification arises in many practical cases. Unfortunately, known algorithms for an expressive logic like MTL (Metric Temporal Logic) do not scale with respect to two crucial dimensions: the length of the trace and the size of the time interval for which logged events must be buffered to check satisfaction of the specification. The former issue can be addressed by distributed and parallel trace checking algorithms that can take advantage of modern cloud computing and programming frameworks like MapReduce. Still, the latter issue remains open with current state-of-the-art approaches. In this paper we address this memory scalability issue by proposing a new semantics for MTL, called lazy semantics. This semantics can evaluate temporal formulae and boolean combinations of temporal-only formulae at any arbitrary time instant. We prove that lazy semantics is more expressive than standard point-based semantics and that it can be used as a basis for a correct parametric decomposition of any MTL formula into an equivalent one with smaller, bounded time intervals. We use lazy semantics to extend our previous distributed trace checking algorithm for MTL. We evaluate the proposed algorithm in terms of memory scalability and time/memory tradeoffs.Comment: 13 pages, 8 figure

    The formal, tool supported development of real time systems

    Get PDF
    The language SDL has long been applied in the development of various kinds of systems. Real-time systems are one application area where SDL has been applied extensively. Whilst SDL allows for certain modelling aspects of real-time systems to be represented, the language and its associated tool support have certain drawbacks for modelling and reasoning about such systems. In this paper we highlight the limitations of SDL and its associated tool support in this domain and present language extensions and next generation real-time system tool support to help overcome them. The applicability of the extensions and tools is demonstrated through a case study based upon a multimedia binding object used to support a configuration of time dependent information producers and consumers realising the so called lip-synchronisation algorithm

    Real-time systems development with SDL and next generation validation tools

    Get PDF
    The language SDL has long been applied in the development of various kinds of systems. Real-time systems are one application area where SDL has been applied extensively. Whilst SDL allows for certain modelling aspects of real-time systems to be represented, the language and its associated tool support have certain drawbacks for modelling and reasoning about such systems. In this paper we highlight the limitations of SDL and its associated tool support in this domain and present language extensions and next generation real-time system tool support to help overcome them. The applicability of the extensions and tools is demonstrated through a case study based upon a multimedia binding object used to support a configuration of time dependent information producers and consumers realising the so called lip-synchronisation algorithm

    Formal verification of safety properties in timed circuits

    Get PDF
    The incorporation of timing makes circuit verification computationally expensive. This paper proposes a new approach for the verification of timed circuits. Rather than calculating the exact timed stare space, a conservative overestimation that fulfills the property under verification is derived. Timing analysis with absolute delays is efficiently performed at the level of event structures and transformed into a set of relative timing constraints. With this approach, conventional symbolic techniques for reachability analysis can be efficiently combined with timing analysis. Moreover the set of timing constraints used to prove the correctness of the circuit can also be reported for backannotation purposes. Some preliminary results obtained by a naive implementation of the approach show that systems with more than 10/sup 6/ untimed states can be verified.Peer ReviewedPostprint (published version

    Issues about the Adoption of Formal Methods for Dependable Composition of Web Services

    Full text link
    Web Services provide interoperable mechanisms for describing, locating and invoking services over the Internet; composition further enables to build complex services out of simpler ones for complex B2B applications. While current studies on these topics are mostly focused - from the technical viewpoint - on standards and protocols, this paper investigates the adoption of formal methods, especially for composition. We logically classify and analyze three different (but interconnected) kinds of important issues towards this goal, namely foundations, verification and extensions. The aim of this work is to individuate the proper questions on the adoption of formal methods for dependable composition of Web Services, not necessarily to find the optimal answers. Nevertheless, we still try to propose some tentative answers based on our proposal for a composition calculus, which we hope can animate a proper discussion
    corecore