
International Journal of Approximate Reasoning 51 (2009) 99–114
Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

journal homepage: www.elsevier .com/locate / i jar
Real-time moving object segmentation in H.264 compressed domain
based on approximate reasoning

C. Solana-Cipres a,*, G. Fernandez-Escribano c, L. Rodriguez-Benitez a, J. Moreno-Garcia b,
L. Jimenez-Linares a

a ORETO Research Group, University of Castilla-La Mancha, Tecnologias y Sistemas de Informacion, Paseo de la Universidad s/n, 13071 Ciudad Real, Spain
b Escuela Ingenieria Tecnica Industrial, Avda. Carlos III s/n, 45071 Toledo, Spain
c Instituto de Investigacion en Informatica, Campus Universitario s/n, 02071 Albacete, Spain
a r t i c l e i n f o

Article history:
Received 3 March 2009
Received in revised form 3 September 2009
Accepted 3 September 2009
Available online 9 September 2009

Keywords:
Moving object detection
Compressed video segmentation
H.264 advanced video coding
Dynamic fuzzy sets
Approximate reasoning
0888-613X/$ - see front matter Crown Copyright �
doi:10.1016/j.ijar.2009.09.002

* Corresponding author. Tel.: +34 647 756 464.
E-mail address: cayetanoj.solana@uclm.es (C. So
a b s t r a c t

This paper presents a real-time segmentation algorithm to obtain moving objects from the
H.264 compressed domain. The proposed segmentation works with very little information
and is based on two features of the H.264 compressed video: motion vectors associated to
the macroblocks and decision modes. The algorithm uses fuzzy logic and allows to describe
position, velocity and size of the detected regions in a comprehensive way, so the proposed
approach works with low level information but manages highly comprehensive linguistic
concepts. The performance of the algorithm is improved using dynamic design of fuzzy sets
that avoids merge and split problems. Experimental results for several traffic scenes dem-
onstrate the real-time performance and the encouraging results in diverse situations.

Crown Copyright � 2009 Published by Elsevier Inc. All rights reserved.
1. Introduction

In Computer Vision, moving object segmentation refers to the process of identifying and partitioning the meaningful
regions present in video sequences. Object segmentation is an essential component of an intelligent video surveillance sys-
tem. Accurate and real-time moving object segmentation will greatly improve the performance of object tracking, activity
analysis and high-level event understanding. In fact, segmentation could be considered as the main column of the surveil-
lance systems due to motion detection has to support the next stages in the third generation surveillance systems [28].
However, the problem of multiple objects segmentation in complex scene is still far from being completely solved because
segmentation is difficult for several reasons: there could be multiple moving objects in a scene, the objects are usually
small and poorly textured, illumination conditions may be poor and change rapidly or there could be shadows and multiple
occlusions [10]. Even though, the last researches in the field show promising results in accuracy as well as in speed
processing.

Classical techniques like background subtraction, temporal differences and optical flow use low level information about each
pixel. These algorithms have a good performance and can identify with accuracy the border of the regions, but the most of
them cannot work in real-time because they have to decode and process each pixel of each frame. So fast algorithms to seg-
ment moving objects usually work directly on compressed video. The proposed algorithm uses only the information related
to the motion compensation and works with groups of pixels called macroblocks.
2009 Published by Elsevier Inc. All rights reserved.

lana-Cipres).

http://dx.doi.org/10.1016/j.ijar.2009.09.002
mailto:cayetanoj.solana@uclm.es
http://www.sciencedirect.com/science/journal/0888613X
http://www.elsevier.com/locate/ijar

100 C. Solana-Cipres et al. / International Journal of Approximate Reasoning 51 (2009) 99–114
1.1. Contributions of this work

A new approach to the segmentation of moving objects in compressed domain is presented. The proposed segmentation
algorithm is designed for the H.264 advanced video coding standard. This standard has a better compression ratio than the
MPEG compressed video family standards and is widely used at present. This work is based on previous algorithms for MPEG
[21,22], but the new proposal is faster and can fulfil the requeriments of real-time applications. The average processing time
goes from 17 ms to 42 ms per frame depending on the video resolution, thus it satisfies the requirements of the most real-
time systems. This fact is relevant if the target of the segmentation is a video surveillance system.

The proposed approach is based on fuzzy logic to detect the moving objects; fuzzy sets allow to avoid the noise inherent
to the encoding process and to obtain conceptual representations that describe the regions detected in a comprehensive way.
By using approximate reasoning and a clustering algorithm, the segmentation method obtains the moving regions of each
frame and describe them with common terms like shape, size, position and velocity. These linguistic representations allow
to understand the objects in the scene and make classification of the different objects easier. That is, the conceptual repre-
sentations could allow to classificate the detected regions as different kinds of objects like persons, groups of persons, motor-
bikes, cars or trucks [1].

Another contribution of this work is the improvement of the algorithm’s robustness. This improvement can be obtained
because the proposed technique can adapt itself to the scenario and to the objects in a dynamic way. Thus, the segmentation
procedure allows to give itself some feedback to improve its results. The algorithm has an initial configuration, but it could
change the values of the fuzzy sets in function of the obtained results taking into consideration the size and shape of the
obtained regions in previous frames. More concretely, the fuzzy sets describing the linguistic variables are updated dynam-
ically and this fact allows to reduce the merge and split ratios.

Finally, the last contribution of this approach is the use of the H.264 macroblock (MB) decision mode, known as tree struc-
tured motion compensation, for helping our moving detection system in a scene. In H.264, inter frame motion estimation is
performed for different sizes from 16 � 16 to 4 � 4 pixels. For each MB, all the sizes are tried and the one that leads to the
minimum cost is selected (the cost is evaluated using different kinds of mathematical functions). This try all and select the
best philosophy is optimal for deciding the block size and presents a side effect; it selects small size partitions when high
motion is achieved. In this way, this information allows to classify the amount of movement based on the macroblock mode
selection.
1.2. Paper structure

The paper is organized as follows. Section 2 briefly reviews some related work of linguistic representations using approx-
imate reasoning and segmentation over compressed domain. Then, some relevant features of the H.264 advanced video cod-
ing are described in Section 3. Fuzzy linguistic concepts are shown in Section 4. Later, in Section 5 it is analyzed the proposed
method of moving object segmentation. The experimental results in several video traffic scenes are presented in Section 6.
Finally, conclusions and future works are described in Section 7.
2. Related work

The main problem related to the compressed video processing is the shortage of information and the uncertainty that it
implies, but it has the advantage of low computational complexity. In this segmentation method luminance and chromi-
nance values are not used, but information related to the motion compensation between frames is needed. This fact implies
the increase of the uncertainty related to the input information. In this noisy environment, fuzzy logic presents itself as the
adequate theoretical medium to reduce the negative influence of the uncertainty [18,25].

