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Abstract

In this paper we analyze classical and quantum correlations using the tools of epistemic logic. Our main
contribution consists of two new logical systems. The first one is called General Epistemic Logic (GEL), it
extends traditional epistemic logic with operators that allow us to reason about the information carried by a
complex system composed of several parts. The second system is called the Logic of Correlated Knowledge
(LCK), which extends GEL with sentences that describe the observational capabilities of an agent. On the
semantic side we introduce correlation models, as a generalization of the “interpreted systems” semantics.
We use this setting to investigate several types of informational correlations (e.g. distributed information,
quantum correlated information) that complex systems can exhibit. We also provide an informational-logical
characterization of the notion of “quantum entanglement”.
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1 Introduction

Our topic in this paper is the logical analysis of informational correlations. These

are taken to be correlations between the information carried by each of the parts

of a complex system. Examples of complex systems include multi-partite physical

systems, groups of “agents” with observational capabilities, logical inferences etc.

Essential is that such complex systems are composed of elementary parts that can

either be independent of each other or may exhibit informational correlations. For

instance, in a group of agents, the agent’s observations can be correlated due to

previous communication. While in physical systems, correlations may be due to

the effect of quantum entanglement. Hence, different types of informational corre-

lations are manifested in different types of complex systems 4 . Our study of these

informational dependencies will allow us to mark the difference between classical

and quantum correlations.

Our approach in this paper uses the formalism of modal logic. In particular, we

use a version of epistemic logic to analyze the mentioned notions. Note however

that we identify the role played by an epistemic “agent” in traditional epistemic

logic, with the role of the elementary parts (“subsystems”, or “locations”) in a

complex physical system. Hence, our notion of an “agent’s knowledge” differs from

the accounts linked to traditional epistemic logic. Indeed, we adopt an “external

view” of knowledge. This view is standard in Computer Science and has been

advocated for in [11]. In this sense, every complex system can be regarded as a

“group of agents”. Moreover, any localized part of a complex system can be seen

as an “agent”. So in our setting, an agent’s “implicit knowledge” refers to the

information that is potentially available at the corresponding location. Something is

“implicitly known” if it is a consequence of features that can in principle be observed

at that location. So, implicit knowledge gives us the information (about the overall

system) that is carried by a part of the system. 5 We highlight in our approach the

spatial features of epistemic logic, as these will turn out to be essential in our study

of the informational correlations between the different parts of a complex system.

In contrast to other spatial logics that are based on topologies or metric spaces, our

logic is aimed to capture only “local” features of space, indicating which information

is carried by which part of the system.

We are interested in the ways in which the (information carried by the) individual

parts of a complex system can be combined. In the context of logic, this relates

to the question regarding what is the “implicit” knowledge that can be assigned

4 Our main concern is with the “qualitative” (“logical”, or “semantic”) aspects of the information carried
by the parts of a complex system. We will not focus on syntactic aspects or quantitative measures of
information (be it in terms of Shannon entropy or von Neumann entropy).
5 The distinction between “explicit” and “implicit” knowledge is standard in Computer Science. The first
notion refers to the actual information possessed by a real agent, stored in its “database” or subjective
internal state. While implicit knowledge can be thought of as what a virtual agent could in principle come
to “know” by performing observations on that system and deriving logical consequences. Hence implicit
knowledge is what “we” externally assign to an agent (or to a particle or even just a spatial location), based
on what is in principle observable at that location. Note that we use the notion of “information carried
by a system” interchangeably with the notion of “implicit knowledge” (in line also with [5,7]). In contrast
to explicit knowledge, implicit knowledge can be assumed to be always truthful and closed under logical
inference and under (positive and negative) introspection and as such it satisfies the axioms of the modal
system known as S5.
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to a group of agents. In our setting, such implicit “group knowledge” captures

the information carried by a (whole) complex physical system. In the literature on

logic for Computer Science, the standard formalization of implicit group knowledge

is in terms of distributed knowledge. This refers to the information obtainable by

pooling together (and closing under logical inference) the “knowledge” of each of

the “parts” (agents) of a complex system. The standard view in epistemic logic is

that the implicit knowledge of a group would be the same as distributed knowledge:

the information carried by a complex system is then nothing more than the “sum”

of the information carried by its parts.

