3 research outputs found

    Real-time moving object segmentation in H.264 compressed domain based on approximate reasoning

    Get PDF
    AbstractThis paper presents a real-time segmentation algorithm to obtain moving objects from the H.264 compressed domain. The proposed segmentation works with very little information and is based on two features of the H.264 compressed video: motion vectors associated to the macroblocks and decision modes. The algorithm uses fuzzy logic and allows to describe position, velocity and size of the detected regions in a comprehensive way, so the proposed approach works with low level information but manages highly comprehensive linguistic concepts. The performance of the algorithm is improved using dynamic design of fuzzy sets that avoids merge and split problems. Experimental results for several traffic scenes demonstrate the real-time performance and the encouraging results in diverse situations

    A new fuzzy based algorithm for solving stereo vagueness in detecting and tracking people

    Get PDF
    This paper describes a system capable of detecting and tracking various people using a new approach based on colour, stereo vision and fuzzy logic. Initially, in the people detection phase, two fuzzy systems are used to filter out false positives of a face detector. Then, in the tracking phase, a new fuzzy logic based particle filter (FLPF) is proposed to fuse stereo and colour information assigning different confidence levels to each of these information sources. Information regarding depth and occlusion is used to create these confidence levels. This way, the system is able to keep track of people, in the reference camera image, even when either stereo information or colour information is confusing or not reliable. To carry out the tracking, the new FLPF is used, so that several particles are generated while several fuzzy systems compute the possibility that some of the generated particles correspond to the new position of people. Our technique outperforms two well known tracking approaches, one based on the method from Nummiaro et al. [1] and other based on the Kalman/meanshift tracker method in Comaniciu and Ramesh [2]. All these approaches were tested using several colour-with-distance sequences simulating real life scenarios. The results show that our system is able to keep track of people in most of the situations where other trackers fail, as well as to determine the size of their projections in the camera image. In addition, the method is fast enough for real time applications.FCT Scholarship SFRH/BD/22359/2005POPH/FSE (Programa Operacional Potencial Humano do Fundo Social Europeu)Spanish MCI Project TIN2007-66367Andalusian Regional Government project P09-TIC-0481
    corecore