Fuzzy set methods have been used to model and manage uncertainty in various aspects of pattern recognition, image pro-
cessing and computer vision [14,23] because of its potential and its link with the natural language. Several fuzzy techniques
have been used to solve computer vision problems like evidential filters [17], fuzzy classifiers [8] or genetic algorithms [26],
between many others. It allows to translate video information in linguistic representations capable to be processed through
fuzzy techniques. Approximate reasoning is used in this work to carry out a segmentation algorithm of moving objects that
obtains conceptual representations which describe position, velocity and size of the regions detected in a comprehensive
way. It is important to have a semantic interpretation of the behaviours of the recognised objects in order to build an auto-
mated surveillance system that is able to recognise and learn from the events and interactions that occur in a monitored
environment [28].

The segmentation algorithms that work directly over MPEG-2 compressed domain exploit two features of macroblock:
motion vectors and DCT coefficients. The first class of approaches uses only motion vector information; Schonfeld and Lele-
scu [24] track multiple objects from MPEG video by filtering and analyzing motion vectors information. Mezaris et al. [16]
use a macroblock-level tracking algorithm to track the connected regions and finally obtain the objects. The second class ex-
ploits only DCT coefficients by using an adaptative K-means clustering algorithm [27] or by using a matching template [4].
Finally, the third class of algorithms exploits both DCT coefficients and motion vectors; for example, Jamrozik and Hayes [9]

C. Solana-Cipres et al. / International Journal of Approximate Reasoning 51 (2009) 99–114 101
obtain moving regions through the quantized magnitude of motion vectors or Eng and Ma [6] use a maximum entropy fuzzy
clustering algorithm.

However, very few approaches have been proposed for video object segmentation in the H.264 compressed domain.
Zeng et al. [30] present an algorithm that employs a block-based Markov Random Field (MRF) model to segment moving
objects from the sparse motion vector field obtained directly from the H.264 bitstream. This approach is only applicable
to video sequences with stationary background. A later approximation has been proposed in Liu et al. [13], where a real-time
spatiotemporal segmentation is presented. In this case, spatial segmentation only exploits the motion vector field extracted
from the H.264 compressed video. Regions are classified using the block residuals of global motion compensation and the
projection is exploited for inter-frame tracking of video objects. However, this algorithm uses temporal information and
could be considered as a tracking algorithm.

3. Motion compensation in H.264 advanced video coding

H.264 [11], also known as MPEG-4 Part 10, is a standard for video compression developed jointly between the Motion
Picture Expert Group (MPEG) and the Video Coding Experts Group (VCEG). Richardson explains deeply in [20] the features of
the H.264 compressed domain, but in this section only the motion compensation in H.264 is described. This standard pro-
vides mechanisms for video coding that are optimized for a better compression efficiency and aims to meet the multimedia
communication applications.

The basic unit in which an image is divided into is the macroblock. It contains the information of a 16 � 16 pixels region
and there are two types depending on the encoding: Intra macroblock, in which Intra-prediction algorithms are applied
directly to exploit the spatial redundancy according to the H.264 standard, and Inter macroblock, in which motion compen-
sation is used to exploit temporal redundancy from a reference macroblock (earlier, later or a combination of both).

H.264 uses block-based motion compensation, the same principle adopted by every major coding standard since H.261.
This motion compensation is done through the redundant information between consecutive frames looking for a pattern that
captures the kind of movement between pictures. This pattern is represented as a motion vector, which defines a distance
and a direction and has two dimensions: right_x and down_x. Important differences from earlier standards include the sup-
port for a range of block sizes and the use of multiple reference frames to improve the performance of the coding.

H.264 supports motion compensation block sizes ranging from 16 � 16 to 4 � 4 samples. Each macroblock may be split
up in four ways: 16 � 16, 16 � 8, 8 � 16 or 8 � 8. Each of the sub-divided regions is a macroblock partition. If the 8 � 8
mode is chosen, each of the four 8 � 8 macroblock partitions within the macroblock may be further split in four ways:
8 � 8, 8 � 4, 4 � 8 or 4 � 4 (known as sub-macroblock partitions). These partitions and sub-partitions give rise to a large
number of possible combinations within each macroblock (Fig. 1). This method of partitioning macroblocks into motion
compensated sub-blocks of varying size is known as tree structured motion compensation.

Since each macroblock and sub-macroblock partition has a motion vector associated, a macroblock has from 0 to 16 pairs
of motion vectors. For example, an Intra macroblock has not any motion vector, an Inter macroblock partitioned into two
16 � 8 blocks has two pairs of motion vectors and an Inter macroblock partitioned into four 8 � 8 blocks -each of them par-
titioned into 4 � 4 sub-macroblocks- has 16 pairs of motion vectors (4 � 4 = 16).

Then, a macroblock can be encoded with different block sizes (Fig. 1). Since H.264 allows block-based motion compensa-
tion, the decision mode and the block size give additional information about the motion degree on a specific region of a frame
(Fig. 2). Thus the more partitions into a macroblock, the more implicit motion ratio over that region. Note that light gray
macroblocks in Fig. 2c are skip macroblocks and dark gray ones are intra-frame macroblocks, i.e., those with decision mode
greater than 8. The H.264 standard supports the decision modes illustrated in Table 1, where can also be seen the average
frequency detected in the experimental examples. This information is relevant to the segmentation algorithm because the
Fig. 1. Macroblock types.

Fig. 2. Processing a frame: (a) original frame extracted from [19], (b) variance of the residual frame deleting temporal redundancy and (c) decision modes or
macroblock partitions of the frame due to the H.264 encoding.

Table 1
Adopted nomenclature for decision modes.

Id Macroblock type Frequency 1 (%) Frequency 2 (%)

0 Skip, without added information 41.46 0.26
1 One 16 � 16 partition 39.51 4.73
2 Two 16 � 8 partitions 1.36 2.79
3 Two 8 � 16 partitions 0.94 1.21
4 Four 8 � 8 partitions 6.5 87.47
5 Two 8 � 4 sub-partitions in an 8 � 8 partition – –
6 Two 4 � 8 sub-partitions in an 8 � 8 partition – –
7 Four 4 � 4 sub-partitions in an 8 � 8 partition – –
8 Four 8 � 8 partitions without sub-partitions 0.13 0.00
9 4 � 4 Intra-frame macroblock 5.26 3.53
10 16 � 16 Intra-frame macroblock 2.89 0.00
11 Without using in a standard encoding – –
12 Without using in a standard encoding – –
13 8 � 8 Intra-frame macroblock 1.92 0.00

102 C. Solana-Cipres et al. / International Journal of Approximate Reasoning 51 (2009) 99–114
greater the decision mode identificator is, the more motion degree is considered by the motion estimation and compensation
of the H.264 codec. In Table 1, Frequency 1 represents the overall percentage of macroblocks of each type where the result has
been obtained as the average of three video sequences (Fig. 13) with different resolution, frames and conditions. Frequency 2
represents the percentage of macroblocks belonging to moving regions. Modes from 5 to 7 are sub-partitions of a macroblock
type 4, so the results would be confused by adding the frequency of each sub-partition.
4. Fuzzy linguistic concepts

The motion vectors of a H.264 video flow are imprecise approximations to the real optical flow fields [2]. In H.264 frames,
the more sensitive areas to contain wrong motion vectors [7] are those with imperceptible variation of luminance values
(Fig. 3a) and those corresponding to the boundary objects (Fig. 3b). In cases like that, it is complex to the motion compen-
sation algorithms to find correspondences between macroblocks in consecutive frames. The most compressed domain tech-
Fig. 3. Uncertainty inherent into the H.264 coding: (a) imperceptible variation of luminance values in a region and (b) boundary objects.