But in the context of quantum mechanics, it is almost obvious that this standard

view cannot be correct. The information carried by an entangled quantum system

is more than the sum of the information carried by its parts. Hence we claim that,

while the standard answer is adequate for classical physics, it does fail for quantum

systems. As a solution we propose the notion of “correlated knowledge”. As the

name suggests, correlated knowledge takes into account the correlations between

the pieces of information carried by the parts of the system. We will argue that

correlated knowledge is a better model for the information carried by an arbitrary

complex system (or group of agents).

In the next section we introduce the logical system called “General Epistemic

Logic”(GEL). GEL is based on an extension of traditional epistemic logic with

operators for group knowledge. In section 3 we show how GEL can be regarded

as a generalization of the “interpreted systems” semantics of [11] and we discuss

the notion of distributed knowledge. In section 4 we show how GEL can be used

to reason about implicit quantum knowledge. The formalism of GEL allows us to

give an informational-logical characterization of the properties of “separability” and

“entanglement”. In the last section we extend GEL with operators that explicitly

capture the agents’ observational capabilities. The obtained system is called the

“Logic of Correlated Knowledge” (LCK) and is interpreted on so-called “correlation

models”. A complete axiomatization of LCK has been presented in an extended

version of this paper in [6].

2 General Epistemic Logic

In this section we introduce a generalized “epistemic logic” with epistemic operators

for both individuals (or “agents”) and for groups of agents. In the following, we

use the notion of component of a complex system and the notion of an agent inter-

changeably. We think about this metaphorically, associating to each subsystem a

virtual agent that can “observe” only the state of that subsystem. When considering

a physical system, this sums up all the information that is obtainable by performing

local measurements on that subsystem (and closing under logical inference).

To introduce our notation, consider a complex system composed of n basic com-

ponents (or “locations”). Each basic component is denoted with a label from a

given (finite) set N = {1, ..., n}. Note that the information carried by this com-

plex system may be concentrated or distributed over specific spatial “locations” or
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“components” of the system. So it is important to note that some information is

potentially available only at some locations but not at others. We also consider the

information carried by subsystems that are composed of several (but not necessarily

all) components. Sets of labels I ⊆ N are used to denote complex subsystems or

groups of “agents”. N is the largest group (the “whole world”), while the smallest

groups are singletons {i}.
For each subsystem I, we have an “information” (or “implicit knowledge”) op-

erator KI in our logic. Again, the notion of “knowledge” is used in this paper

only in the implicit, external sense. Hence it refers to the “information that is in

principle available” at a given location. Intuitively, we read the proposition KIP as

saying that the subsystem, or group, I (potentially) carries the information that P

is the case. For singleton groups {i} of one agent, we use the simplified notation Ki

instead of K{i}. Our use of these KI -operators in order to capture the qualitative

spatial features of complex systems does extend our previous approach in [5], which

in its turn is based on [4,2] and inspired by [9,1].

Observational Equivalence. For s and s′, two possible states of the world, if

the implicit information carried by system I is the same in these states then we

call these states “observationally equivalent”, or “indistinguishable” for system I,

and denote this as s
I∼ s′. We simply write s

i∼ s′ in case I = {i}. Observational

equivalence for I means in agent’s terms that the virtual agent or group of agents

(associated to) I can make exactly the same observations (at location I) in two

states of the world. The relation of observational equivalence is next used to give

an interpretation to the KI modal operators:

General Epistemic Frame (GEF). We define a general epistemic frame to be

a Kripke frame (or multi-modal frame) (Σ, { I∼}I⊆N ) consisting of a given set N

of basic components, a set of states (or “possible worlds”) Σ, a family of binary

relations { I∼}I⊆N ⊆ Σ×Σ for every subsystem I ⊆ N , and subject to the following

conditions:

(i) all
I∼ are (labeled) equivalence relations ;

(ii) Information is monotonic w.r.t. groups: if I ⊆ J then
J∼⊆ I∼;

(iii) Observability Principle: if s
N∼ s′ then s = s′;

(iv) Vacuous Information: s
∅∼s′, for all s, s′ ∈ Σ.

