8 research outputs found

    Logics of Informational Interactions

    Get PDF
    The pre-eminence of logical dynamics, over a static and purely propositional view of Logic, lies at the core of a new understanding of both formal epistemology and the logical foundations of quantum mechanics. Both areas appear at first sight to be based on purely static propositional formalisms, but in our view their fundamental operators are essentially dynamic in nature. Quantum logic can be best understood as the logic of physically-constrained informational interactions (in the form of measurements and entanglement) between subsystems of a global physical system. Similarly, (multi-agent) epistemic logic is the logic of socially-constrained informational interactions (in the form of direct observations, learning, various forms of communication and testimony) between “subsystems” of a social system. Dynamic Epistemic Logic (DEL) provides us with a unifying setting in which these informational interactions, coming from seemingly very different areas of research, can be fully compared and analyzed. The DEL formalism comes with a powerful set of tools that allows us to make the underlying dynamic/interactive mechanisms fully transparent

    A first-order epistemic quantum computational semantics with relativistic-like epistemic effects

    Get PDF
    Quantum computation has suggested new forms of quantum logic, called quantum computational logics. In these logics well-formed formulas are supposed to denote pieces of quantum information: possible pure states of quantum systems that can store the information in question. At the same time, the logical connectives are interpreted as quantum logical gates: unitary operators that process quantum information in a reversible way, giving rise to quantum circuits. Quantum computational logics have been mainly studied as sentential logics (whose alphabet consists of atomic sentences and of logical connectives). In this article we propose a semantic characterization for a first-order epistemic quantum computational logic, whose language can express sentences like "Alice knows that everybody knows that she is pretty". One can prove that (unlike the case of logical connectives) both quantifiers and epistemic operators cannot be generally represented as (reversible) quantum logical gates. The "act of knowing" and the use of universal (or existential) assertions seem to involve some irreversible "theoretic jumps", which are similar to quantum measurements. Since all epistemic agents are characterized by specific epistemic domains (which contain all pieces of information accessible to them), the unrealistic phenomenon of logical omniscience is here avoided: knowing a given sentence does not imply knowing all its logical consequences

    Quantum logic as a dynamic logic

    Get PDF
    We address the old question whether a logical understanding of Quantum Mechanics requires abandoning some of the principles of classical logic. Against Putnam and others (Among whom we may count or not E. W. Beth, depending on how we interpret some of his statements), our answer is a clear "no". Philosophically, our argument is based on combining a formal semantic approach, in the spirit of E. W. Beth's proposal of applying Tarski's semantical methods to the analysis of physical theories, with an empirical-experimental approach to Logic, as advocated by both Beth and Putnam, but understood by us in the view of the operational-realistic tradition of Jauch and Piron, i.e. as an investigation of "the logic of yes-no experiments" (or "questions"). Technically, we use the recently-developed setting of Quantum Dynamic Logic (Baltag and Smets 2005, 2008) to make explicit the operational meaning of quantum-mechanical concepts in our formal semantics. Based on our recent results (Baltag and Smets 2005), we show that the correct interpretation of quantum-logical connectives is dynamical, rather than purely propositional. We conclude that there is no contradiction between classical logic and (our dynamic reinterpretation of) quantum logic. Moreover, we argue that the Dynamic-Logical perspective leads to a better and deeper understanding of the "non-classicality" of quantum behavior than any perspective based on static Propositional Logic

    Special issue on quantum programming languages

    No full text
    corecore