C. Solana-Cipres et al. / International Journal of Approximate Reasoning 51 (2009) 99–114 103
niques for image manipulation apply any filter to the motion vectors field to avoid the anomalous values as consequence of
the mistakes introduced by the encoders. The use of the filters implies the growth of the information used in the algorithm
and this kind of operations use to be expensive from a computational point of view; thus, these procedures are inappropriate
for real-time algorithms.

The related uncertainty justifies the use of the fuzzy logic in the H.264 compressed domain. The algorithm uses
approximate reasoning to compact the information related to the video flow, so values not much affected by the encoding
error will have similar fuzzy values. Besides, given that the goal of this work is to obtain the linguistic description of the mov-
ing regions present in a video scene, it is necessary to define the set of linguistic elements used in the description of the
regions.

4.1. Linguistic variable

The proposed algorithm uses four linguistic variables [29] to represent the horizontal position ðHPÞ, vertical position ðVPÞ,
horizontal velocity ðHVÞ and vertical velocity ðVVÞ. One of the critical points of the system is the definition of the member-
ship function for each variable because it depends on the scenario under observation. For example, Fig. 4 illustrates the lin-
guistic labels belonging to the linguistic variable HP used as initial values in this study. These values can be adapted to obtain
the optimal design for the specific scenario.

The linguistic variables HP and VP represent the position of a macroblock and depends on the frame size. For example, in a
video sequence with 320 � 240 pixels, the HP variable has a domain from 0 to 19 because there are 20 macroblocks for each
frame row (20 � 16 = 320). For the cited example, the VP variable has a domain from 0 to 14 because each column has 15
macroblocks.

4.2. Linguistic interval

A linguistic interval Ip;q
X ðaÞ is an ordered set of consecutive pairs of linguistic labels and is the linguistic representation of a

real value a fuzzified into the fuzzy sets of the corresponding linguistic variable X:
Ip;q
X ðaÞ ¼

Ap
X : lAp

X
ðaÞ; Aq

X : 1� lAp
X
ðaÞ

n o
Si p–q

Ap
X : 1

� �
Si p ¼ q

8<
: ð1Þ
where p and q are the position in X of the two linguistic labels which make up the interval and lAp
X
ðaÞ has to be always be-

tween zero and one. For example, if a macroblock is into column 7ðc ¼ 7Þ, the result of fuzzificating that value into the var-
iable HP (Fig. 4) is I2;3

HP ð7Þ ¼ fLeft : 0:5 ; Horizontal Centre : 0:5g.

4.3. Linguistic motion vector

A linguistic motion vector is the fuzzy representation of a motion vector belonging to a macroblock. It represents a linguis-
tic description of the motion of a macroblock between consecutive frames and is defined as:
LMV ¼ hFN; IHPðmbrowÞ; IVPðmbcolÞ; IHV ðmv rightÞ; IVV ðmvdownÞi ð2Þ
where the first element identifies the frame number where the motion vector is and the next four elements are four linguis-
tic intervals. The IPH and IPV intervals represent the column and row of the macroblock. The IHV e IVV intervals are obtained
from the right_x and down_x values of the motion vector. Table 2 presents an example of a linguistic motion vector.

A valid linguistic motion vector is a linguistic motion vector that contains relevant information about the direction and
velocity of an object, i.e., at least one of the two magnitudes concerning the velocity (IHV and IVV) of the vector is distinct
of the label No Motion. The linguistic motion vector shown on Table 2 is a valid one because the IHV interval contains the
label Fast Left.
Fig. 4. Horizontal Position linguistic labels.

Table 2
Example of a linguistic motion vector.

Frame number 23

IHPð3Þ {Very Left: 0.5; Left, 0.5}
IVPð3Þ {Very Up: 0.25; Up, 0.75}
IHV ð45Þ {Fast Left, 1.0}
IVV ð0Þ {No Motion, 1.0}

Table 3
Example of a linguistic blob.

Frame number 23
Size 8
Macroblocks {21; 22; 23; 41; 42}
IHP {Very Left: 0.75; Left: 0.25}
IVP {Very Up: 0.82; Up: 0.18}
IHV {Fast Right: 1.0}
IVV {No Motion: 0.90; Slow Down: 0.10}

104 C. Solana-Cipres et al. / International Journal of Approximate Reasoning 51 (2009) 99–114
4.4. Linguistic blob

A linguistic blob is an 7-tuple composed by one or more conceptually similar motion vectors that represents in a linguistic
way a region (blob) in a frame. In fact, the output of the moving object segmentation is a list of blobs ideally corresponding to
the moving regions in each frame. A linguistic blob is defined as:
LB ¼ hFN; Size;MBs; IHP; IVP; IHV ; IVV i ð3Þ
where FN is the frame number in which is located the blob, Size is the number of linguistic motion vectors grouped in the
blob, MBs is a list of macroblocks belonging to the blob and the last four elements are the linguistic intervals that represent
the position and velocity of the blob. Table 3 presents an example of a linguistic blob.

5. Moving object segmentation

In this work, the real displacement between frames is computed by using a fuzzification procedure working on motion
vectors, neither DCT coefficients information nor statistical filtering is needed; so the algorithm requires very little of data;
from a frame size of 320 � 240 pixels and about 35–40 KB, the algorithm only needs about 2–4 KB and around 18 KB per
frame for a 640 � 480 video sequence with a frame size of 120–140 KB.

Fig. 5 shows the overview of the proposed system. The H.264 compressed video stream is the input of the algorithm. The
first stage is the decoding of the video streaming with the goal of extracting the motion vectors and the decision modes. In
the next stage, the information extraction is carried out by processing the H.264 decoded data. This stage has several steps.
First, a k-neighbor algorithm is applied to the decision mode matrix to obtain the motion vectors to take into account. After
that, in the fuzzification step, motion vectors are converted into linguistic motion vectors in order to obtain the fuzzy rep-
resentation of them. Then the noisy information is removed and the valid linguistic motion vectors are obtained. The algo-
rithm rules out the motion vectors with low values of right_x and down_x because they could be noisy and they do not
provide information about moving objects. Next stage is the clustering algorithm, i.e., the valid motion vectors are grouped
into linguistic blobs, each of them could be identified as a moving object of the video scene. Finally, the linguistic blobs are
filtered to delete noisy ones. Note that the result of the algorithm is not a set of objects detected in a video sequence, but a set
of linguistic blobs or regions which form the previous step to the identification of the objects. In a parallel process to the
segmentation, the fuzzy sets defined over each linguistic variable are modified in a dynamic way to adapt the algorithm
to a specific scenario, as it is explained in Section 5.4. Thus, the linguistic labels are modified in accordance with the size
of the blobs identified in the scene and this fact has influence on the performance of the algorithm. This is the fourth and
last stage of the segmentation approach.