These conditions seem natural for the interpretation of
I∼ as “observational equiv-

alence”. The first condition is self-explanatory. The second condition captures the

fact that information behaves monotonic with respect to group inclusion. It assumes

that every observation that can be performed by an agent of a group is in principle

available to the whole group. Or in other words, this condition captures the fact

that the members of a group have the capacity to share information among them-

selves. The third condition is called the “observability” principle: it identifies states

that differ in ways that are not observable even by the whole world N . The last

condition captures the fact that the empty group carries no non-trivial information,

it cannot make observations and hence cannot tell any two states apart.

A. Baltag, S. Smets / Electronic Notes in Theoretical Computer Science 270 (2) (2011) 3–146



Local Information State. Given a GEF (Σ, { I∼}I⊆N ), we define the notion of an

I-local state, for each subsystem I ⊆ N : sI := {s′ ∈ Σ : s
I∼ s′}.

Σ-Propositions and Models. Take a GEF Σ, we call a Σ-proposition any subset

P ⊆ Σ. Intuitively, we say that a state s satisfies proposition P if s ∈ P . We define

a general epistemic model to be a structure Σ = (Σ, { I∼}I⊆N , || . ||), consisting of

a GEF and a valuation map || . ||: Ω → P (Σ) (where Ω is a given set of atomic

sentences). We adopt the standard notation for satisfaction of atomic sentences

in a given state of model Σ denoted by s |= p or s ∈|| p ||. For every model

Σ, we have the usual Boolean operators on Σ-propositions: P ∧ Q := P ∩ Q,

P ∨ Q := P ∪ Q, ¬P := Σ\P , P ⇒ Q := ¬P ∨ Q. We have the constants

�Σ := Σ and ⊥Σ := ∅. The “knowledge” operator is defined on Σ-propositions as

KIP := {s ∈ Σ : t ∈ P for every t
I∼ s}.

General Epistemic Logic. The language of the logic GEL has the following

syntax, where p ∈ Ω denote the atomic sentences:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | KIϕ

The semantics is given by an interpretation map associating to each sentence ϕ of

GEL a proposition || ϕ ||. The definition is by induction in terms of the obvious

compositional clauses. Let us focus only on the KI modality in particular:

s |= KIϕ iff t |= ϕ for all states t
I∼ s. Hence KIϕ is true in a state s, (or a system

carries the information that ϕ is the case in state s) if and only if ϕ holds in all

states of the world that are observationally equivalent for I to s.

Proof System. The proof system of GEL includes the rules and axioms of propo-

sitional logic in addition to the following list:

(i) KI-Necessitation. From � ϕ, infer � KIϕ

(ii) Kripke’s Axiom. � KI(ϕ ⇒ ψ) ⇒ (KIϕ ⇒ KIψ)

(iii) Truthfulness. � KIϕ ⇒ ϕ

(iv) Positive Introspection. � KIϕ ⇒ KIKIϕ

(v) Negative Introspection. � ¬KIϕ ⇒ KI¬KIϕ

(vi) Monotonicity of Group “Knowledge”. For I ⊆ J , we have � KIϕ ⇒ KJϕ

(vii) Observability. � ϕ ⇒ KNϕ

Using standard results in Modal Correspondence theory (see e.g. [8]), a proof for

the following result has been sketched in an extended version of this paper [6].

Proposition 1 The above proof system is sound and complete with respect to

general epistemic frames.

3 Distributed Knowledge

The notion of distributed knowledge traces back to [12]. In [11] we read that a

group has distributed knowledge of a proposition ϕ if roughly speaking the agents’
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combined knowledge implies ϕ. Intuitively this means that the agents of a group

can “combine” their knowledge by sharing all they know, in addition to making

individual observations. It boils down to the fact that group members can announce

to the group the knowledge obtained on the basis of their separate observations.

To capture this notion formally, we introduce a modalityDKI for the distributed

knowledge of a group I. DKI is defined via a “distributed observational equiva-

lence” relation, which is given by the intersection
⋂

i∈I
i∼ of all the individual

observational equivalence relations. It captures the idea that two states are indis-

tinguishable for the group iff they are indistinguishable for all the members of the

group. The operator DKI is the Kripke modality for
⋂

i
i∼, given explicitly as:

s |= DKIϕ iff for every state t ∈ Σ, if ∀i ∈ I s
i∼ t then t |= ϕ.

