166,520 research outputs found

    A complex speciation-richness relationship in a simple neutral model

    Get PDF
    Speciation is the "elephant in the room" of community ecology. As the ultimate source of biodiversity, its integration in ecology's theoretical corpus is necessary to understand community assembly. Yet, speciation is often completely ignored or stripped of its spatial dimension. Recent approaches based on network theory have allowed ecologists to effectively model complex landscapes. In this study, we use this framework to model allopatric and parapatric speciation in networks of communities and focus on the relationship between speciation, richness, and the spatial structure of communities. We find a strong opposition between speciation and local richness, with speciation being more common in isolated communities and local richness being higher in more connected communities. Unlike previous models, we also find a transition to a positive relationship between speciation and local richness when dispersal is low and the number of communities is small. Also, we use several measures of centrality to characterize the effect of network structure on diversity. The degree, the simplest measure of centrality, is found to be the best predictor of local richness and speciation, although it loses some of its predictive power as connectivity grows. Our framework shows how a simple neutral model can be combined with network theory to reveal complex relationships between speciation, richness, and the spatial organization of populations.Comment: 9 pages, 5 figures, 1 table, 50 reference

    Stationary distributions of a model of sympatric speciation

    Full text link
    This paper deals with a model of sympatric speciation, that is, speciation in the absence of geographical separation, originally proposed by U. Dieckmann and M. Doebeli in 1999. We modify their original model to obtain a Fleming--Viot type model and study its stationary distribution. We show that speciation may occur, that is, the stationary distribution puts most of the mass on a configuration that does not concentrate on the phenotype with maximum carrying capacity, if competition between phenotypes is intense enough. Conversely, if competition between phenotypes is not intense, then speciation will not occur and most of the population will have the phenotype with the highest carrying capacity. The length of time it takes speciation to occur also has a delicate dependence on the mutation parameter, and the exact shape of the carrying capacity function and the competition kernel.Comment: Published at http://dx.doi.org/10.1214/105051606000000916 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Protracted speciation revitalizes the neutral theory of biodiversity.

    Get PDF
    Understanding the maintenance and origin of biodiversity is a formidable task, yet many ubiquitous ecological patterns are predicted by a surprisingly simple and widely studied neutral model that ignores functional differences between species. However, this model assumes that new species arise instantaneously as singletons and consequently makes unrealistic predictions about species lifetimes, speciation rates and number of rare species. Here, we resolve these anomalies - without compromising any of the original models existing achievements and retaining computational and analytical tractability - by modelling speciation as a gradual, protracted, process rather than an instantaneous event. Our model also makes new predictions about the diversity of incipient species and rare species in the metacommunity. We show that it is both necessary and straightforward to incorporate protracted speciation in future studies of neutral models, and argue that non-neutral models should also model speciation as a gradual process rather than an instantaneous one

    The existence of species rests on a metastable equilibrium between inbreeding and outbreeding

    Get PDF
    Background: Speciation corresponds to the progressive establishment of reproductive barriers between groups of individuals derived from an ancestral stock. Since Darwin did not believe that reproductive barriers could be selected for, he proposed that most events of speciation would occur through a process of separation and divergence, and this point of view is still shared by most evolutionary biologists today. 

Results: I do, however, contend that, if so much speciation occurs, it must result from a process of natural selection, whereby it is advantageous for individuals to reproduce preferentially within a group and reduce their breeding with the rest of the population, leading to a model whereby new species arise not by populations splitting into separate branches, but by small inbreeding groups “budding” from an ancestral stock. This would be driven by several advantages of inbreeding, and mainly by advantageous recessive phenotypes, which could only be retained in the context of inbreeding. Reproductive barriers would thus not arise passively as a consequence of drift in isolated populations, but under the selective pressure of ancestral stocks. Most documented cases of speciation in natural populations appear to fit the model proposed, with more speciation occurring in populations with high inbreeding coefficients, many recessive characters identified as central to the phenomenon of speciation, with these recessive mutations expected to be surrounded by patterns of limited genomic diversity.

Conclusions: Whilst adaptive evolution would correspond to gains of function that would, most of the time, be dominant, the phenomenon of speciation would thus be driven by mutations resulting in the advantageous loss of certain functions since recessive mutations very often correspond to the inactivation of a gene. A very important further advantage of inbreeding is that it reduces the accumulation of recessive mutations in genomes. A consequence of the model proposed is that the existence of species would correspond to a metastable equilibrium between inbreeding and outbreeding, with excessive inbreeding promoting speciation, and excessive outbreeding resulting in irreversible accumulation of recessive mutations that could ultimately only lead to the extinction.
&#xa

    Prolonging the past counteracts the pull of the present: protracted speciation can explain observed slowdowns in diversification.

    Get PDF
    Phylogenetic trees show a remarkable slowdown in the increase of number of lineages towards the present, a phenomenon which cannot be explained by the standard birth-death model of diversification with constant speciation and extinction rates. The birth-death model instead predicts a constant or accelerating increase in the number of lineages, which has been called the pull of the present. The observed slowdown has been attributed to nonconstancy of the speciation and extinction rates due to some form of diversity dependence (i.e., species-level density dependence), but the mechanisms underlying this are still unclear. Here, we propose an alternative explanation based on the simple concept that speciation takes time to complete. We show that this idea of protracted speciation can be incorporated in the standard birth-death model of diversification. The protracted birth-death model predicts a realistic slowdown in the rate of increase of number of lineages in the phylogeny and provides a compelling fit to four bird phylogenies with realistic parameter values. Thus, the effect of recognizing the generally accepted fact that speciation is not an instantaneous event is significant; even if it cannot account for all the observed patterns, it certainly contributes substantially and should therefore be incorporated into future studies
    corecore