5.1. Decoding the video streaming

The segmentation method has been developed by using the H.264/AVC JM 14.2 reference software [12]. The baseline pro-
file is chosen for two reasons: first of all, this profile would not have license payments required for a future commercial
implementation; and second, because it is the common profile used in most of the real-time applications, such as video
and mobile TV, video conference and video surveillance systems, among others; since no buffers are needed for storing
the frames and re-ordered them. Moreover, the presented approach only uses I and P frames to carry out the segmentation
due to the encoding and decoding process using other frame types (B, SP and SI) is slow and can not satisfy the real-time

Table 4
Values of the H.264 codec configuration parameters.

Parameter Value Description and justification

FrameRate 25 Frames per second
SourceWidth 640 Width of frame in pixels
SourceHeight 480 Height of frame in pixels
ProfileIDC 66 Baseline Profile
IntraPeriod 12 GOP format is I11(P) (one I-frame each 12 P-frames)
UseHadamard 0 To speed up the decoding process
DisableSubpelME 1 Disable subpixel motion estimation
SearchRange 32 Maximum search range to the motion vectors
NumberRefFrames 1 Use only the previous frame as reference
NumberBFrames 0 B-frames are not used
RDOptimization 0 Low complexity mode
SearchMode 0 Fast full search

Fig. 5. Overview of the proposed system.

C. Solana-Cipres et al. / International Journal of Approximate Reasoning 51 (2009) 99–114 105
requirements. Also, the Rate-distortion Optimization option is disabled [11]. Other configuration parameters are shown in
Table 4.

The H.264/AVC JM reference software encoder selects the best macroblock mode by using the Sum of Absolute Errors (SAE).
This fact implies that for each existing macroblock partition (and sub-partition) within the MB, a predictor within the pixel-
domain is created from the motion estimation of the current partition, and the SAE cost is evaluated. In other words, the
original block and the predicted one are compared: the difference pixel by pixel in absolute value is calculated. The best
mode is determined corresponding to the mode exhibiting the minimum SAE cost; the minimum sum of the absolute dif-
ferences. One of the main advantages of this method is its low computational cost, so it is recommendable for real-time use.
5.2. Information extraction: decision modes selection

The second stage of the segmentation approach is the information extraction. In this section, one of the steps belonging to
this stage is analyzed; the selection of the valid decision modes is specifically presented. Table 1 shows that the most usual
decision modes to partition a macroblock are 0 and 1 modes, i.e., skip macroblocks and 16 � 16 macroblocks. This informa-
tion is not useful to know the motion activity in a region of a frame because the H.264 encoder by using the minimum SAE
cost do not use these modes to encode moving objects, thus the motion vectors in these kinds of macroblocks are removed.
This fact is related with the features of the H.264 encoder because it is designed to work with high quality precision. A car or
a person have a lot of details, so they will be encoded with partitioned macroblocks. Besides skipped macroblocks do not
have motion vectors, so no motion vectors can be obtained from them. Referring to 16 � 16 MBs, on the one hand, they

106 C. Solana-Cipres et al. / International Journal of Approximate Reasoning 51 (2009) 99–114
are not usually employed to encode moving objects, only in exceptional occasions. On the other hand, 16 � 16 MBs are about
40% of the total (Table 1), so their processing time would waste a considerable amount of time and then the algorithm could
not fulfill the real-time requirement.

The segmentation algorithm has to choose the valid motion vectors to obtain the right blobs. It can be selected between
two ways of decision modes selection. In the first one, the algorithm takes into account only motion vectors belonging to a
macroblock of type 4 (four 8 � 8 partitions) because it has been observed experimentally that the moving objects are usu-
ally coded with this decision mode (Fig. 6a). Table 5 shows the distribution of each decision mode on all the frames and on
moving regions. The results obtained show that 87.47% of macroblocks inside the moving regions are codified with decision
mode 4 and the 6.50% of all the macroblocks are codified with this decision mode, i.e., the algorithm could identify the
87.47% of macroblocks belonging to moving regions only by processing the motion vectors of the 6.50% of macroblocks.

In the second way, it is obtained the decision modes matrix corresponding to a frame and it is applied a k-neighbor algo-
rithm to obtain the implicit motion degree in a region of the frame. The decision modes has been named in increasing mo-
tion degree, thus the higher is the k-neighbor macroblock value, the more is the movement inside the macroblock (Fig. 6b).
In this case, the segmentation procedure works only with motion vector values greater than a predefined threshold Ukn in the
k-neighbor algorithm. This threshold discriminates between motion vectors belonging to high-numbered decision modes
and neighbors and it helps to reduce noise because it allows to rule out isolated motion vectors. For example, in Fig. 6b,
threshold Ukn rule out motion vectors belonging to macroblocks drawn in white or light gray. In Section 6 the results using
both decision modes selection are analyzed.

Fig. 7 shows an example of modes selection. Fig. 7a shows the original frame of a surveillance video and in Fig. 7b the
decision modes are drawn (light gray macroblocks are skipped and dark gray ones are intra-frames). Fig. 7c shows macro-
blocks encoded with the fourth decision mode and Fig. 7d shows macroblocks in which the k-neighbor algorithm obtains a
value greater than the threshold Ukn. So depending of the decision modes selection way, the motion vectors to analyze will be
different.

5.3. Clustering algorithm

After fuzzification of motion vectors, the proposed system clasiffies the valid linguistic motion vectors into linguistic
blobs through a clustering algorithm. If there is a linguistic motion vector suitable to belong to a blob, it is included into
Fig. 6. Decision modes selection: (a) drawn the macroblocks encoded with the fourth decision mode and (b) degree of the values of the decision modes
matrix by using the k-neighbor algorithm.

Table 5
Frequency of each decision mode in the full frames (Frequency 1) and in moving regions (Frequency 2).

Sequence Lorry sequence Shop window sequence Street sequence

Frequency 1 (%) Frequency 2(%) Frequency 1 (%) Frequency 2 (%) Frequency 1 (%) Frequency 2 (%)

Resolution 320 � 240 640 � 240 640 � 480
Frames 1300 652 5200

0 70.44 0.00 22.6 0.78 31.35 0.00
1 15.55 5.38 50.6 3.88 52.38 4.93
2 0.35 4.79 3.3 3.14 0.43 0.45
3 0.22 2.39 2.2 0.78 0.40 0.45
4 3.1 85.63 10.7 82.60 5.70 94.17
8 0.00 0.00 0.4 0.00 0.00 0.00
9 4.86 1.80 4.8 8.80 6.12 0.00
10 4.46 0.00 1.6 0.00 2.61 0.00
13 1.02 0.00 3.7 0.00 1.03 0.00

Fig. 7. Decision modes selection: (a) original frame, (b) decision modes matrix, (c) macroblocks encoded with the forth decision mode and (d) macroblocks
selected by using the k-neighbor algorithm.