The authors in [11] do identify implicit knowledge of a group I with the dis-

tributed knowledge DKI of that group. As mentioned in the introduction, we cast

doubt on the fact that this is really the correct definition to adopt in all cases. Re-

call that implicit knowledge was explained as what the agent/group could come to

know based on potential observations. Hence the question amounts to what are the

observational capabilities of a group in general? Clearly, the use of the intersection

of individual observational equivalencies (as adopted in the definition of distributed

knowledge) makes sense only if one assumes that a group’s observations are nothing

but observations done by either of the members of the group. We claim however

that this is in general a highly unreasonable assumption that precludes the possibil-

ity of any joint observations by the group. To obtain distributed knowledge, each

agent only shares with the group the end-result of all her separate observations, the

agents are not allowed to correlate (the results of) their observations. The natural

notion of group knowledge according to us is not distributed knowledge but rather

something that could be called “correlated knowledge”, that what a group could

come to know by performing joint observations and sharing the results.

Separability. For system J ⊆ I, we say that system I is J-separable in state s if

sJ ∩ sI\J = sI . System I is said to be fully separable in state s if
⋂

i∈I si = sI . Full

separability means that group I’s knowledge in state s is the same as its distributed

knowledge, i.e. s |= KIP iff s |= DKIP , for all sets P ⊆ Σ. If I is fully separable

then it is J-separable for all J ⊆ I, but the converse is false in general. We call a

state I-entangled if it is not I-separable.

Classical Epistemic Frame. A GEF (Σ, { I∼}I⊆N ) is called classical if all its

states are fully separable, i.e. if it satisfies
I∼=

⋂
i∈I

i∼ for all systems I. A frame

is classical iff any group’s “knowledge” in any state (coincides with its distributed

knowledge, and hence) can be obtained by pooling together the information of each

of its components: KI = DKI

Not only classical or macroscopic systems will satisfy the conditions of a classical

epistemic frame. We may encounter classical epistemic frames in the quantum world

for instance when the subsystems are separated.

Interpreted Systems. Classical epistemic frames are close connected to S5 Kripke
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models. To show this, we take for each i, Σi := {si : s ∈ Σ} the set of all i-

local states. Every classical epistemic frame Σ can be canonically embedded via

some embedding e into the Cartesian product Σ1 × Σ2 × · · ·Σn in such a way that

s
I∼ s′ iff e(s)i = e(s′)i for all i ∈ I. This is essentially the well-known “interpreted

systems” representation of epistemic (S5) Kripke models, in the style of [11], in

which global states are simply taken to be tuples of local states, with identity

of the i-th components as the indistinguishability relation
i∼. Note that such a

representation is not possible in the general (non-classical) case.

4 Quantum “Knowledge”

We represent a single quantum system by a state space Σ consisting of rays in

a Hilbert space H. A quantum system composed of N subsystems Σ1, ...,Σn is

represented by the state space Σ1 ⊗ · · · ⊗ Σn corresponding to the tensor product

H1⊗· · ·Hn. The tensor product is richer than the Cartesian product, so we cannot

view a composed quantum system as a classical epistemic frame. Nevertheless, as

we will show further in this section, they can be thought of as (non-classical) general

epistemic frames.

First, consider the question: what is the “state” of an entangled subsystem I?

Or, what is the state of component 1 in the binary system | 00〉+ | 11〉? For I-

separable states s = sI ⊗ sN\I the answer is simply given by the local state sI . But

we saw that one cannot talk in any meaningful way about the I-local state of an

i-entangled system. In the following, we first give the standard definition used in

Quantum Mechanics, which is given in terms of density operators. After that we

justify its usefulness for our purposes by looking at the results of local observations.

The State of a Subsystem. If a global system is in state s (having an associated

density operator ρs), then QM describes the state s(I) of any of its subsystems I

(possibly entangled with its environment N \I in the state s) by the density operator

s(I) := trN\I(ρs). The “state” of subsystem I is obtained by taking the partial trace

trN\I (with respect to the subsystem’s environment N \ I) of (the density operator

associated to) the global state s.

