24,206 research outputs found

    Focus on: New trends, challenges and perspectives on healthcare cognitive computing: from information extraction to healthcare analytics

    Get PDF
    The focus of this special issue is cognitive computing in healthcare, due to the ever-increasing interest it is gaining for both research purposes and clinical applications. Indeed, cognitive computing is a challenging technology in many fields of application (Banavar, 2016) such as, e.g., medicine, education or eco- nomics (Coccoli et al., 2016) especially for the management of huge quantities of information where cognitive computing techniques push applications based on the use of big data (Coccoli et al., 2017). An unprecedented amount of data is made available from a heterogeneous variety of sources and this is true also in the case of health data, which can be exploited in many ways by means of sophisticated cognitive computing solutions and related technologies, such as, e.g., information extraction, natural language processing, and analytics. Also, from the point of view of programming they set challenging issues (see, e.g., Coccoli et al., 2015). In fact, the amount of healthcare that is now available and, potentially useful to care teams, reached 150 Exabytes worldwide and about 80% of this huge volume of data is in an unstructured form, being thus somehow invisible to systems. Hence, it is clear that cognitive computing and data analytics are the two key factors we have for make use – at least partially – of such a big volume of data. This can lead to personalized health solutions and healthcare systems that are more reliable, effective and efficient also re- ducing their expenditures. Healthcare will have a big impact on industry and research. However, this field, which seems to be a new era for our society, requires many scientific endeavours. Just to name a few, you need to create a hybrid and secure cloud to guarantee the security and confidentiality of health data, especially when smartphones or similar devices are used with specific app (see, e.g., Mazurczyk & Caviglione, 2015). Beside the cloud, you also need to consider novel ar- chitectures and data platforms that shall be different from the existing ones,because 90% of health and biomedical data are images and also because 80% of health data in the world is not available on the Web. This special issue wants to review state-of-the-art of issues and solutions of cognitive computing, focusing also on the current challenges and perspecti- ves and includes a heterogeneous collection of papers covering the following topics: information extraction in healthcare applications, semantic analysis in medicine, data analytics in healthcare, machine learning and cognitive com- puting, data architecture for healthcare, data platform for healthcare, hybrid cloud for healthcare

    Knowledge management, innovation and big data: Implications for sustainability, policy making and competitiveness

    Get PDF
    This Special Issue of Sustainability devoted to the topic of “Knowledge Management, Innovation and Big Data: Implications for Sustainability, Policy Making and Competitiveness” attracted exponential attention of scholars, practitioners, and policy-makers from all over the world. Locating themselves at the expanding cross-section of the uses of sophisticated information and communication technology (ICT) and insights from social science and engineering, all papers included in this Special Issue contribute to the opening of new avenues of research in the field of innovation, knowledge management, and big data. By triggering a lively debate on diverse challenges that companies are exposed to today, this Special Issue offers an in-depth, informative, well-structured, comparative insight into the most salient developments shaping the corresponding fields of research and policymaking

    The future of computing beyond Moore's Law.

    Get PDF
    Moore's Law is a techno-economic model that has enabled the information technology industry to double the performance and functionality of digital electronics roughly every 2 years within a fixed cost, power and area. Advances in silicon lithography have enabled this exponential miniaturization of electronics, but, as transistors reach atomic scale and fabrication costs continue to rise, the classical technological driver that has underpinned Moore's Law for 50 years is failing and is anticipated to flatten by 2025. This article provides an updated view of what a post-exascale system will look like and the challenges ahead, based on our most recent understanding of technology roadmaps. It also discusses the tapering of historical improvements, and how it affects options available to continue scaling of successors to the first exascale machine. Lastly, this article covers the many different opportunities and strategies available to continue computing performance improvements in the absence of historical technology drivers. This article is part of a discussion meeting issue 'Numerical algorithms for high-performance computational science'

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure
    • …
    corecore