C. Solana-Cipres et al. / International Journal of Approximate Reasoning 51 (2009) 99–114 107
the linguistic blob and is modified the representation of this one according to the weighted aggregation defined in this sec-
tion. The similarity between a vector and a blob is calculated with a distance measure based in the numbering order of the
defined linguistic labels over a variable [21,22]. Then, a Euclidean distance between two linguistic intervals is defined as:
DX ¼ D Ip;q
X � Ir;s

X

� �
¼ pþ q

2
� r þ s

2

��� ��� ð4Þ
For example, considering the linguistic variable HP (Fig. 4), the distance between the intervals:
I2;3
HP ð7Þ ¼ fLeft : 0:5 ; Horizontal Centre : 0:5g

I3;3
HP ð9Þ ¼ fHorizontal Centre : 1:0g
will be:
DHP I2;3
HP ð7Þ; I

3;3
HP ð9Þ

� �
¼ 2þ 3

2
� 3þ 3

2

����
���� ¼ 0:5
The motivation of using this Euclidean distance is to enhance the robustness of the segmentation approach. The nature of
the proposed equation allows to incorporate expert knowledge into the scenario: the linguistic variables can be designed to
adapt themselves to the application domain. For example, if there is a scenario with two doors, the values of the position
linguistic variables can be adapted to this situation, as shown in Fig. 8. The distribution of the linguistic labels allows to rec-
ognize the position of an object and the Euclidean distance increases the relevance of each linguistic label in function of its
size. However, if the segmentation algorithm use a support-based distance, the distance does not mind the design of the lin-
guistic labels. It has been experimentally proved that the best performance is achieved by using a Euclidean distance and it
improves the understanding of the linguistic representations.

Since this Euclidean distance, the total distance between a linguistic motion vector VLMVx and a blob LByðTDðVLMVx; LByÞÞ
is defined as the maximum of the differences between the four Euclidean distances referring the linguistic intervals
IHP; IVP; IHV and IVV :
TD ¼ maxðlPDðDHPÞ;lPDðDVPÞ;lVDðDHV Þ;lVDðDVV ÞÞ ð5Þ
where PD and VD are two linguistic variables named position difference and velocity difference. These variables measure the
membership of the Euclidean distance to the difference label. It has been experimentally proved that the use of both variables

Fig. 9. Position difference and velocity difference variables.

Fig. 8. Linguistic labels of different size incorporate expert knowledge.

108 C. Solana-Cipres et al. / International Journal of Approximate Reasoning 51 (2009) 99–114
reduce the uncertainty associated with the H.264 encoding. This fact occurs due to the motion compensation: the motion
vectors associated to each macroblock (or macroblock partition) can be slightly wrong to our purpose and not indicate
the real displacement of the corresponding object, but the features of the encoding have to be considered. In this way,
the total distance between VLMVx and LBy have into account the sensitivity of the encoding defining two linguistic variables
which are more tolerant to velocity differences than position differences. Fig. 9 shows the linguistic labels of the difference
variables where it is important to underline that the values have to fulfil the next requirements: a < d and b < e.

A vector VLMVx will be added to the blob LBy, i.e., will be considered in the same region, if the next conditions are
satisfied:

(1) The total distance between the vector VMLVx and the blob LBy is the least that any total distance between another lin-
guistic motion vector and LBy.

(2) TDðVLMVx; LByÞ is less than a threshold Umv since a vector is considered susceptible to belong a blob. This threshold is a
value between 0 and 1 and the optimum value is around 0.2. Umv is different in function of the scene: a low value
means high discrimination condition, so over-segmentation ratio could be increased, and a high value of Umv means
a relaxed clustering condition, so merge ratio could be increased. The optimum value should minimize both merge and
over-segmentation ratios.

The weighted aggregation of VLMVx into the linguistic blob LBy generates the modified representation of the blob LB0y and
is executed in four stages:

(1) FNðLB0yÞ ¼ FNðLByÞ, i.e., the frame number is the same.
(2) sizeðLB0yÞ ¼ sizeðLByÞ þ 1, i.e., the blob size is increased.
(3) MBsðLB0yÞ ¼ MBsðLByÞ þMBðVLMVxÞ, i.e., the macroblock identificator of the motion vector VLMVx is added to the mac-

roblocks list of BL0y.
(4) The linguistic intervals IHP; IVP; IHV and IVV are modified according to a weighted union that evaluates the size of the

blob:
lAi
j
ðI0jðLByÞÞ ¼

lAi
j
ðIjðLByÞÞ � sizeðLByÞ

sizeðLByÞ þ 1
þ

lAi
j
ðIjðVLMVxÞÞ

sizeðLByÞ þ 1
ð6Þ
For example, considering the linguistic intervals referring to the Horizontal Position variable:
IHPðLByÞ ¼ fVery Left : 0:5; Left : 0:5g
IHPðVLMVxÞ ¼ fLeft : 1:0g

C. Solana-Cipres et al. / International Journal of Approximate Reasoning 51 (2009) 99–114 109
and sizeðLByÞ ¼ 8, the weighted union between the intervals is fVery Left : 0:44 ; Left : 0:56g:
IHPðLB0yÞ ¼ Very Left :
0:5 � 8

9
þ 0

9
; Left :

0:5 � 8
9
þ 1:0

9

	

The presented weighted aggregation gives a relevant value to the size of the linguistic blob and it is fundamental to get
the conceptual representation of the modified blob.
5.4. Dynamic design

The segmentation algorithm proposed presents the typical problems of any segmentation system: merge (two or more
objects are identified as one; it could happen with little objects) and split (one object is identified as two or more; it could
happen with big objects). One of the reasons of these problems come from the static design of the linguistic variables used in
the algorithm, i.e., their values remain unaltered for different kinds of objects. Since the definition of the total distance and
the weighted aggregation, this segmentation system has a rigid behaviour and cannot adapt itself to the nature of the ob-
jects. Besides, the initial version of the algorithm is strongly dependent of the expert knowledge because the fuzzy sets de-
fined over each linguistic variable are manually established and their values are invariables. Since the application is designed
for real traffic scenarios, the linguistic variables are initially configured for the most frequently appeared object in that do-
main, i.e., the car. However, there could be a merge problem if an object little than a car (for example, a person) appears and
there could be an split problem if a big object like a truck appears on the video. Then, if the number and the values of the
fuzzy sets are selected in a wrong way, the results of the algorithm will be poor.