In case the subsystem I is entangled with its environment N \ I, the above

description does not really give us a “state” in the sense of this paper (i.e. a pure

state), but a “mixed state”. But as an abstract description, it can still give us an

indistinguishability relation
I∼ on global states. Namely, the specific definition of

the “state” of a subsystem is not relevant for us in itself, but only the resulting

notion of “identity of states” of the given subsystem. This leads to the following

definition:

Observational Equivalence in Quantum Systems. Two quantum states s, s′

of a global quantum system N are observationally equivalent (“indistinguishable”)

for a subsystem I ⊆ N if the mixed states of subsystem I are the same in s and s′.
Formally: s

I∼ s′ iff trN\I(ρs) = trN\I(ρ′s).
The definition using density operators may look unnatural, although it can be
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justified via what an observer can learn about an entangled subsystem I by observing

only that subsystem (so by performing local measurements on I). While it is known

that a mixed state corresponds to a probability measure over pure states, what

is not always well-appreciated is the meaning of a mixed state s(I) describing a

(possibly entangled) subsystem:

Quantum I-equivalence via local observations. Assuming that we have an

unlimited supply of identical I-entangled systems, all prepared in the same (entan-

gled) global state s. And imagine that a virtual agent associated to I can perform

all possible local measurements (in various bases) on (various copies of) subsystem

I. Suppose that the agent can also repeat the same tests on different copies and

observe the frequency of each result. After many tests, this agent can approximate

the probability of every given result, for each possible local measurement. The list of

all these probabilities gives us the “information carried by subsystem I”, or the “in-

formation obtainable by local observations at location I”. Hence two global states

s, s′ are I-indistinguishable if all these probabilities are the same in s and s′, i.e. if
the two states behave the same way under I-local measurements.

Quantum I-equivalence via remote evolutions. Observational equivalence can

alternatively also be defined via the invariance under changes that do not affect the

information carried by subsystem I (see also [5]). An evolution (or unitary map)

U is said to be I-remote (or “remote from I ”) if it corresponds to applying only

a local unitary map on the subsystem N \ I (the “non-I ” part of the system, also

known as I’s “environment”): i.e., if U is of the form IdI ⊗ UN\I , where IdI is the

identity map on subsystem I and UN\I is a unitary map on the subsystem N \ I.
Hence, U is I-remote if it is N \ I-local. Intuitively, I-remote evolutions should not

affect the “state” of subsystem I; hence, we could define the “state” of I as what

is left invariant by all I-remote evolutions. As a consequence, two states will be

I-indistinguishable if they differ only by some I-remote evolution.

These three ways of defining observational equivalence are equivalent:

Proposition 2 For I ⊆ N , s s′ ∈ Σ, the following are equivalent:

(1). trN\I(ρs) = trN\I(ρs′) ;

(2). for every I-local measurement, the probability of obtaining any given result

is the same in state s as in state s′;
(3). s′ = U(s) for some I-remote unitary map;

We can define the quantum equivalence relation s
I∼ s′, and hence the implicit

knowledge KI , by any of the clauses given above. If we adopt the third clause, we

obtain the following: KIP holds at s iff, for all I-remote evolutions U , P holds at

U(s). If P is implicitly known by I in state s, i.e. if s ∈ KIP , then we say that

subsystem I carries the information that P .

Call a quantum epistemic frame a (state space Σ associated to a) Hilbert space

endowed with the quantum I-equivalence relations
I∼ (as defined above) for every

subsystem I.
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Proposition 3 Quantum epistemic frames satisfy all the postulates of general

epistemic frames.

Properties. In addition to the properties of the KI operator in GEL, we add:

• If s is I-separable, then s
I∼ s′ iff sI = s′I

• If I is fully separable then we have: s
I∼ s′ iff s

i∼ s′ for all i ∈ I. As a conse-

quence, the quantum “group” knowledge KI of a fully separated system I is the

same as the “distributed knowledge” DKI of the “group” I.

