1,044 research outputs found

    Advanced solutions for quality-oriented multimedia broadcasting

    Get PDF
    Multimedia content is increasingly being delivered via different types of networks to viewers in a variety of locations and contexts using a variety of devices. The ubiquitous nature of multimedia services comes at a cost, however. The successful delivery of multimedia services will require overcoming numerous technological challenges many of which have a direct effect on the quality of the multimedia experience. For example, due to dynamically changing requirements and networking conditions, the delivery of multimedia content has traditionally adopted a best effort approach. However, this approach has often led to the end-user perceived quality of multimedia-based services being negatively affected. Yet the quality of multimedia content is a vital issue for the continued acceptance and proliferation of these services. Indeed, end-users are becoming increasingly quality-aware in their expectations of multimedia experience and demand an ever-widening spectrum of rich multimedia-based services. As a consequence, there is a continuous and extensive research effort, by both industry and academia, to find solutions for improving the quality of multimedia content delivered to the users; as well, international standards bodies, such as the International Telecommunication Union (ITU), are renewing their effort on the standardization of multimedia technologies. There are very different directions in which research has attempted to find solutions in order to improve the quality of the rich media content delivered over various network types. It is in this context that this special issue on broadcast multimedia quality of the IEEE Transactions on Broadcasting illustrates some of these avenues and presents some of the most significant research results obtained by various teams of researchers from many countries. This special issue provides an example, albeit inevitably limited, of the richness and breath of the current research on multimedia broadcasting services. The research i- - ssues addressed in this special issue include, among others, factors that influence user perceived quality, encoding-related quality assessment and control, transmission and coverage-based solutions and objective quality measurements

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Scalable video/image transmission using rate compatible PUM turbo codes

    Get PDF
    The robust delivery of video over emerging wireless networks poses many challenges due to the heterogeneity of access networks, the variations in streaming devices, and the expected variations in network conditions caused by interference and coexistence. The proposed approach exploits the joint optimization of a wavelet-based scalable video/image coding framework and a forward error correction method based on PUM turbo codes. The scheme minimizes the reconstructed image/video distortion at the decoder subject to a constraint on the overall transmission bitrate budget. The minimization is achieved by exploiting the rate optimization technique and the statistics of the transmission channel

    Error Resilience Performance Evaluation of a Distributed Video Codec

    Get PDF
    Distributed Video Coding (DVC), one of the most active research field in the video coding community, is based on the combination of Slepian-Wolf coding techniques with the idea of performing the prediction at the decoder side rather than at the encoder side. Besides its main property, which is flexible allocation of computational complexity between encoder and decoder, the distributed approach has other interesting properties. One of the most promising DVC characteristics is its intrinsic robustness to transmission errors. In this work we have evaluated the error resilience performance of a video codec based on the DVC scheme proposed by Stanford, and we have carried out a preliminary comparison with traditional H.264 encoding, showing that at high error probabilities and high bitrates the distributed approach can also outperform the traditional one

    Line-based Intra Coding for High Quality Video Using H.264/AVC

    Get PDF

    A Novel Adaptive Search Range Algorithm for Motion Estimation Based on H.264

    Get PDF
    Motion estimation (ME) is very vital to video compression. Due to the adoption of the high precision of motion vector (MV) in H.264 encoder, the computational cost increases rapidly, and ME takes about 60% of the whole encoding time. In order to accommodate the new variable block size motion estimation strategy adopted in H.264, this paper proposes a novel adaptive search range(ASR) algorithm as a optimized part based on UMHexagonS. Not only we utilize the median_MVP and interframe information in our ASR algorithm but also a penalty function is included. Experimental results indicate that our proposed method reduces the computational complexity in a certain degree and enhances encoding efficiency but has few changes in the reconstructed image quality and bit rate
    • 

    corecore