For this reason, this algorithm introduces the dynamic design of the linguistic labels to adapt them to each specific sce-
nario, where the dynamic design of a linguistic variable X is understood as the adaptation and modification of the values of the
fuzzy sets belonging to X during the execution of a fuzzy procedure. Thus, the segmentation procedure allows to give itself
some feedback to improve its results. The algorithm has an initial configuration, but it could change the values of the fuzzy
sets in function of the obtained results taking into consideration the size and shape of the obtained blobs in previous frames.
So the automatic changes allow to improve the quality of the algorithm because they have positive influence on the merge
and split rates, as shown in Figs. 10 and 11.

The dynamic design of the fuzzy sets is based on some common characteristics of the fuzzy systems like the support set,
the height of a fuzzy set and the alpha cut threshold [3]. Being X a linguistic variable, A a fuzzy set of X; D the domain of X
and a the threshold of the alpha cut set:
support ðAÞ ¼ fx 2 D : lAðxÞ > 0g ð7Þ
height ðAÞ ¼ maxðlAðxÞÞ ð8Þ
alpha cuta ðAÞ ¼ fx 2 D : lAðxÞP ag ð9Þ
The linguistic variables whose values are updated dynamically are HP and VP. Each variable X has a set of fuzzy sets
fA1;A2; . . . ;Asizeg over his domain DHP or DVP . Only normal fuzzy sets are used, so the height of them is always equal to
one. The algorithm is ready to work with both triangular and trapezoidal fuzzy sets. The support of each fuzzy set A is
supportðAÞ ¼ alpha cut1ðAÞ þ 4, except for the first and the last sets ðA1 and AsizeÞ of a linguistic variable, where
supportðAÞ ¼ alpha cut1ðAÞ þ 2.
Fig. 10. Dynamic fuzzy sets avoid the merge problem.

Fig. 11. Dynamic fuzzy sets avoid the split problem.

110 C. Solana-Cipres et al. / International Journal of Approximate Reasoning 51 (2009) 99–114
The dynamic design of the fuzzy sets is executed at the end of the segmentation algorithm, as shown in Fig. 5. It is only
processed to the biggest blob detected in the frame, if there is at least one blob detected in said frame. Being the macroblocks
MBs ¼ fMB1;MB2; . . . ;MBmg belonging to the biggest blob LB, it can be calculated the rectangular size of the blob by:
heightðLBÞ ¼ rowðMBmÞ � rowðMB1Þ þ 1 ð10Þ
widthðLBÞ ¼ maxiðcolðMBiÞÞ �miniðcolðMBiÞÞ þ 1 ð11Þ
where col is the column of the macroblock, max is the maximum of the values -in this case, the maximum of the columns of
all the macroblocks in LB- and min is the minimum value, i.e., the lowest value of the columns.

The system calculates the number of the new fuzzy sets defined to the linguistic variables HP and VP in function of the
size of the biggest blob in the frame. Being W and H the width and the height in macroblocks of each frame, the number of
the redesigned linguistic labels can be calculated as sizeðHPÞ ¼W=widthðLBÞ and sizeðVPÞ ¼ H=heightðLBÞ. The names of the
linguistic labels of HP and VP are got from two configuration files that have a correspondence between the number of labels
and the names of them. After that, if trapezoidal fuzzy sets are used, it is necessary to calculate the support and the alpha-
level set with threshold 1 to define the shape of the corresponding fuzzy sets. Since sizeðHPÞ and sizeðVPÞ, it can be calculated
the size of the alpha-level set with threshold value 1 with the same size to all the fuzzy sets for each linguistic variable. Being
AHP a fuzzy set of HP and AVP a fuzzy set of VP, the size of the alpha cut set is calculated as:
sizeðalpha cut1ðAHPÞÞ ¼
ðW � 1Þ � 2 � ðsizeðHPÞ � 1Þ

sizeðHPÞ ð12Þ

sizeðalpha cut1ðAVPÞÞ ¼
ðH � 1Þ � 2 � ðsizeðVPÞ � 1Þ

sizeðVPÞ ð13Þ
For example, being the fuzzy sets of the linguistic variable HP shown in Fig. 4, if the algorithm finds a full region in a frame
which a width of six macroblocks ðwidthðLBÞ ¼ 6Þ, the module which updates the values of the linguistic variable HP will
change its values. First, it calculates the number of the labels as sizeðHPÞ ¼W=widthðLBÞ ¼ 20=7w3 and reads the names
of them in the configuration file ðLE; HC and RIÞ. Then, the size of the alpha cut set and the support of each set are calculated
as:
Fig. 12. New Horizontal Position linguistic labels.

Table 6
Improv

Mea

Reso
Fram

Grou
Dete
True
False
False

Dete
Prec
Proc

C. Solana-Cipres et al. / International Journal of Approximate Reasoning 51 (2009) 99–114 111
sizeðalpha cut1ðAHPÞÞ ¼
20� 1� 2 � ð3� 1Þ

3
¼ 5

supportðA1Þ ¼ alpha cut1ðAÞ þ 2 ¼ 5þ 2 ¼ 7
supportðA2Þ ¼ alpha cut1ðAÞ þ 4 ¼ 5þ 4 ¼ 9
The module can redefine the values of the linguistic variable HP with this information and obtains the new values, which
are shown in Fig. 12.
6. Experimental results

Segmentation is an ill-posed problem: for the same video, the optimum segmentation can be different depending on the
application. Furthermore, the goal of the segmentation process can change in function of the application domain; for exam-
ple, object detection should be fast in real-time applications or accurate in medical domain. A lot of criteria and measures
have been proposed [5,15]. Some of them are based on the fidelity of the detected objects like shapes and edges; others work
at pixel level like normalized uniformity measures and others calculate the penalties of the segmentation approaches based
on misclassification, shape or motion penalty.

In this context, designing a good measure for segmentation quality is a hard problem. The ideal evaluation is the objective
evaluation, i.e., the unsupervised methods that do not require reference image and can be used in a real-time system [31];
however, these algorithms evaluate the quality of the segmentation through mathematical measures like the normalized
uniformity measure or the contrast. These measures can not be applied to the algorithm because it does not work with
DCT coefficients or pixel properties, but it only obtains the moving regions in a frame. Then, in this work a supervised meth-
od to evaluate the segmentation quality is used.

Two measurements are used to describe the segmentation performance. The first measurement is detection possibility that
is defined as the percentage of the real regions detected. The second one is precision that measures the percentage of the
detected objects corresponding to real objects. Then, high detection possibility means less miss-segmentation and high pre-
cision means less false segmentation. Besides, two measurements are defined to analyze the processing time and the segmen-
tation size, i.e., the temporal and spatial requirements of the algorithm.