• In general (for non-fully separated systems I), the previous statement is false: the

information KI carried by a quantum (sub)system I is not the “sum” DKi∈I of

the information carried by its i-component systems. Quantum epistemic frames

are “non-classical”.

Example. In a Bell state when the information stored in two subsystems is cor-

related according to the identity rule, the agents associated to these subsystems

will never recover fully the information possessed by the global system if they cannot

correlate the results of their individual observations.

Informational Characterizations of Separability and Entanglement

We already gave an “epistemic” characterization of entanglement and separa-

bility in a GEF: A state s is I-separable iff I’s knowledge in state s is the same

as its distributed knowledge. In the special case of quantum systems, this gives us

the standard QM notion of separability. However, this characterization cannot be

expressed in the language of epistemic logic as it involves a second-order quantifier

over all subsets P of the state space. It basically requires that, for every such subset,

s satisfies KIP iff it satisfies DKIP . But in line with our presentation in [5], we can

use epistemic logic to give “informational characterizations” of separability and en-

tanglement in a quantum system, provided we are given only one (logical constant

denoting a) fully separable state. Take w = w0 ⊗ · · ·wn to be some (fixed) fully

separable state; for example, we may take w = 0 = |0〉⊗N = |0〉 ⊗ |0〉 · · · |0〉. Then:

two subsystems I and J are entangled in a (global) state s iff s satisfies KJKI¬w
or, equivalently, KIKJ¬w. The state s is I-entangled iff the subsystem I and N \ I
are entangled in s, i.e. if s satisfies KIKN\Is. The system is separable if it is not

entangled: ¬KIKN\I¬w. To summarize: two physical systems are entangled if and

only if they potentially carry (non-trivial) information about each other (assuming

no prior communication).

Example. For n = 2, take the set Σ(1) of all 1-separable (=2-separable=fully

separable) global states, as our model. Given that the system is in state |00〉,
subsystem 1 is in state |0〉 and “implicitly knows” his own state. 1 implicitly knows

that it is not possible that the whole system is in state | 10〉. Hence, |00〉 |=
K1¬|10〉. Moreover, |00〉 |= ¬K1K2¬|11〉.
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5 Correlated Knowledge

The complex systems we consider in this paper can be modeled more accurately if

we add some extra structure to our GEF. This can be done for instance by enriching

the language of the logic to capture the observational capabilities of the individual

agents and of the groups explicitly. Before we deal with the language in detail, we

will first generalize the concrete semantics given by “interpreted systems” to a type

of GEF that we call correlation models.

We generalize interpreted systems in three stages: the first type of models that

we consider are relation-based models. Here the states are relations between the

agents’ possible observations. Given sets O1, . . . , On of possible observations for each

agent, a joint observation will be a tuple of observations in O1×· · ·×On. A state of

the world can be characterized by the joint observations that can be performed on

it, so a state is a set of such tuples namely a relation. A model will have as its state

space any set Σ ⊆ P(O1×· · ·×On). The state sI of subsystem I of a global system

in state s will be naturally given by the projection: si = {(oi)i∈I : �o ∈ s}. So the

observational equivalence is given by s
I∼ t iff {(oi)i∈I : �o ∈ s} = {(oi)i∈I : �o ∈ t}.

The second stage of generalization is given by multi-set models. We now consider

multi-sets instead of sets of tuples of observations as in the relational models. Using

multisets has the advantage that we can model the case when agents record the

frequencies of their observations. Now states are multi-sets of joint observations,

i.e. functions s from tuples of observations from O1×· · ·×On into natural numbers.

The state sI of subsystem I in global state s is given by

sI((xi)i∈I) :=
∑

{s(�o) : �o ∈ O1 × · · · ×On such that oi = xi for all i ∈ I}

The third type of models that we consider are correlation models. In this stage,

we generalize natural numbers to an abstract set R of possible observational results,

together with some abstract operation
∑

: P(R) → R of composing results. This

operation may be partial (i.e. defined only for some subsets A ⊆ R), but it is

required to satisfy the condition:
∑{∑Ak : k ∈ K} =

∑
(
⋃

k∈K Ak) whenever

{Ak : k ∈ K} are pairwise disjoint. Working with this type, (R,
∑

) is called a

result structure.