The segmentation approach has been evaluated on several video sequences compressed using the H.264 encoder of JM
14.2. The encoder configuration has been set with baseline profile and low complexity mode on RD Optimization. The video
tested resolution varies from 320 � 240 to 640 � 480 pixels. The specific configuration parameters of the algorithm
Fig. 13. Snapshots of three video sequences with the detected blobs drawn.

ement using dynamic design.

surement Lorry sequence Shop window sequence Street sequence

Static Dynamic Static Dynamic Static Dynamic

lution 320 � 240 640 � 240 640 � 480
es 1300 652 5200

nd truth 353 353 808 808 1355 1355
cted blobs 378 362 649 684 1156 1138
positives 293 302 631 665 996 1077
positives 85 60 18 19 160 61
negatives 60 51 177 143 359 278

ction possibility (%) 82 85 78 82 74 80
ision (%) 78 83 97 97 86 95
essing time (ms) 17.4 19.7 25.5 32.7 37.2 41.1

112 C. Solana-Cipres et al. / International Journal of Approximate Reasoning 51 (2009) 99–114
(Umv ; Ukn and the minimum blob size) change depending on the application scenario. Fig. 13 shows three snapshots of three
different video sequences tested where the detected blobs are drawn over the frames. These snapshots are referred to the
results shown in Table 6, where the improvement of the algorithm using dynamic design of the fuzzy sets can be noted.

As it has been explained in Section 5.2, the algorithm can be executed in two modes depending of the decision modes
selection: only type 4 macroblocks or k-neighbor algorithm with a threshold. Table 7 shows the differences between both
modes in several experiments (320 � 240 pixel resolution) using the same configuration parameters. It can be seen that
one of them is faster but its performance is worse. Thus the choice will depend on the application field.

Fig. 14 shows nine characteristic frames from a surveillance scene. Each one of them shows a different interesting situ-
ation, as detailed next. Fig. 14a shows three groups of people detected as moving objects and a moving sheet of a tree on the
top right corner. In Fig. 14b, four moving objects are detected; the blue one is a car appearing in the scene and the segmen-
tation algorithm recognizes it behind the tree. Besides, there is a person not detected on the left of the green blob, so false
negative is 1/5 in this frame. Fig. 14c shows five blobs detected; the blue blob is a car appearing in the scene. In Fig. 14d, the
segmentation algorithm recognizes two blobs – magenta and red – in the same region because people are walking in the
opposite direction. In Fig. 14e, there is a bike on the road (blue blob). Fig. 14f illustrates a frame with two detected blobs
and the green one is a person behind the fence. Fig. 14g and f show three cars detected as different blobs in consecutive
frames. Finally, in Fig. 14i there is a representative frame with different type of objects: a lorry, a van, a car and a person.
There is a merge problem because a person is recognized in the same blob that the van.
Table 7
Decision modes selection.

Measurement Type 4 k-Neighbor

Detection possibility (%) 73 81
Precision (%) 78 89
Processing time (ms) 16.2 18.6
Segmentation size (bits/frame) 148 103

Fig. 14. Snapshots with the detected blobs drawn in a video surveillance scene (frames 16, 90, 235, 285, 483, 573, 1093, 1111 and 3100). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. Segmented frames in Hall Monitor sequence (frames 29, 106, 138 and 243).

Fig. 16. Segmented frames in Erik sequence (frames 10, 22, 37 and 44).

Table 8
Average processing time.

Frame resolution (pixels) Processing time (ms)

320 � 240 20
640 � 240 26
640 � 480 38

C. Solana-Cipres et al. / International Journal of Approximate Reasoning 51 (2009) 99–114 113
The segmentation approach has been also tested with other standard surveillance videos like Hall Monitor and Erik se-
quences and compared with other approaches. Fig. 15 shows results obtained in four different frames in Hall Monitor se-
quence: segmentation process recognizes moving objects but do not extract well the boundary of the objects since this
sequence has a QCIF resolution. However, the processing time is near to 8 ms The approach shown in [30] has worse tem-
poral performance than the proposed method: about 300–700 ms per frame in a CIF (352 � 288) sequence and about 50–
80 ms in a SIF (352 � 240) sequence with not much movement. In the second approach [13], the processing time is about
32 ms in CIF sequences, however this method uses spatiotemporal information, i.e., it uses last frames data while processing
a frame. With respect to the quality of the results, the average precision and recall are 92.9% and 96.6% for Zeng approach
[30] in Erik sequence and 92.2% and 98.3% for Liu approach [13]. In the presented approach, the average precision is 91.4%
and the recall is 96.8%. Fig. 16 shows results obtained in Erik sequence.

The hardware used in the experiments is an Intel Pentium IV Core 2 Duo T7100 1.8 GHz with 2 GB RAM memory. Table 8
shows average processing time depending on the frame resolution. Since a 320 � 240 frame is processed in around 20 ms
and a 640 � 480 one in around 38 ms, it can be ensured that the segmentation works in real-time, i.e., at least 25 fps.

7. Conclusions

This work presents a real-time segmentation approach of moving objects with the next features. First of all, the algorithm
is designed for H.264/AVC compressed domain due to its excellent compression efficiency and its widespread field of multi-
media applications. The algorithm can work in real-time and requires very little of data because it uses only the motion vec-
tors field and the decision modes to carry out the segmentation. The proposed approach is based on fuzzy logic to detect the
moving objects; fuzzy logic allows to avoid the noise inherent to the encoding process and to obtain conceptual represen-
tations that describe the regions detected in a comprehensive way. Finally, the segmentation performance is robust because
it can adapt itself to the application scenario in a dynamic way updating in real-time the values of the fuzzy sets. This feature
allows to improve the merge and split rates.

As future work it is planned to improve the performance of the segmentation algorithm over changing situations. The
initial version of the algorithm was strongly dependent of the expert knowledge: the values of the configuration parameters

114 C. Solana-Cipres et al. / International Journal of Approximate Reasoning 51 (2009) 99–114
and the design of the fuzzy sets had to be established by an expert before the execution of the segmentation process. In this
work, an improvement to update dynamically the values of the fuzzy sets is presented and tested. So one of the future work
should be to get the configuration parameters updated in real-time. In this way, a matching learning algorithm could be
developed to identify the different types of moving objects and the usual trajectories of each of them. Finally, another re-
search line is the management of the velocity linguistic variables and the corresponding velocity of the detected moving ob-
jects. The horizontal and vertical linguistic intervals of a blob show the fuzzy values of the motion vector directions, i.e., the
displacement associated with each macroblock (or macroblock partition) due to the encoding process. However, it would be
more interesting to obtain the real displacement of the moving objects in function of their position respect to the camera
location.

Acknowledgments

This work was supported by the Ministry of Science and Technology of Spain under CONSOLIDER Project CSD2006-46,
CICYT Project TIN2006-15516-C04-02 and CENIT Project HESPERIA and the Council of Science and Technology of Castilla-
La Mancha under Projects PEII09-0037-2328 and PII2I09-0045-9916.

References

[1] J.A. Albusac, J.J. Castro-Schez, D. Vallejo. Learning maximal structure rules with pruning based on distances between fuzzy sets, in: Proceedings of the
Information Processing and Management of Uncertainty in Knowledge-based Systems, IPMU’08, 2008, pp. 441–447.

[2] J.L. Barron, J.D. Fleet, S.S. Beauchemin, Performance of optical flow techniques, International Journal of Computer Vision 12 (1) (1994) 43–77.
[3] E. Cox (Ed.), The Fuzzy Systems Handbook, 2nd ed., AP Professional, 1998.
[4] C.D. Creusere, G. Dahman, Object detection and localization in compressed video, in: Asilomar Conference on Signals, Systems and Computers, vol. 1,

Pacific Grove, California, USA, 2001, pp. 93–97.
[5] E.D. Gelasca, T. Ebrahimi, M. Karaman, T. Sikora, A framework for evaluating video object segmentation algorithms, in: Computer Vision and Pattern

Recognition Workshop, CVPRW’06, 2006, pp. 198–210.
[6] H.L. Eng, K.K. Ma, Spatiotemporal segmentation of moving video objects over MPEG compressed domain, in: Proceedings of the IEEE International

Conference on Multimedia and Expo, vol. 3, New York, USA, 2000, pp. 1531–1534.
[7] Y.W. Huang, C.H. Chen, C.H. Tsai, C.F. Shen, L.G. Chen, Survey on block matching motion estimation algorithms and architectures with new results,

Journal of VLSI Signal Processing Systems 42 (3) (2006) 297–320.
[8] R.T. Iqbal, C. Barbu, F. Petry, Fuzzy component based object detection, International Journal of Approximate Reasoning 45 (3) (2007) 546–563.
[9] M.L. Jamrozik, M.H. Hayes, A compressed domain video object segmentation system, in: Proceedings of the IEEE International Conference on Image

Processing, vol. 1, New York, USA, 2002, pp. 113–116.
[10] X. Ji, Z. Wei, Y. Feng, Effective vehicle detection technique for traffic surveillance systems, Journal of Visual Communication and Image Representation

17 (3) (2006) 647–658.
[11] Joint Video Team (JVT), Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification, ITUT Recommendation H.264

and ISO/IEC 14496/10 AVC, 2003.
[12] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, Reference Software to Committee Draft. JVT-F100 JM14.2, 2008.
[13] Z. Liu, Y. Lu, Z. Zhang, Real-time spatiotemporal segmentation of video objects in the H.264 compressed domain, Journal of Visual Communication and

Image Representation (18) (2007) 275–290.
[14] P. Matsakis, J.M. Keller, L. Wendling, J. Marjamaa, O. Sajhputera, Linguistic description of relative positions in images, IEEE Transactions on Systems

Man and Cybernetics 31 (4) (2001) 573–588.
[15] K. McKoen, R. Navarro-Prieto, B. Duc, E. Durucan, F. Ziliani, T. Ebrahimi, Evaluation of video segmentation methods for surveillance applications, in:

Proceedings of the European Signal Processing Conference, EUPSICO’00, 2000, pp. 1045–1048.
[16] V. Mezaris, I. Kompatsiaris, N.V. Boulgouris, M.G. Strintzis, Real-time compressed-domain spatiotemporal segmentation and ontologies for video

indexing and retrieval, IEEE Transactions on Circuits and Systems for Video Technologies (14) (2004) 606–621.
[17] R. Munoz-Salinas, R. Medina-Carnicer, F.J. Madrid-Cuevas, A. Carmona-Poyato, Multi-camera people tracking using evidential filters, International

Journal of Approximate Reasoning 50 (5) (2009) 732–749.
[18] M. Nachtegael, E. Kerre, S. Damas, D. Van der Weken, Special issue on recent advances in soft computing in image processing, International Journal of

Approximate Reasoning 50 (1) (2009) 1–2.
[19] PETS Data Sets, IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, Available in <ftp://ftp.pets.rdg.ac.uk/pub/>, 2002

(last access: 03.02.09).
[20] I.E.G. Richardson, H.264 and MPEG-4 Video Compression, John Wiley & Sons Ltd., New Jersey, 2003.
[21] L. Rodriguez-Benitez, J. Moreno, J.J. Castro-Schez, J. Albusac, L. Jimenez, An approximate reasoning technique for segmentation on compressed MPEG

video, in: 2nd International Conference on Computer Vision Theory and Applications, VISAPP’07, Barcelona, Spain, 2007, pp. 184–191.
[22] L. Rodriguez-Benitez, J. Moreno, J.J. Castro-Schez, J. Albusac, L. Jimenez, Automatic objects behaviour recognition from compressed video domain,

Image and Vision Computing 27 (6) (2009) 648–657.
[23] O. Sajhputera, P. Matsakis, J.M. Keller, R. Bondougula, Linguistic descriptions for an object in motion, in: Proceedings of the NAFIPS, New Orleans,

Louisiana, USA, 2002, pp. 243–248.
[24] D. Schonfeld, D. Lelescu, VORTEX: video retrieval and tracking from compressed multimedia databases-multiple object tracking from MPEG-2

bitstream, Journal of Visual Communication and Image Representation (11) (2000) 154–182.
[25] R.E.O. Schultz, T.M. Centeno, G. Selleron, M.R. Delgado, A soft computing-based approach to spatio-temporal prediction, International Journal of

Approximate Reasoning 50 (1) (2009) 3–20.
[26] R. Soodamani, Z.Q. Liu, GA-based learning for a model-based object recognition system, International Journal of Approximate Reasoning 23 (2) (2000)

85–109.
[27] O. Sukmarg, K.R. Rao, Fast object detection and segmentation in MPEG compressed domain, in: Proceedings of the TENCON, vol. 3, Kuala Lumpur,

Malaysia, 2000, pp. 364–368.
[28] M. Valera, S.A. Velastin, Intelligent distributed surveillance systems: a review, IEEE Proceedings on Vision, Image and Signal Processing 152 (2005)

192–204.
[29] L.A. Zadeh, The concept of linguistic variable and its application to approximate reasoning, Information Sciences 8 (1975) 199–249.
[30] W. Zeng, J. Du, W. Gao, Q. Huang, Robust moving object segmentation on H.264/AVC compressed video using the block-based MRF model, Real-Time

Imaging (11) (2005) 290–299.
[31] H. Zhang, J.E. Fritts, S.A. Goldman, Image segmentation evaluation: a survey of unsupervised methods, Computer Vision and Image Understanding

(110) (2008) 260–280.

	Real-time moving object segmentation in H.264 compressed domain based on approximate reasoning
	Introduction
	Contributions of this work
	Paper structure

	Related work
	Motion compensation in H.264 advanced video coding
	Fuzzy linguistic concepts
	Linguistic variable
	Linguistic interval
	Linguistic motion vector
	Linguistic blob

	Moving object segmentation
	Decoding the video streaming
	Information extraction: decision modes selection
	Clustering algorithm
	Dynamic design

	Experimental results
	Conclusions
	Acknowledgments
	References