Correlation Models Given a result structure R and a tuple �O = (Oi)i∈N of sets

of possible observations, a correlation model over (R, �O) is given by a set Σ ⊆ {s :

s is a function : O1 × · · ·On → R} of maps assigning results to joint observations

�o = (oi)i∈N . So global states will then be functions from O1 × · · · ×On into R. We

put OI := ×i∈IOi = {(oi)i∈I : oi ∈ Oi for every i ∈ I}. As before, in global state

s, the state sI of subsystem I will be a map sI : OI → R, given by sI((xi)i∈I) :=∑{s(�o) : �o ∈ O1 × · · · ×On such that oi = xi for all i ∈ I}.
Correlated Knowledge Correlation models are general epistemic models, if we

take our observational equivalence to be identity of the corresponding local states:

s
I∼ t iff sI = tI . The “group knowledge” KI in a correlation model will be called

correlated knowledge.
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In general, correlation models are not necessarily classical (as epistemic frames).

Hence, correlated knowledge is in general different from distributed knowledge.

Examples The relation-based models can be recovered as special cases of correlation

models, if we take R = {0, 1} and logical disjunction as the composition operation.

Interpreted systems are special cases of relation-based models (in which every state

is a singleton consisting of only one joint observation), and hence they also are

correlation models. The multi-sets models are also correlation models, with R being

the set of natural numbers, and addition as the composition operation. Quantum

epistemic systems Σ1 ⊗ Σ2 ⊗ · · · ⊗ Σn are also correlation models with the sets of

observations Oi given by the (state spaces associated to) Hilbert spaces Σi. Joint

observations (oi)i∈I are interpreted as projectors onto the corresponding state in⊗
i∈I Σi, i.e. local measurements yielding the given outcome (oi)i∈I . The result

structure is the interval R = [0, 1] with renormalized addition. The “result” of a

joint observation (oi)i∈I made on a state s is interpreted as the probability that

the outcome of a local measurement (in any basis that includes o = ⊗i∈Ioi) of

the I-subsystem of a (global system in) state s will be o. Indeed, it is known that

any quantum state s ∈ ⊗
i∈N Σi is uniquely characterized (up to multiplication by a

non-zero scalar) by the function mapping every fully separable state o = o1⊗· · · on ∈
Σ1×· · ·×Σn to the probability | < s, o > |2 of s collapsing to o (after a measurement

in any basis that includes o). 6

The Logic of Correlated Knowledge. The logic of correlated knowledge LCK

extends the general logic GEL with atomic sentences describing the results of pos-

sible joint observations by groups of agents:

ϕ ::= p| orI | ¬ϕ| ϕ ∧ ψ| KIϕ

with r ∈ R and oI = (oi)i∈Oi ∈ OI is a I-tuple of observations. (Recall that

OI := ×i∈IOi.) The semantics of orI is naturally given by: s |= orI iff sI(oI) = r.

Proposition 4 For every finite set N = {1, . . . , n} of agents, every finite result

structure (R,
∑

) and every tuple of finite observation sets �O = (O1, . . . , On), there

exists a complete axiomatization of the above logic LCK with respect to correlation

models over (R, �O). 7

Examples of interesting axioms:

Observations have unique results; i.e. for r �= p, we have orI ⇒ ¬opI .
Groups know the results of their (joint) observations: orI ⇒ KIo

r
I .

Group knowledge is correlated knowledge (based on joint observations): for every

tuple (ro)o∈OI
of results, one for each possible joint observation o = (oi)i∈I ∈ OI by

group I, we have KIϕ ∧∧{oro : o ∈ OI} ⇒ K∅ (
∧{oro : o ∈ OI} ⇒ ϕ) .

6 A different type of relational models for a generalized version of QM is proposed in [10]. Note that
our models are “relational” in the sense that quantum “states” correspond in our settings to relations (in
relation-based models) or functions (in correlation models). In contrast, in the categorical approach of
[10],relations (between finite sets) play the role of morphisms, i.e. they are the analogue of linear maps
(between Hilbert spaces) in QM.
7 The details are presented in an extended version of this paper in [6].
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